Tag Archives: Argentina

Better anti-parasitic medicine delivery with chitosan-based nanocapsules

I mage: The common liver fluke which can cause fascioliasis. Credit: Wikimedia creative commons Courtesy: Leeds University

It looks like a pair of lips to me but, according to a December 12, 2018 news item on Nanowerk, this liver fluke heralds a flatworm infection is a serious health problem,

An international team, led by Professor Francisco Goycoolea from the University of Leeds [UK] and Dr Claudio Salomon from the Universidad Nacional de Rosario, Argentina, and in collaboration with colleagues at the University of Münster, Germany, have developed a novel pharmaceutical formulation to administer triclabendazole – an anti-parasitic drug used to treat a type of flatworm infection – in billions of tiny capsules.

The World Health Organisation estimates that 2.4 million people are infected with fascioliasis, the disease caused by flatworms and treated with triclabendazole.

A December 12, 2018 University of Leeds  press release (also on EurekAlert), which originated the news item,

Anti-parasitic drugs do not become effective until they dissolve and are absorbed. Traditionally, these medicines are highly insoluble and this limits their therapeutic effect.
In a bid to overcome this limitation and accomplish the new formulation, the team used “soft” nanotechnology and nanomedicine approaches, which utilises the self-assembly properties of organic nanostructures and uses techniques in which components, such as polymers and surfactants in solution, play key roles.

Their formulation produces capsules that are less than one micron in size – the diameter of a human hair is roughly 75 microns. These tiny capsules are loaded with triclabendazole and then bundled together to deliver the required dose.

The team used chitosan, a naturally-occurring sugar polymer found in the exoskeleton of shellfish and the cell walls of certain fungi, to coat the oil-core of capsules and bind the drug together, while stabilising the capsule and helping to preserve it.
In its nanocapsule form, the drug would be 100 times more soluble than its current tablet form.

Professor Goycoolea, from the School of Food Science and Nutrition at Leeds, said: “Solubility is critical challenge for effective anti-parasite medicine. We looked to tackle this problem at the particle level. Triclabendazole taken as a dose made up of billions of tiny capsules would mean the medicine would be more efficiently and quickly absorbed

“Through the use of nanocapsules and nanoemulsions, drug efficiency can be enhanced and new solutions can be considered for the best ways to target medicine delivery.”
Dr Salomon said: “To date, this is the first report on triclabendazole nanoencapsulation and we believe this type of formulation could be applied to other anti-parasitic drugs as well. But more research is needed to ensure this new pharmaceutical formulation of the drug does not diminish the anti-parasitic effect. Our ongoing research is working to answer this very question.”

Although there have been cases of fascioliasis in more than 70 countries worldwide, with increasing reports from Europe and the Americas, it is considered a neglected disease, as it does not receive much attention and often goes untreated.
Symptoms of the disease when it reaches the chronic phase include intermittent pain, jaundice and anaemia. Patients can also experience hardening of the liver in the case of long-term inflammation.

Because of the highly insoluble nature of anti-parasitic drugs, they need to be administered in very high dosages to ensure enough of the active ingredient is absorbed. This is particularly problematic when treating children for parasites. Tablets needs to be divided into smaller pieces to adjust the dosage and make swallowing easier, but this can cause side effects due to incorrect dosage.

The team’s technique to formulate triclabendazole into nanocapsules, published today [Dec. 12, 2018] in the journal PLOS ONE, would also allow for lower doses to be administered. s

Here’s a link to and a citation for the paper,

Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations by Daniel Real, Stefan Hoffmann, Darío Leonardi, Claudio Salomon, Francisco M. Goycoolea. PLOS DOI https://doi.org/10.1371/journal.pone.0207625 Published: December 12, 2018

This paper is open access. BTW, I loved the title for the press release (Helping the anti-parasitic medicine go down) for its reference to the song, A spoonful of sugar helps the medicine go down, in the 1964 film musical, Mary Poppins, and the shout out for the sort of sequel, Mary Poppins Returns, released on Dec. 19, 2018.

International Women’s Day March 8, 2017 and UNESCO/L’Oréal’s For Women in Science (Rising Talents)

Before getting to the science, here’s a little music in honour of March 8, 2017 International Women’s Day,

There is is a Wikipedia entry devoted to Rise Up (Parachute Club song), Note: Links have been removed<

“Rise Up” is a pop song recorded by the Canadian group Parachute Club on their self-titled 1983 album. It was produced and engineered by Daniel Lanois, and written by Parachute Club members Billy Bryans, Lauri Conger, Lorraine Segato and Steve Webster with lyrics contributed by filmmaker Lynne Fernie.

An upbeat call for peace, celebration, and “freedom / to love who we please,” the song was a national hit in Canada, and was hailed as a unique achievement in Canadian pop music:

“ Rarely does one experience a piece of music in white North America where the barrier between participant and observer breaks down. Rise Up rises right up and breaks down the wall.[1] ”

According to Segato, the song was not written with any one individual group in mind, but as a universal anthem of freedom and equality;[2] Fernie described the song’s lyrics as having been inspired in part by West Coast First Nations rituals in which young girls would “rise up” at dawn to adopt their adult names as a rite of passage.[3]

It remains the band’s most famous song, and has been adopted as an activist anthem for causes as diverse as gay rights, feminism, anti-racism and the New Democratic Party.[4] As well, the song’s reggae and soca-influenced rhythms made it the first significant commercial breakthrough for Caribbean music in Canada.

L’Oréal UNESCO For Women in Science

From a March 8, 2017 UNESCO press release (received via email),

Fifteen outstanding young women researchers, selected
among more than 250 candidates in the framework of the 19th edition of
the L’Oréal-UNESCO For Women in Science awards, will receive the
International Rising Talent fellowship during a gala on 21 March at the
hotel Pullman Tour Eiffel de Paris. By recognizing their achievements at
a key moment in their careers, the _For Women in Science programme aims
to help them pursue their research.

Since 1998, the L’Oréal-UNESCO _For Women in Science programme [1]
has highlighted the achievements of outstanding women scientists and
supported promising younger women who are in the early stages of their
scientific careers. Selected among the best national and regional
L’Oréal-UNESCO fellows, the International Rising Talents come from
all regions of the world (Africa and Arab States, Asia-Pacific, Europe,
Latin America and North America).

Together with the five laureates of the 2017 L’Oreal-UNESCO For Women
in Science awards [2], they will participate in a week of events,
training and exchanges that will culminate with the award ceremony on 23
March 2017 at the Mutualité in Paris.

The 2017 International Rising Talent are recognized for their work in
the following five categories:

WATCHING THE BRAIN AT WORK

* DOCTOR LORINA NACI, Canada
Fundamental medicine
In a coma: is the patient conscious or unconscious?     * ASSOCIATE
PROFESSOR MUIREANN IRISH, Australia

Clinical medicine
Recognizing Alzheimer’s before the first signs appear.

ON THE ROAD TO CONCEIVING NEW MEDICAL TREATMENTS

* DOCTOR HYUN LEE, Germany
Biological Sciences
Neurodegenerative diseases: untangling aggregated proteins.
* DOCTOR NAM-KYUNG YU, Republic of Korea
Biological Sciences
Rett syndrome: neuronal cells come under fire
* DOCTOR STEPHANIE FANUCCHI, South Africa
Biological Sciences
Better understanding the immune system.
* DOCTOR JULIA ETULAIN, Argentina
Biological Sciences
Better tissue healing.

Finding potential new sources of drugs

* DOCTOR RYM BEN SALLEM, Tunisia
Biological Sciences
New antibiotics are right under our feet.
* DOCTOR HAB JOANNA SULKOWSKA, Poland
Biological Sciences
Unraveling the secrets of entangled proteins.

GETTING TO THE HEART OF MATTER

* MS NAZEK EL-ATAB, United Arab Emirates
Electrical, Electronic and Computer Engineering
Miniaturizing electronics without losing memory.
* DOCTOR BILGE DEMIRKOZ, Turkey
Physics
Piercing the secrets of cosmic radiation.
* DOCTOR TAMARA ELZEIN, Lebanon
Material Sciences
Trapping radioactivity.
* DOCTOR RAN LONG, China
Chemistry
Unlocking the potential of energy resources with nanochemistry.

EXAMINING THE PAST TO SHED LIGHT ON THE FUTURE – OR VICE VERSA

* DOCTOR FERNANDA WERNECK, Brazil
Biological Sciences
Predicting how animal biodiversity will evolve.
* DOCTOR SAM GILES, United Kingdom
Biological Sciences
Taking another look at the evolution of vertebrates thanks to their
braincases.
* DOCTOR ÁGNES KÓSPÁL, Hungary
Astronomy and Space Sciences
Looking at the birth of distant suns and planets to better understand
the solar system.

Congratulations to all of the winners!

You can find out more about these awards and others on the 2017 L’Oréal-UNESCO For Women in Science Awards webpage or on the For Women In Science website. (Again in honour of the 2017 International Women’s Day, I was the 92758th signer of the For Women in Science Manifesto.)

International Women’s Day origins

Thank you to Wikipedia (Note: Links have been removed),

International Women’s Day (IWD), originally called International Working Women’s Day, is celebrated on March 8 every year.[2] It commemorates the movement for women’s rights.

The earliest Women’s Day observance was held on February 28, 1909, in New York and organized by the Socialist Party of America.[3] On March 8, 1917, in the capital of the Russian Empire, Petrograd, a demonstration of women textile workers began, covering the whole city. This was the beginning of the Russian Revolution.[4] Seven days later, the Emperor of Russia Nicholas II abdicated and the provisional Government granted women the right to vote.[3] March 8 was declared a national holiday in Soviet Russia in 1917. The day was predominantly celebrated by the socialist movement and communist countries until it was adopted in 1975 by the United Nations.

It seems only fitting to bookend this post with another song (Happy International Women’s Day March 8, 2017),

While the lyrics are unabashedly romantic, the video is surprisingly moody with a bit of a ‘stalker vive’ although it does end up with her holding centre stage while singing and bouncing around in time to Walking on Sunshine.

Using melanin in bioelectronic devices

Brazilian researchers are working with melanin to make biosensors and other bioelectronic devices according to a Dec. 20, 2016 news item on phys.org,

Bioelectronics, sometimes called the next medical frontier, is a research field that combines electronics and biology to develop miniaturized implantable devices capable of altering and controlling electrical signals in the human body. Large corporations are increasingly interested: a joint venture in the field has recently been announced by Alphabet, Google’s parent company, and pharmaceutical giant GlaxoSmithKline (GSK).

One of the challenges that scientists face in developing bioelectronic devices is identifying and finding ways to use materials that conduct not only electrons but also ions, as most communication and other processes in the human organism use ionic biosignals (e.g., neurotransmitters). In addition, the materials must be biocompatible.

Resolving this challenge is one of the motivations for researchers at São Paulo State University’s School of Sciences (FC-UNESP) at Bauru in Brazil. They have succeeded in developing a novel route to more rapidly synthesize and to enable the use of melanin, a polymeric compound that pigments the skin, eyes and hair of mammals and is considered one of the most promising materials for use in miniaturized implantable devices such as biosensors.

A Dec. 14, 2016 FAPESP (São Paulo Research Foundation) press release, which originated the news item, further describes both the research and a recent meeting where the research was shared (Note: A link has been removed),

Some of the group’s research findings were presented at FAPESP Week Montevideo during a round-table session on materials science and engineering.

The symposium was organized by the Montevideo Group Association of Universities (AUGM), Uruguay’s University of the Republic (UdelaR) and FAPESP and took place on November 17-18 at UdelaR’s campus in Montevideo. Its purpose was to strengthen existing collaborations and establish new partnerships among South American scientists in a range of knowledge areas. Researchers and leaders of institutions in Uruguay, Brazil, Argentina, Chile and Paraguay attended the meeting.

“All the materials that have been tested to date for applications in bioelectronics are entirely synthetic,” said Carlos Frederico de Oliveira Graeff, a professor at UNESP Bauru and principal investigator for the project, in an interview given to Agência FAPESP.

“One of the great advantages of melanin is that it’s a totally natural compound and biocompatible with the human body: hence its potential use in electronic devices that interface with brain neurons, for example.”

Application challenges

According to Graeff, the challenges of using melanin as a material for the development of bioelectronic devices include the fact that like other carbon-based materials, such as graphene, melanin is not easily dispersible in an aqueous medium, a characteristic that hinders its application in thin-film production.

Furthermore, the conventional process for synthesizing melanin is complex: several steps are hard to control, it can last up to 56 days, and it can result in disorderly structures.

In a series of studies performed in recent years at the Center for Research and Development of Functional Materials (CDFM), where Graeff is a leading researcher and which is one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP, he and his collaborators managed to obtain biosynthetic melanin with good dispersion in water and a strong resemblance to natural melanin using a novel synthesis route.

The process developed by the group at CDMF takes only a few hours and is based on changes in parameters such as temperature and the application of oxygen pressure to promote oxidation of the material.

By applying oxygen pressure, the researchers were able to increase the density of carboxyl groups, which are organic functional groups consisting of a carbon atom double bonded to an oxygen atom and single bonded to a hydroxyl group (oxygen + hydrogen). This enhances solubility and facilitates the suspension of biosynthetic melanin in water.

“The production of thin films of melanin with high homogeneity and quality is made far easier by these characteristics,” Graeff said.

By increasing the density of carboxyl groups, the researchers were also able to make biosynthetic melanin more similar to the biological compound.

In living organisms, an enzyme that participates in the synthesis of melanin facilitates the production of carboxylic acids. The new melanin synthesis route enabled the researchers to mimic the role of this enzyme chemically while increasing carboxyl group density.

“We’ve succeeded in obtaining a material that’s very close to biological melanin by chemical synthesis and in producing high-quality film for use in bioelectronic devices,” Graeff said.

Through collaboration with colleagues at research institutions in Canada [emphasis mine], the Brazilian researchers have begun using the material in a series of applications, including electrical contacts, pH sensors and photovoltaic cells.

More recently, they have embarked on an attempt to develop a transistor, a semiconductor device used to amplify or switch electronic signals and electrical power.

“Above all, we aim to produce transistors precisely in order to enhance this coupling of electronics with biological systems,” Graeff said.

I’m glad to have gotten some information about the work in South America. It’s one of FrogHeart’s shortcomings that I have so little about the research in that area of the world. I believe this is largely due to my lack of Spanish language skills. Perhaps one day there’ll be a universal translator that works well. In the meantime, it was a surprise to see Canada mentioned in this piece. I wonder which Canadian research institutions are involved with this research in South America.

Generating clean fuel with individual gold atoms

A July 22, 2016 news item on Nanowerk highlights an international collaboration focused on producing clean fuel,

A combined experimental and theoretical study comprising researchers from the Chemistry Department and LCN [London Centre for Nanotechnology], along with groups in Argentina, China, Spain and Germany, has shed new light on the behaviour of individual gold atoms supported on defective thin cerium dioxide films – an important system for catalysis and the generation of clean hydrogen for fuel.

A July ??, 2016 LCN press release, which originated the news item, expands on the theme of catalysts, the research into individual gold atoms, and how all this could result in clean fuel,

Catalysis plays a vital role in our world; an estimated 80% of all chemical and materials are made via processes which involve catalysts, which are commonly a mixture of metals and oxides. The standard motif for these heterogeneous catalysts (where the catalysts are solid and the reactants are in the gas phase) is of a high surface area oxide support that is decorated with metal nanoparticles a few nanometres in diameter. Cerium dioxide (ceria, CeO2) is a widely used support material for many important industrial processes; metal nanoparticles supported on ceria have displayed high activities for applications including car catalytic converters, alcohol synthesis, and for hydrogen production. There are two key attributes of ceria which make it an excellent active support material: its oxygen storage and release ability, and its ability to stabilise small metal particles under reaction conditions. A recent system that has been the focus of much interest has been that of gold nanoparticles and single atoms with ceria, which has demonstrated high activity towards the water-gas-shift reaction, (CO + H2O —> CO2 + H2) a key stage in the generation of clean hydrogen for use in fuel cells.

The nature of the active sites of these catalysts and the role that defects play are still relatively poorly understood; in order to study them in a systematic fashion, the researchers prepared model systems which can be characterised on the atomic scale with a scanning tunnelling microscope.

Figure: STM images of CeO2-x(111) ultrathin films before and after the deposition of Au single atoms at 300 K. The bright lattice is from the oxygen atoms at the surface – vacancies appear as dark spots

These model systems comprised well-ordered, epitaxial ceria films less than 2 nm thick, prepared on a metal single crystal, upon which single atoms and small clusters of gold were evaporated onto under ultra-high-vacuum (essential to prevent contamination of the surfaces). Oxygen vacancy defects – missing oxygen atoms in the top layer of the ceria – are relatively common at the surface and appear as dark spots in the STM images. By mapping the surface before and after the deposition of gold, it is possible to analyse the binding of the metal atoms, in particular there does not appear to be any preference for binding in the vacancy sites at 300 K.

Publishing their results in Physical Review Letters, the researchers combined these experimental results with theoretical studies of the binding energies and diffusion rates across the surface. They showed that kinetic effects governed the behaviour of the gold atoms, prohibiting the expected occupation of the thermodynamically more stable oxygen vacancy sites. They also identified electron transfer between the gold atoms and the ceria, leading to a better understanding of the diffusion phenomena that occur at this scale, and demonstrated that the effect of individual surface defects may be more minor than is normally imagined.

Here’s a link to and a citation for the paper,

Diffusion Barriers Block Defect Occupation on Reduced CeO2(111) by P.G. Lustemberg, Y. Pan, B.-J. Shaw, D. Grinter, Chi Pang, G. Thornton, Rubén Pérez, M. V. Ganduglia-Pirovano, and N. Nilius. Phys. Rev. Lett. Vol. 116, Iss. 23 — 10 June 2016 2016DOI:http://dx.doi.org/10.1103/PhysRevLett.116.236101 Published 9 June 2016

This paper is behind a paywall.

Upcoming PoetryFilm appearances and events

It’s been a while since I last (in a March 17, 2015 post) featured PoetryFilm. Here’s the latest from the organization’s Oct. 2015 newsletter,

Forthcoming
  • I have been invited to join the International Jury for the CYCLOP International Videopoetry Festival, 20-22 November 2015 (Kiev, Ukraine)
  • PoetryFilm Paradox events, featuring poetry films about love, as part of the BFI LOVE season, 6 and 22 December 2015 (London, UK)
  • PoetryFilm screening + Zata Banks in conversation with filmmaker Roxana Vilk at The Scottish Poetry Library, 3 December 2015 (Scotland, UK)
  • I have been invited to judge the Carbon Culture Review poetry film competition (USA)
  • poetryfilmkanal in Germany recently invited me to write an article about the poetry film artform – it can be read here

FYI, the “I” in the announcement’s text is for Zata Banks, the founder and director of PoetryFilm since 2002.

There’s more about the CYCLOP International Videopoetry Festival in a Sept. 13, 2015 posting on the PoetryFilm website,

*The 5th CYCLOP International Videopoetry Festival will take place on 20 – 22 November 2015 in Ukraine (Kyiv). The festival programme features video poetry-related lectures, workshops, round tables, discussions, presentations of international contests and festivals, as well as a demonstration of the best examples of Ukrainian and world videopoetry, a competitive programme, an awards ceremony and other related projects.

One of the projects is a new Contest for International poetry films within the framework of the CYCLOP festival. The International Jury: Alastair Cook (Filmpoem Festival, Edinburgh, Scotland), Zata Banks (PoetryFilm, London, United Kingdom), Javier Robledo (VideoBardo, Buenos Aires, Argentina), John Bennet (videopoet, USA),  Alice Lyons (Videopoet, Sligo, Ireland), Sigrun Hoellrigl (Art Visuals & Poetry, Vienna, Austria), Lucy English (Liberated Words, Bristol, United Kingdom), Tom Konyves (poet, video producer, educator and a pioneer in the field of videopoetry, British Columbia, Canada), Polina Horodyska (CYCLOP Videopoetry Festival, Kyiv, Ukraine) and Thomas Zandegiacomo (ZEBRA Poetry Film Festival, Berlin, Germany).

*Copy taken from the CYCLOP website

You can find the CYCLOP website here but you will need Ukrainian language reading skills.

I can’t find a website for the Carbon Culture Review poetry film competition or a webpage for it on the Carbon Culture Review website but  here’s what they have to say about themselves on the journal’s About page,

Carbon Culture Review is a journal at the intersection of new literature, art, technology and contemporary culture. We define culture broadly as the values, attitudes, actions and inventions of our global society and its subcultures in our modern age. Carbon Culture Review is distributed in the United States and countries throughout the world by Publisher’s Distribution Group, Inc. and Annas International as well as digitally through 0s&1s, Magzter and Amazon. CCR is a member of Councils of Literary Magazines and Presses and also publishes monthly online issues.

The last item from the announcement that I’m highlighting is Zata’s essay for poetryfilmkanal ,

Poetry films offer creative opportunities for exploring new semiotic modes and for communicating messages and meanings in innovative ways. Poetry films open up new methods of engagement, new audiences, and new means of self-expression, and also provide rich potential for the creation, perception and experience of emotion and meaning.

We are surrounded by communicative signs in literature, art, culture and in the world at large. Whilst words represent one system of communicating, there are many other ways of making meanings, for instance, colour semiotics, typographic design, and haptic, olfactive, gustatory and durational experiences – indeed, a comprehensive list could be infinite. The uses of spoken and written words to communicate represent just two approaches among many. Through using meaning-making systems other than words, by communicating without words, or by not using words alone, we can bypass these direct signifiers and tap directly into pools of meaning, or the signifieds, associated with those words. Different combinations of systems, or modes, can reinforce each other, render meanings more complex and subtle, or contrast with each other to illuminate different perspectives. Powerful juxtapositions, associations and new meanings can therefore emerge.

The essay is a good introduction for beginners and a good refresher for those in need. Btw, I understand Zata got married in March 2015. Congratulations to Zata and Joe!

South American countries and others visit Iran’s Nanotechnology Initiative Council

The Iran Nanotechnology Initiative Council (INIC) news release states eight South American countries visited. By my count there were six South American countries (Argentina, Brazil, Ecuador, Bolivia, Venezuela, and Uruguay,), one North American country (Mexico), and one Caribbean country (Cuba). All eight can be described as Latin American countries.

An easy to understand error (I once forgot Mexico is part of North America and, for heaven sakes, I live in Canada and really should know better) as the designations can be confusing. That cleared up, here’s what the June 15, 2015 INIC news release had to say about the visit,

The ambassadors and charge d’affaires of 8 South American countries of Argentina, Brazil, Ecuador, Bolivia, Cuba, Venezuela, Uruguay and Mexico paid a visit to Iran Nanotechnology Initiative Council (INIC) to become familiar with its activities.

Among the objectives of the visit, which was requested by the abovementioned countries, mention can be made of introduction with INIC and its activities, presentation of nanotechnology achievements and products in the country by the INIC, creation and modification of international cooperation and creation of appropriate environment for exporting nanotechnology-based products to these countries.

In this visit, the programs, achievements and objectives of nanotechnology development in Iran were explained by the authorities of INIC. In addition and due to the needs of the countries whose representatives were present in the visit, a number of experts from the Iranian knowledge-based companies presented their nanotechnology products in the fields of packaging of agricultural products with long durability and water purification.

As usual with something from INIC, I long for more detail, e.g., when did the visit take place?

H/t to Nanotechnology Now June 15, 2015 news item.

Canadian government spending on science and technology is down for the fourth year in a row

It seems there a steady downward trajectory where Canadian science and technology spending is concerned. Stephen Hui in a May 28, 2014 article for the Georgia Straight, breaks the latest news from Statistics Canada (Note: A link has been removed),

The Canadian government is expected to spend less money on science and technology in 2014-15 compared to the previous fiscal year, continuing a trend that began in 2011-12. [emphasis mine]

According to Statistics Canada, federal departments and agencies are projected to record $10.3 billion (all figures in current dollars) in science and tech expenditures in 2014-15, a decrease of 5.4 percent from 2013-14.

Federal science and tech spending peaked at $12 billion in 2010-11 and has declined every year since then.

In fact, an earlier July 30, 2013 news item in Huffington Post noted a decrease in the 2013-14 budget,

The federal agency says spending for the 2013-14 fiscal year is expected to decrease 3.3 per cent from the previous period, to $10.5 billion.

It adds research and development is expected to account for two-thirds of anticipated science and technology spending.

The finding is contained in Statistics Canada’s annual survey of all federal government departments and agencies believed to be performing or funding science and technology activities.

The survey, released Tuesday [July 2013], covers the period from Sept. 10, 2012 to Jan. 11, 2013.

Statistics Canada says spending on science and technology has been steadily decreasing since 2009-10. [emphasis mine]

According to Hui’s source, the Statistics Canada’s The Daily, May 28,2014: Federal government spending on science and technology, 2014/2015, the trend started in 2011/12. I’m not sure which specific Statistics Canada publication was the source for the Huffington Post’s start date for the decline.

Interestingly, the OECD (Organization for Economic Cooperation and Development) Science, Technology and Industry Scoreboard 2013 dates the decline to 2001. From my Oct. 30, 2013 posting (excerpted from the scorecard),

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

If I understand this rightly, Canadian business spending on R&D has been steadily declining for more than a decade and, since 2010 or so, Canadian government spending is also steadily declining. Does anyone else see this as a problem?

The contrast with Brazil is startling. From a June 2, 2014 Institute of Physics news release (also on EurekAlert but dated as June 1, 2014),

As Brazil gets set to host the 2014 FIFA World Cup this month amid concerns about the amount of public money being used to stage the world’s largest sporting event, Physics World‘s editorial team reveals in a new special report how physicists are taking full advantage of the four-fold increase in science funding that the government has invested over the past 10 years.

Since this news comes from the physics community, the news release focuses on physics-related developments,

Negotiations are currently under way to make Brazil an associate member of the CERN particle-physics lab in Geneva, while the country is also taking a leading role in the Pierre Auger Observatory – an international project based in Argentina designed to study ultrahigh-energy cosmic rays. [emphasis mine]

Building is also under way to create a world-leading synchrotron source, Sirius and Brazil is poised to become the first non-European member of the European Southern Observatory.

Carlos Henrique de Brito Cruz, a physicist at the University of Campinas and scientific director at FAPESP – one of Brazil’s most important funding agencies – told Physics World that the expectation is for Brazilian scientists to take a leadership role in such large research projects “and not just watch as mere participants”.

Considering the first graduate programmes in physics did not emerge in Brazilian universities until 1960, the rise to becoming one of the leading participants in international collaborations has been a rapid one.

The reputation of Brazilian physics has grown in line with a massive increase in science funding, which rose from R$12bn (about £3bn) in 2000 to R$50bn (around £13bn) in 2011.

Brazil’s spending on R&D now accounts for 1.2% of the gross domestic product and 40% of the total funding comes from companies.

The Brazilian Physical Society has around 6000 members comprising almost all research physicists in the country, who wrote around 25 000 research articles in international science journals between 2007 and 2010.

A lack of funding in the past had forced Brazilian scientists to focus on cheaper, theoretical research, but this has now changed and there is an almost even split between theory and experiment at universities.

Yet Brazil still suffers from several long-standing problems, the most significant being the poor standard of science education in high schools. A combination of low pay and lack of recognition makes physics teaching an unpopular choice of occupation despite attempts to tackle the problem.

Even those students who do see physics as a career option end up struggling and under-prepared for the rigours of an undergraduate physics course. Vitor de Souza, an astrophysicist at the Physics Institute at São Carlos, which is part of the University of São Paulo, told Physics World that of the 120 students who start a four-year physics degree at his university, only 10-20 actually graduate.

Another problem in Brazil is a fundamental disconnect between academic research and industrial development, with universities not sure how to handle spin-off firms and companies suspicious of universities.

More broadly, physicists feel that Brazilian society does not recognize the value of science, and that this can only be overcome when the physics community becomes more ambitious and more audacious.

You can find the special issue of Physics World here (it is open access).

As I noted in this May 30, 2014 posting (and elsewhere) featuring the new Agency of Science Communication, Technology and Innovation of Argentina (ACCTINA),,

The PCST [13th International Public Communication of Science and Technology Conference] international conference takes place every two years. The 2014 PCST conference took place in Salvador, Brazil. Conferences like this would seem to confirm the comments I made in a May 20, 2014 posting,

Returning to 2014, the [World Cup {soccer}] kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

While the science and technology community in Brazil has its concerns, I imagine most Canadian scientists would thrill to being the recipients of the funding bonanza of 1.2%  of the gross domestic product. According to the Conference Board of Canada, research and development spending in Canada was 0.8% of GDP for 2011 (from the Conference Board of Canada’s Public R&D spending webpage),

[downloaded from http://www.conferenceboard.ca/hcp/details/innovation/publicrandd.aspx]

[downloaded from http://www.conferenceboard.ca/hcp/details/innovation/publicrandd.aspx]

Did you notice, Canada the in 2011 was on the edge of getting a C grade along with the US? Meanwhile, if Brazil was listed, it would get top marks.

The question as to how much money is not enough for research and development (R&D) spending is complex and I don’t think it’s easily answered but it would be nice to see some discussion.

Agency of Science Communication, Technology and Innovation of Argentina (ACCTINA)

In a May 9, 2014 posting for SciDev.Net, Cecilia Rosen mentions an announcement about a new science communication agency for Argentina (Note: A link has been removed),

For a while now, Argentina has seemed serious about science as a means for development. This week, at the 13th International Public Communication of Science and Technology Conference (PCST2014), there was fresh evidence of this.

I learned that President Cristina Kirchner’s government is setting up a specialised agency within the science ministry to boost science communication in the country. This is part of the government’s strategic goals for 2014.

It will be called the Agency of Science Communication, Technology and Innovation of Argentina (ACCTINA), and should be formally launched by the end of this year, if things go smoothly, according to Vera Brudny, head of the project at the ministry.

On the sidelines of PCST2014, she told me that ACCTINA will replace the National Program for Science Popularisation.

That’s an interesting move and unfortunately following up on this at some future date is going to be tricky since I don’t have any Spanish language skills.

For anyone interested in more about SciDev.Net, there’s this from the What we do page,

SciDev.Net is committed to putting science at the heart of global development.

Our website is the world’s leading source of reliable and authoritative news, views and analysis on information about science and technology for global development.

We engage primarily with development professionals, policymakers, researchers, the media and the informed public.

Our main office is based in London but we have seven editions: Sub-Saharan Africa English, Sub-Saharan Africa French, South Asia, Latin America & Caribbean, South-East Asia & Pacific, Middle-East & North Africa and Global. Between us we manage a worldwide network of registered users, advisors, consultants and freelance journalists who drive our activities and vision.

The 13th International Public Communication of Science and Technology Conference (PCST2014) is produced by the Network for the Public Communication of Science and Technology (PCST). Here’s more from the About PCST page,

PCST is a network of individuals from around the world who are active in producing and studying PCST. It sponsors international conferences, an electronic discussion list, and symposiums. The aim is to encourage discussion and debate across professional, cultural, international, and disciplinary boundaries.

Members of the PCST Network come from a range of backgrounds:

  • Researchers working on the theory and practice of science communication
  • Communication staff working for research organisations
  • Staff at science centres and museums
  • Science journalists
  • Students on the ethics and philosophy of science and the public
  • Writers and editors of scientific material
  • Web designers
  • Scientists who communicate with the public
  • Visual and performing artists working on science themes.

The PCST international conference takes place every two years. The 2014 PCST conference took place in Salvador, Brazil. Conferences like this would seem to confirm the comments I made in a May 20, 2014 posting,

Returning to 2014, the [World Cup {soccer}] kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

Perhaps Argentina is getting ready to give Brazil a run for its money (slang for ‘provide some competition’).

Reading your way out of aMAZEme; a labyrinth of books

Can it get better than a maze made out of books?Yes, it can. The maze is patterned after Jorge Luis Borges’ fingerprints.

250,000 books were assembled by Brazilian artists,  Marcos Saboya and Gualter Pupo, who collaborated with production company Hungry Man to create this installation, aMAZEme, being shown and experienced in London, UK.  From the Aug. 12, 2012 posting by GrrlScientist for the Guardian science blogs,

Do you think is it possible to bring together such disparate topics as literature, performance art, installation, architecture and cinema? … we see how one man’s love of books and labyrinths (and fingerprints) came together to create an interesting audience-participation installation designed to raise funds to reduce poverty.

… this is [an homage to] Argentinean writer and educator Jorge Luis Borges, celebrating his love of books and labyrinths (and fingerprints?). A smaller version of this piece was previously created in Rio de Janeiro, but the London installation is much more ambitious.

If you happen to be in London, UK between now (Aug. 13, 2012) and Aug. 26, 2012, you can purchase tickets. From a description on the event page,

By participating in the installation, the audience discovers new textures, images and emotions. They become surrounded- hypnotized – by words and thoughts, designs and patterns. There appear to be secrets hidden in the installation’s walls; walls of up to 2.5 metres high, built from thousands of books, forming a large Maze of more than 500 square metres. The construction of the labyrinth and the public’s participation will be filmed by video cameras and sent to the “aMAZEme” website as well as to social media sites. Touch screens will be installed to look up information and to screen content, which will also be shown in monitors throughout the installation.

The public will be able to navigate through this hypnotic and surprising “book labyrinth” or attend daily performances from literary figures.

The artists have provided  a time-lapsed video showing the maze as it’s being constructed,

The Aug. 4, 2012 posting on the ART IS ALIVE blog provides this detail,

Projections of literary quotes directly onto the labyrinth walls and the accompanying audio will immerse the audience in a world of literature. Presented for the first time outside of Brazil, aMAZEme has been built in situ from 26 July and visitors can watch it grow over the course of the week. When the maze is deconstructed at the end of the exhibition, all of the books will be donated to Oxfam.

You might also want to check out the aMAZEme labyrinth images in Alice’s July 31, 2012 posting on the My Modern Met blog.  For anyone unfamiliar with Jorge Luis Borges, here’s excerpt  from a Wikipedia essay (Note: I have removed some links and footnotes),

Jorge Francisco Isidoro Luis Borges (24 August 1899 – 14 June 1986), known as Jorge Luis Borges (Spanish pronunciation: [ˈxorxe ˈlwis ˈβorxes]), was an Argentine short-story writer, essayist, poet and translator born in Buenos Aires. His work embraces the “character of unreality in all literature”. His most famous books, Ficciones (1944) and The Aleph (1949), are compilations of short stories interconnected by common themes such as dreams, labyrinths, libraries, mirrors, animals, fictional writers, philosophy, religion and God.

I wonder if anyone is tempted to pull a book from the maze for closer examination and what would happen. That’s always my impulse when I see a mass of books. There’s usually something I’d like to examine more closely.

Opening up Open Access: European Union, UK, Argentina, US, and Vancouver (Canada)

There is a furor growing internationally and it’s all about open access. It ranges from a petition in the US to a comprehensive ‘open access’ project from the European Union to a decision in the Argentinian Legislature to a speech from David Willetts, UK Minister of State for Universities and Science to an upcoming meeting in June 2012 being held in Vancouver (Canada).

As this goes forward, I’ll try to be clear as to which kind of open access I’m discussing,  open access publication (access to published research papers), open access data (access to research data), and/or both.

The European Commission has adopted a comprehensive approach to giving easy, open access to research funded through the European Union under the auspices of the current 7th Framework Programme and the upcoming Horizon 2020 (or what would have been called the 8th Framework Pr0gramme under the old system), according to the May 9, 2012 news item on Nanowerk,

To make it easier for EU-funded projects to make their findings public and more readily accessible, the Commission is funding, through FP7, the project ‘Open access infrastructure for research in Europe’ ( OpenAIRE). This ambitious project will provide a single access point to all the open access publications produced by FP7 projects during the course of the Seventh Framework Programme.

OpenAIRE is a repository network and is based on a technology developed in an earlier project called Driver. The Driver engine trawled through existing open access repositories of universities, research institutions and a growing number of open access publishers. It would index all these publications and provide a single point of entry for individuals, businesses or other scientists to search a comprehensive collection of open access resources. Today Driver boasts an impressive catalogue of almost six million taken from 327 open access repositories from across Europe and beyond.

OpenAIRE uses the same underlying technology to index FP7 publications and results. FP7 project participants are encouraged to publish their papers, reports and conference presentations to their institutional open access repositories. The OpenAIRE engine constantly trawls these repositories to identify and index any publications related to FP7-funded projects. Working closely with the European Commission’s own databases, OpenAIRE matches publications to their respective FP7 grants and projects providing a seamless link between these previously separate data sets.

OpenAIRE is also linked to CERN’s open access repository for ‘orphan’ publications. Any FP7 participants that do not have access to an own institutional repository can still submit open access publications by placing them in the CERN repository.

Here’s why I described this project as comprehensive, from the May 9, 2012 news item,

‘OpenAIRE is not just about developing new technologies,’ notes Ms Manola [Natalia Manola, the project’s manager], ‘because a significant part of the project focuses on promoting open access in the FP7 community. We are committed to promotional and policy-related activities, advocating open access publishing so projects can fully contribute to Europe’s knowledge infrastructure.’

The project is collecting usage statistics of the portal and the volume of open access publications. It will provide this information to the Commission and use this data to inform European policy in this domain.

OpenAIRE is working closely to integrate its information with the CORDA database, the master database of all EU-funded research projects. Soon it should be possible to click on a project in CORDIS (the EU’s portal for research funding), for example, and access all the open access papers published by that project. Project websites will also be able to provide links to the project’s peer reviewed publications and make dissemination of papers virtually effortless.

The project participants are also working with EU Members to develop a European-wide ‘open access helpdesk’ which will answer researchers’ questions about open access publishing and coordinate the open access initiatives currently taking place in different countries. The helpdesk will build up relationships and identify additional open access repositories to add to the OpenAIRE network.

Meanwhile, there’s been a discussion on the UK’s Guardian newspaper website about an ‘open access’ issue, money,  in a May 9, 2012 posting by John Bynner,

The present academic publishing system obstructs the free communication of research findings. By erecting paywalls, commercial publishers prevent scientists from downloading research papers unless they pay substantial fees. Libraries similarly pay huge amounts (up to £1m or more per annum) to give their readers access to online journals.

There is general agreement that free and open access to scientific knowledge is desirable. The way this might be achieved has come to the fore in recent debates about the future of scientific and scholarly journals.

Our concern lies with the major proposed alternative to the current system. Under this arrangement, authors are expected to pay when they submit papers for publication in online journals: the so called “article processing cost” (APC). The fee can amount to anything between £1,000 and £2,000 per article, depending on the reputation of the journal. Although the fees may sometimes be waived, eligibility for exemption is decided by the publisher and such concessions have no permanent status and can always be withdrawn or modified.

A major problem with the APC model is that it effectively shifts the costs of academic publishing from the reader to the author and therefore discriminates against those without access to the funds needed to meet these costs. [emphasis mine] Among those excluded are academics in, for example, the humanities and the social sciences whose research funding typically does not include publication charges, and independent researchers whose only means of paying the APC is from their own pockets. Academics in developing countries in particular face discrimination under APC because of their often very limited access to research funds.

There is another approach that could be implemented for a fraction of the cost of commercial publishers’ current journal subscriptions. “Access for all” (AFA) journals, which charge neither author nor reader, are committed to meeting publishing costs in other ways.

Bynner offers a practical solution, get the libraries to pay their subscription fees to an AFA journal, thereby funding ‘access for all’.

The open access discussion in the UK hasn’t stopped with a few posts in the Guardian, there’s also support from the government. David Willetts, in a May 2, 2012 speech to the UK Publishers Association Annual General Meeting had this to say, from the UK’s Dept. for Business Innovation and Skills website,

I realise this move to open access presents a challenge and opportunity for your industry, as you have historically received funding by charging for access to a publication. Nevertheless that funding model is surely going to have to change even beyond the positive transition to open access and hybrid journals that’s already underway. To try to preserve the old model is the wrong battle to fight. Look at how the music industry lost out by trying to criminalise a generation of young people for file sharing. [emphasis mine] It was companies outside the music business such as Spotify and Apple, with iTunes, that worked out a viable business model for access to music over the web. None of us want to see that fate overtake the publishing industry.

Wider access is the way forward. I understand the publishing industry is currently considering offering free public access to scholarly journals at all UK public libraries. This is a very useful way of extending access: it would be good for our libraries too, and I welcome it.

It would be deeply irresponsible to get rid of one business model and not put anything in its place. That is why I hosted a roundtable at BIS in March last year when all the key players discussed these issues. There was a genuine willingness to work together. As a result I commissioned Dame Janet Finch to chair an independent group of experts to investigate the issues and report back. We are grateful to the Publishers Association for playing a constructive role in her exercise, and we look forward to receiving her report in the next few weeks. No decisions will be taken until we have had the opportunity to consider it. But perhaps today I can share with you some provisional thoughts about where we are heading.

The crucial options are, as you know, called green and gold. Green means publishers are required to make research openly accessible within an agreed embargo period. This prompts a simple question: if an author’s manuscript is publicly available immediately, why should any library pay for a subscription to the version of record of any publisher’s journal? If you do not believe there is any added value in academic publishing you may view this with equanimity. But I believe that academic publishing does add value. So, in determining the embargo period, it’s necessary to strike a suitable balance between enabling revenue generation for publishers via subscriptions and providing public access to publicly funded information. In contrast, gold means that research funding includes the costs of immediate open publication, thereby allowing for full and immediate open access while still providing revenue to publishers.

In a May 22, 2012 posting at the Guardian website, Mike Taylor offers some astonishing figures (I had no idea academic publishing has been quite so lucrative) and notes that the funders have been a driving force in this ‘open access’ movement (Note: I have removed links from the excerpt),

The situation again, in short: governments and charities fund research; academics do the work, write and illustrate the papers, peer-review and edit each others’ manuscripts; then they sign copyright over to profiteering corporations who put it behind paywalls and sell research back to the public who funded it and the researchers who created it. In doing so, these corporations make grotesque profits of 32%-42% of revenue – far more than, say, Apple’s 24% or Penguin Books’ 10%. [emphasis mine]

… But what makes this story different from hundreds of other cases of commercial exploitation is that it seems to be headed for a happy ending. That’s taken some of us by surprise, because we thought the publishers held all the cards. Academics tend to be conservative, and often favour publishing their work in established paywalled journals rather than newer open access venues.

The missing factor in this equation is the funders. Governments and charitable trusts that pay academics to carry out research naturally want the results to have the greatest possible effect. That means publishing those results openly, free for anyone to use.

Taylor also goes on to mention the ongoing ‘open access’ petition in the US,

There is a feeling that the [US] administration fully understands the value of open access, and that a strong demonstration of public concern could be all it takes now to goad it into action before the November election. To that end a Whitehouse.gov petition has been set up urging Obama to “act now to implement open access policies for all federal agencies that fund scientific research”. Such policies would bring the US in line with the UK and Europe.

The people behind the US campaign have produced a video,

Anyone wondering about the reference to Elsevier may want to check out Thomas Lin’s Feb. 13, 2012 article for the New York Times,

More than 5,700 researchers have joined a boycott of Elsevier, a leading publisher of science journals, in a growing furor over open access to the fruits of scientific research.

You can find out more about the boycott and the White House petition at the Cost of Knowledge website.

Meanwhile, Canadians are being encouraged to sign the petition (by June 19, 2012), according to the folks over at ScienceOnline Vancouver in a description o f their June 12, 2012 event, Naked Science; Excuse: me your science is showing (a cheap, cheesy, and attention-getting  title—why didn’t I think of it first?),

Exposed. Transparent. Nude. All adjectives that should describe access to scientific journal articles, but currently, that’s not the case. The research paid by our Canadian taxpayer dollars is locked behind doors. The only way to access these articles is money, and lots of it!

Right now research articles costs more than a book! About $30. Only people with university affiliations have access and only journals their libraries subscribe to. Moms, dads, sisters, brothers, journalists, students, scientists, all pay for research, yet they can’t read the articles about their research without paying for it again. Now that doesn’t make sense.

….

There is also petition going around that states that research paid for by US taxpayer dollars should be available for free to US taxpayers (and others!) on the internet. Don’t worry if you are Canadian citizen, by signing this petition, Canadians would get access to the US research too and it would help convince the Canadian government to adopt similar rules. [emphasis mine]

Here’s where you can go to sign the petition. As for the notion that this will encourage the Canadian government to adopt an open access philosophy, I do not know. On the one hand, the government has opened up access to data, notably Statistics Canada data, mentioned by Frances Woolley in her March 22, 2012 posting about that and other open access data initiatives by the Canadian government on the Globe and Mail blog,

The federal government is taking steps to build the country’s data infrastructure. Last year saw the launch of the open data pilot project, data.gc.ca. Earlier this year the paywall in front of Statistics Canada’s enormous CANSIM database was taken down. The National Research Council, together with University of Guelph and Carleton University, has a new data registration service, DataCite, which allows Canadian researches to give their data permanent names in the form of digital object identifiers. In the long run, these projects should, as the press releases claim, “support innovation”, “add value-for-money for Canadians,” and promote “the reuse of existing data in commercial applications.”

That seems promising but there is a countervailing force. The Canadian government has also begun to charge subscription fees for journals that were formerly free. From the March 8, 2011 posting by Emily Chung on the CBC’s (Canadian Broadcasting Corporation) Quirks and Quarks blog,

The public has lost free online access to more than a dozen Canadian science journals as a result of the privatization of the National Research Council’s government-owned publishing arm.

Scientists, businesses, consultants, political aides and other people who want to read about new scientific discoveries in the 17 journals published by National Research Council Research Press now either have to pay $10 per article or get access through an institution that has an annual subscription.

It caused no great concern at the time,

Victoria Arbour, a University of Alberta graduate student, published her research in the Canadian Journal of Earth Sciences, one of the Canadian Science Publishing journals, both before and after it was privatized. She said it “definitely is too bad” that her new articles won’t be available to Canadians free online.

“It would have been really nice,” she said. But she said most journals aren’t open access, and the quality of the journal is a bigger concern than open access when choosing where to publish.

Then, there’s this from the new publisher, Canadian Science Publishing,

Cameron Macdonald, executive director of Canadian Science Publishing, said the impact of the change in access is “very little” on the average scientist across Canada because subscriptions have been purchased by many universities, federal science departments and scientific societies.

“I think the vast majority of researchers weren’t all that concerned,” he said. “So long as the journals continued with the same mission and mandate, they were fine with that.”

Macdonald said the journals were never strictly open access, as online access was free only inside Canadian borders and only since 2002.

So, journals that offered open access to research funded by Canadian taxpapers (to Canadians only) are now behind paywalls. Chung’s posting notes the problem already mentioned in the UK Guardian postings, money,

“It’s pretty prohibitively expensive to make things open access, I find,” she {Victoria Arbour] said.

Weir [Leslie Weir, chief librarian at the University of Ottawa] said more and more open-access journals need to impose author fees to stay afloat nowadays.

Meanwhile, the cost of electronic subscriptions to research journals has been ballooning as library budgets remain frozen, she said.

So far, no one has come up with a solution to the problem. [emphasis mine]

It seems they have designed a solution in the UK, as noted in John Bynner’s posting; perhaps we could try it out here.

Before I finish up, I should get to the situation in Argentina, from the May 27, 2012 posting on the Pasco Phronesis (David Bruggeman) blog (Note: I have removed a link in the following),

The lower house of the Argentinian legislature has approved a bill (en Español) that would require research results funded by the government be placed in institutional repositories once published.  There would be exceptions for studies involving confidential information and the law is not intended to undercut intellectual property or patent rights connected to research.  Additionally, primary research data must be published within 5 years of their collection.  This last point would, as far as I can tell, would be new ground for national open access policies, depending on how quickly the U.S. and U.K. may act on this issue.

Argentina steals a march on everyone by offering open access publication and open access data, within certain, reasonable constraints.

Getting back to David’s May 27, 2012 posting, he offers also some information on the European Union situation and some thoughts  on science policy in Egypt.

I have long been interested in open access publication as I feel it’s infuriating to be denied access to research that one has paid for in tax dollars. I have written on the topic before in my Beethoven inspires Open Research (Nov. 18, 2011 posting) and Princeton goes Open Access; arXiv is 10 years old (Sept. 30, 2011 posting) and elsewhere.

ETA May 28, 2012: I found this NRC Research Press website for the NRC journals and it states,

We are pleased to announce that Canadians can enjoy free access to over 100 000 back files of NRC Research Press journals, dating back to 1951. Access to material in these journals published after December 31, 2010, is available to Canadians through subscribing universities across Canada as well as the major federal science departments.

Concerned readers and authors whose institutes have not subscribed for the 2012 volume year can speak to their university librarians or can contact us to subscribe directly.

It’s good to see Canadians still have some access, although personally, I do prefer to read recent research.

ETA May 29, 2012: Yikes, I think this is one of the longest posts ever and I’m going to add this info. about libre redistribution and data mining as they relate to open access in this attempt to cover the topic as fully as possible in one posting.

First here’s an excerpt  from  Ross Mounce’s May 28, 2012 posting on the Palaeophylophenomics blog about ‘Libre redistribution’ (Note: I have removed a link),

I predict that the rights to electronically redistribute, and machine-read research will be vital for 21st century research – yet currently we academics often wittingly or otherwise relinquish these rights to publishers. This has got to stop. The world is networked, thus scholarly literature should move with the times and be openly networked too.

To better understand the notion of ‘libre redistribution’ you’ll want to read more of Mounce’s comments but you might also  want to check out Cameron Neylon’s comments in his March 6, 2012 posting on the Science in the Open blog,

Centralised control, failure to appreciate scale, and failure to understand the necessity of distribution and distributed systems. I have with me a device capable of holding the text of perhaps 100,000 papers It also has the processor power to mine that text. It is my phone. In 2-3 years our phones, hell our watches, will have the capacity to not only hold the world’s literature but also to mine it, in context for what I want right now. Is Bob Campbell ready for every researcher, indeed every interested person in the world, to come into his office and discuss an agreement for text mining? Because the mining I want to do and the mining that Peter Murray-Rust wants to do will be different, and what I will want to do tomorrow is different to what I want to do today. This kind of personalised mining is going to be the accepted norm of handling information online very soon and will be at the very centre of how we discover the information we need.

This moves the discussion past access (taxpayers not seeing the research they’ve funded, researchers who don’t have subscriptions, libraries not have subscriptions, etc.)  to what happens when you can get access freely. It opens up new ways of doing research by means of text mining and data mining redistribution of them both.