Tag Archives: antioxidant properties

Curcumin nanoemulsion for treatment of intestinal inflammation

Most of my posts about research into curcumin (which is derived from turmeric) treatments has been based in India but this work according to a March 7, 2024 news item on phys.org comes from Brazil, Note: If you’re interested in more about turmeric/curcumin, I have a link to more information at the end of this posting,

A nanoemulsion containing particles of curcumin, which is known to have anti-inflammatory and antioxidant properties, has been found capable of modulating the gut microbiota of mice with intestinal inflammation in experiments conducted by researchers at the University of Western São Paulo (UNOESTE) and São Paulo State University (UNESP) in Brazil.

The image being used to illustrate an aspect of this research is a bit of a mystery. Is curcumin bright orange? And, it seems like a lot for a mouse,

Caption: The nanoemulsion enhanced the bioavailability of the curcumin and resulted in increased abundance of beneficial bacteria in the murine gut microbiota. Credit: UNOESTE

A March 6, 2024 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) press release (also on EurekAlert but published March 7, 2024) by Thais Szegö, which originated the news item, Note: Links have been removed,

Curcumin, a natural substance belonging to the group of bioactive compounds called curcuminoids, is a yellow polyphenolic pigment found in the turmeric plant (Curcuma longa). It has gained prominence in treatments to combat inflammatory intestinal disorders, but its bioavailability is low when it is administered orally. This problem is exacerbated in patients with Crohn’s disease, ulcerative colitis and other conditions associated with inflammation of the digestive tract and gut microbiota alterations. 

To enhance the efficacy of curcumin in such cases, the scientists developed an emulsion containing nanometric particles of the compound (invisible to the naked eye). “The research comprised two stages. The first entailed producing a nanoemulsion to deliver the curcumin. In the second, we evaluated its stability, morphology and physicochemical properties,” said Lizziane Kretli Winkelströter Eller, last author of the article and a professor at UNOESTE. 

Next, to test the action of the nanoemulsion in mice, the researchers induced intestinal inflammation using a drug called indomethacin and administered the nanoemulsion orally for 14 days. At the end of this period, they evaluated the intestinal inflammation by macroscopic, histopathological and metagenomic analysis.

The results showed that the nanoemulsion effectively improved the bioavailability of curcumin and modulated the gut microbiota of the mice after the damage was caused by the drug, increasing the presence there of beneficial bacteria. “The nanoemulsion didn’t lead to a significant improvement in the intestinal inflammation, but the relative abundance of Lactobacillus bacteria was about 25% higher in the mice treated with curcumin nanoemulsion than in the control group,” Eller said.

The authors of the study, the first to measure the effects of curcumin nanoemulsion in this way, stressed the importance of developing novel formulations that enhance the efficacy of curcumin in preventing and treating inflammatory bowel disease, since it has proved to be a valid alternative to existing treatments, which are expensive and have significant side effects. 

The group continues to conduct research on the potential of nanoformulations to deliver nutraceuticals (food elements of plant or animal origin with significant health benefits). “Specifically with regard to the curcumin nanoemulsion, we’re adjusting the formulation to increase the bioavailability of the active ingredient and will soon apply it in other protocols for the prevention and treatment of intestinal damage,” Eller said. 

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at www.fapesp.br/en and visit FAPESP news agency at www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Here’s a link to and a citation for the paper,

Evaluation of curcumin nanoemulsion effect to prevent intestinal damage by Maria Vitória Minzoni de Souza Iacia, Maria Eduarda Ferraz Mendes, Karolinny Cristiny de Oliveira Vieira, Gilia Cristine Marques Ruiz, Carlos José Leopoldo Constantino, Cibely da Silva Martin, Aldo Eloizo Job, Gisele Alborghetti Nai, and Lizziane Kretli Winkelstroter Eller. International Journal of Pharmaceutics Volume 650, 25 January 2024, 123683 DOI: https://doi.org/10.1016/j.ijpharm.2023.123683

This paper is behind a paywall.

For the curious, Johns Hopkins Medical School has a posting by Mary-Eve Brown about turmeric, its benefits, and its use in Ayurvedic medicine.

Bone regeneration with a mix of 21st century techniques and an age-old natural cure

Curry was how I was introduced to turmeric. My father who came from Mauritius loved curry and we had it at least once a week. Nobody mentioned healing properties, which I was to discover them only after I started this blog. Usually, turmeric is mentioned in cancer cures but not this time.

Turmeric Courtesy: Washington State University

From a May 2, 2018 Washington State University news release by Tina Hilding (also on EurekAlert but dated May 3, 2018),

A WSU research team is bringing together natural medical cures with modern biomedical devices in hopes of bringing about better health outcomes for people with bone diseases.

In this first-ever effort, the team improved bone-growing capabilities on 3D-printed, ceramic bone scaffolds by 30-45 percent when coated with curcumin, a compound found in the spice, turmeric. They have published their work in the journal, Materials Today Chemistry.

The work could be important for the millions of Americans who suffer from injuries or bone diseases like osteoporosis.

Human bone includes bone forming and resorbing cells that constantly remodel throughout our lives. As people age, the bone cell cycling process often doesn’t work as well. Bones become weaker and likely to fracture. Many of the medicines used for osteoporosis work by slowing down or stopping the destruction of old bone or by forming new bone. While they may increase bone density, they also create an imbalance in the natural bone remodeling cycle and may create poorer quality bone.

Turmeric has been used as medicine for centuries in Asian countries, and curcumin has been shown to have antioxidant, anti-inflammatory and bone-building capabilities. It can also prevent various forms of cancers. However, when taken orally as medicine, the compound can’t be absorbed well in the body. It is metabolized and eliminated too quickly.

Led by Susmita Bose, Herman and Brita Lindholm Endowed Chair Professor in the School of Mechanical and Materials Engineering, the researchers encased the curcumin within a water-loving polymer, a large molecule, so that it could be gradually released from their ceramic scaffolds. The curcumin increased the viability and proliferation of new bone cells and blood vessels in surrounding tissue as well as accelerated the healing process.

Bose hopes that the work will lead to medicines that naturally create healthier bone without affecting the bone remodeling cycle.

“In the end, it’s the bone quality that matters,” she said.

The researchers are continuing the studies, looking at the protein and cellular level to gain better understanding of exactly how the natural compound works. They are also working to improve the process’ efficiency and control. The challenge with the natural compounds, said Bose, is that they are often large organic molecules.

“You have to use the right vehicle for delivery,” she said. “We need to load and get it released in a controlled and sustained way. The chemistry of vehicle delivery is very important.”

In addition to curcumin, the researchers are studying other natural remedies, including compounds from aloe vera, saffron, Vitamin D, garlic, oregano and ginger. Bose is focused on compounds that might help with bone disorders, including those that encourage bone growth or that have anti-inflammatory, infection control, or anti-cancer properties.

Starting with her own health issues, Bose has had a longtime interest in bridging natural medicinal compounds with modern medicine. That interest increased after she had her children.

“As a mother and having a chemistry background, I realized I didn’t want my children to be exposed to so many chemicals for every illness,” Bose said. “I started looking at home remedies.”

To her students, she always emphasizes healthy living as the best way to guarantee the best health outcomes, including healthy eating, proper sleep, interesting hobbies, and exercise.

Courtesy Washington State University

Here’s a link to and a citation for the paper,

Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration by Susmita Bose, Naboneeta Sarkar, Dishary Banerjee. Materials Today Chemistry Vol. 8 June 2018, pp. 110-130 [Published online May 2, 2018] https://doi.org/10.1016/j.mtchem.2018.03.005

This paper is behind a paywall.

Korean researchers extend food shelf *life* with nanomicrobial coating

These Korean scientists have applied their new coating to food and to shoe insoles as they test various uses for their technology. From an Aug. 11, 2017 news item on Nanowerk,

The edible coating on produce has drawn a great deal of attention in the food and agricultural industry. It could not only prolong postharvest shelf life of produce against external changes in the environment but also provide additional nutrients to be useful for human health. However, most versions of the coating have had intrinsic limitations in their practical application.

First, highly specific interactions between coating materials and target surfaces are required for a stable and durable coating. Even further, the coating of bulk substrates, such as fruits, is time consuming or is not achievable in the conventional solution-based coating. In this respect, material-independent and rapid coating strategies are highly demanded.

The research team led by Professor Insung Choi of the Department of Chemistry developed a sprayable nanocoating technique using plant-derived polyphenol that can be applied to any surface.

An Aug. 10, 2017 KAIST (Korea Advanced Institute of Science and Technology) press release, which originated the news item, expands on the theme,

Polyphenols, a metabolite of photosynthesis, possess several hydroxyl groups and are found in a large number of plants showing excellent antioxidant properties. They have been widely used as a nontoxic food additive and are known to exhibit antibacterial, as well as potential anti-carcinogenic capabilities. Polyphenols can also be used with iron ions, which are naturally found in the body, to form an adhesive complex, which has been used in leather tanning, ink, etc.

The research team combined these chemical properties of polyphenol-iron complexes with spray techniques to develop their nanocoating technology. Compared to conventional immersion coating methods, which dip substrates in specialized coating solutions, this spray technique can coat the select areas more quickly. The spray also prevents cross contamination, which is a big concern for immersion methods. The research team has showcased the spray’s ability to coat a variety of different materials, including metals, plastics, glass, as well as textile fabrics. The polyphenol complex has been used to form antifogging films on corrective lenses, as well as antifungal treatments for shoe soles, demonstrating the versatility of their technique.

Furthermore, the spray has been used to coat produce with a naturally antibacterial, edible film. The coatings significantly improved the shelf life of tangerines and strawberries, preserving freshness beyond 28 days and 58 hours, respectively. (Uncoated fruit decomposed and became moldy under the same conditions). See the image below.


a –I, II: Uncoated and coated tangerines incubated for 14 and 28 days in daily-life settings

b –I: Uncoated and coated strawberries incubated for 58 hours in daily-life settings

b –II: Statistical investigation of the resulting edibility.

Professor Choi said, “Nanocoating technologies are still in their infancy, but they have untapped potential for exciting applications. As we have shown, nanocoatings can be easily adapted for several different uses, and the creative combination of existing nanomaterials and coating methods can synergize to unlock this potential.”

Here’s a link to and a citation for the paper,

Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits by Ji Park, Sohee Choi, Hee Moon, Hyelin Seo, Ji Kim, Seok-Pyo Hong, Bong Lee, Eunhye Kang, Jinho Lee, Dong Ryu, & Insung S. Choi. Scientific Reports 7, Article number: 6980 (2017) doi:10.1038/s41598-017-07257-x Published online: 01 August 2017

This paper is open access.

*’life’ added to correct headline on Sept. 4, 2017.