Tag Archives: Argentina

“transforming a plant is still an art” even with CRISPR

“Plus ça change, plus c’est la même chose (the more things change, the more things stay the same), is an old French expression that came to mind when I stumbled across two stories about genetic manipulation of food-producing plants.

The first story involves CRISPR (clustered regularly interspersed short palindromic repeats) gene editing and the second involves more ancient ways to manipulate plant genetics.

Getting ‘CRISPR’d’ plant cells to grow into plants

Plants often don’t grow from cells after researchers alter their genomes. Using a new technology, a team coaxed wheat (above) and other crops to more readily produce genome-edited healthy adult plants. Credit: Juan Debernardi

An October 13, 2020 news item on phys.org announces research about getting better results after a plant’s genome has been altered,

Researchers know how to make precise genetic changes within the genomes of crops, but the transformed cells often refuse to grow into plants. One team has devised a new solution.

Scientists who want to improve crops face a dilemma: it can be difficult to grow plants from cells after you’ve tweaked their genomes.

A new tool helps ease this process by coaxing the transformed cells, including those modified with the gene-editing system CRISPR-Cas9, to regenerate new plants. Howard Hughes Medical Institute Research Specialist Juan M. Debernardi and Investigator Jorge Dubcovsky, together with David Tricoli at the University of California, Davis [UC Davis] Plant Transformation Facility, Javier Palatnik from Argentina, and colleagues at the John Innes Center [UK], collaborated on the work. The team reports the technology, developed in wheat and tested in other crops, October 12, 2020, in the journal Nature Biotechnology.

An October 12, 2020 Howard Hughes Medical Institute (HHMI) news release, which originated the news item, provides more detail,

“The problem is that transforming a plant is still an art [emphasis mine],” Dubcovsky says. The success rate is often low – depending on the crop being modified, 100 attempts may yield only a handful of green shoots that can turn into full-grown plants. The rest fail to produce new plants and die. Now, however, “we have reduced this barrier,” says Dubcovsky, a plant geneticist at UC Davis. Using two genes that already control development in many plants, his team dramatically increased the formation of shoots in modified wheat, rice, citrus, and other crops.

Although UC Davis has a pending patent for commercial applications, Dubcovsky says the technique is available to any researcher who wants to use it for research, at no charge. A number of plant breeding companies have also expressed interested in licensing it. “Now people are trying it in multiple crops,” he says.

Humans have worked to improve plants since the dawn of agriculture, selecting wild grasses to produce cultivated maize and wheat, for example. Nowadays, though, CRISPR has given researchers the ability to make changes to the genome with surgical precision. They have used it to create wheat plants with larger grains, generate resistance to fungal infection, design novel tomato plant architectures, and engineer other traits in new plant varieties.

But the process isn’t easy. Scientists start out with plant cells or pieces of tissue, into which they introduce the CRISPR machinery and a small guide to the specific genes they’d like to edit. They must then entice the modified cells into forming a young plant. Most don’t sprout – a problem scientists are still working to understand.

They have tried to find work-arounds, including boosting the expression of certain genes that control early stages of plant development. While this approach has had some success, it can lead to twisted, stunted, sterile plants if not managed properly.Dubcovsky and his colleagues looked at two other growth-promoting genes, GRF and GIF, that work together in young tissues or organs of plants ranging from moss to fruit trees. The team put these genes side-by-side, like a couple holding hands, before adding them to plant cells. “If you go to a dance, you need to find your partner,” Dubcovsky says. “Here, you are tied with a rope to your partner.”

Dubcovsky’s team found that genetically altered wheat, rice, hybrid orange, and other crops produced many more shoots if those experiments included the linked GRF and GIF genes. In experiments with one variety of wheat, the appearance of shoots increased nearly eight-fold. The number of shoots in rice and the hybrid orange, meanwhile, more than doubled and quadrupled, respectively. What’s more, these shoots grew into healthy plants capable of reproducing on their own, with none of the defects that can result when scientists boost other development-controlling genes. That’s because one of the genes is naturally degraded in adult tissues, Dubcovsky says.

Caroline Roper, a plant pathologist at University of California, Riverside who was not involved in the work, plans to use the new technology to study citrus greening, a bacterial disease that kills trees and renders oranges hard and bitter.

To understand how citrus trees can protect themselves, she needs to see how removing certain genes alters their susceptibility to the bacterium — information that could lead to ways to fight the disease. With conventional techniques, it could take at least two years to generate the gene-edited plants she needs. She hopes Dubcovsky’s tool will shorten that timeline.  

“Time is of the essence. The growers, they wanted an answer yesterday, because they’re at the brink of having to abandon cultivating citrus,” she says.

For anyone who noticed the reference to citrus greening in the last paragraphs of this news release, I have more information aboutthe disease and efforts to it in an August 6, 2020 posting.

As for the latest in gene editing and regeneration, here’s a link to and a citation for the paper,

A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants by Juan M. Debernardi, David M. Tricoli, Maria F. Ercoli, Sadiye Hayta, Pamela Ronald, Javier F. Palatnik & Jorge Dubcovsky. Nature Biotechnology volume 38, pages 1274–1279(2020) DOI: https://doi.org/10.1038/s41587-020-0703-0 First Published Online: 12 October 2020 Journal Issue Date: November 2020

This paper is behind a paywall.

Ancient farming techniques for engineering crops

I stumbled on this story by Gabriela Serrato Marks for Massive Science almost three years late (it’s a Dec. 5, 2017 article),

There are more than 50 strains of maize, called landraces, grown in Mexico. A landrace is similar to a dog breed: Corgis and Huskies are both dogs, but they were bred to have different traits. Maize domestication worked the same way.

Some landraces of maize can grow in really dry conditions; others grow best in wetter soils. Early maize farmers selectively bred maize landraces that were well-adapted to the conditions on their land, a practice that still continues today in rural areas of Mexico.

If you think this sounds like an early version of genetic engineering, you’d be correct. But nowadays, modern agriculture is moving away from locally adapted strains and traditional farming techniques and toward active gene manipulation. The goal of both traditional landrace development and modern genetic modification has been to create productive, valuable crops, so these two techniques are not necessarily at odds.

But as more farmers converge on similar strains of (potentially genetically modified) seeds instead of developing locally adapted landraces, there are two potential risks: one is losing the cultural legacy of traditional agricultural techniques that have been passed on in families for centuries or even millennia, and another is decreasing crop resilience even as climate variability is increasing.

Mexico is the main importer of US-grown corn, but that imported corn is primarily used to feed livestock. The corn that people eat or use to make tortillas is grown almost entirely in Mexico, which is where landraces come in.

It is a common practice to grow multiple landraces with different traits as an insurance policy against poor growth conditions. The wide range of landraces contains a huge amount of genetic diversity, making it less likely that one adverse event, such as a drought or pest infestation, will wipe out an entire crop. If farmers only grow one type of corn, the whole crop is vulnerable to the same event.

Landraces are also different from most commercially available hybrid strains of corn because they are open pollinating, which means that farmers can save seeds and replant them the next year, saving money and preserving the strain. If a landrace is not grown anymore, its contribution to maize’s genetic diversity is permanently lost.

This diversity was cultivated over generations from maize’s wild cousin, teosinte, by 60 groups of indigenous people in Mexico. Teosinte looks like a skinny, hairier version of maize. It still grows wild in some parts of Central America, but its close relatives have been found, domesticated, at archaeological sites in the region over 9,000 years old. These early maize cobs could easily fit in the palm of your hand – not big enough to be a staple crop that early farmers could depend upon for sustenance. Genetically, they were more similar to wild teosinte than to modern maize.

[] archaeologists also found that the cobs in Honduras, which is outside the natural range of teosinte, were larger than cobs of the same age from the original domestication region in southern Mexico. The scientists think that people in Honduras were able to develop more productive maize landraces because their crops were isolated from wild teosinte.

The size and shape of the ancient cobs from Honduras show that early farmers engineered the maize crop [emphasis mine] to make it more productive. They developed unique landraces that were well adapted to local conditions and successfully cultivated enough maize to support their communities. In many ways, they were early geneticists. [emphasis mine] …

We have a lot to learn from the indigenous farmers who were growing maize 4,000 years ago. Their history provides examples of both environmentally sound genetic modification and effective adaptation to climate variability. [emphases mine] …

Plus ça change …, eh?

Better anti-parasitic medicine delivery with chitosan-based nanocapsules

I mage: The common liver fluke which can cause fascioliasis. Credit: Wikimedia creative commons Courtesy: Leeds University

It looks like a pair of lips to me but, according to a December 12, 2018 news item on Nanowerk, this liver fluke heralds a flatworm infection is a serious health problem,

An international team, led by Professor Francisco Goycoolea from the University of Leeds [UK] and Dr Claudio Salomon from the Universidad Nacional de Rosario, Argentina, and in collaboration with colleagues at the University of Münster, Germany, have developed a novel pharmaceutical formulation to administer triclabendazole – an anti-parasitic drug used to treat a type of flatworm infection – in billions of tiny capsules.

The World Health Organisation estimates that 2.4 million people are infected with fascioliasis, the disease caused by flatworms and treated with triclabendazole.

A December 12, 2018 University of Leeds  press release (also on EurekAlert), which originated the news item,

Anti-parasitic drugs do not become effective until they dissolve and are absorbed. Traditionally, these medicines are highly insoluble and this limits their therapeutic effect.
In a bid to overcome this limitation and accomplish the new formulation, the team used “soft” nanotechnology and nanomedicine approaches, which utilises the self-assembly properties of organic nanostructures and uses techniques in which components, such as polymers and surfactants in solution, play key roles.

Their formulation produces capsules that are less than one micron in size – the diameter of a human hair is roughly 75 microns. These tiny capsules are loaded with triclabendazole and then bundled together to deliver the required dose.

The team used chitosan, a naturally-occurring sugar polymer found in the exoskeleton of shellfish and the cell walls of certain fungi, to coat the oil-core of capsules and bind the drug together, while stabilising the capsule and helping to preserve it.
In its nanocapsule form, the drug would be 100 times more soluble than its current tablet form.

Professor Goycoolea, from the School of Food Science and Nutrition at Leeds, said: “Solubility is critical challenge for effective anti-parasite medicine. We looked to tackle this problem at the particle level. Triclabendazole taken as a dose made up of billions of tiny capsules would mean the medicine would be more efficiently and quickly absorbed

“Through the use of nanocapsules and nanoemulsions, drug efficiency can be enhanced and new solutions can be considered for the best ways to target medicine delivery.”
Dr Salomon said: “To date, this is the first report on triclabendazole nanoencapsulation and we believe this type of formulation could be applied to other anti-parasitic drugs as well. But more research is needed to ensure this new pharmaceutical formulation of the drug does not diminish the anti-parasitic effect. Our ongoing research is working to answer this very question.”

Although there have been cases of fascioliasis in more than 70 countries worldwide, with increasing reports from Europe and the Americas, it is considered a neglected disease, as it does not receive much attention and often goes untreated.
Symptoms of the disease when it reaches the chronic phase include intermittent pain, jaundice and anaemia. Patients can also experience hardening of the liver in the case of long-term inflammation.

Because of the highly insoluble nature of anti-parasitic drugs, they need to be administered in very high dosages to ensure enough of the active ingredient is absorbed. This is particularly problematic when treating children for parasites. Tablets needs to be divided into smaller pieces to adjust the dosage and make swallowing easier, but this can cause side effects due to incorrect dosage.

The team’s technique to formulate triclabendazole into nanocapsules, published today [Dec. 12, 2018] in the journal PLOS ONE, would also allow for lower doses to be administered. s

Here’s a link to and a citation for the paper,

Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations by Daniel Real, Stefan Hoffmann, Darío Leonardi, Claudio Salomon, Francisco M. Goycoolea. PLOS DOI https://doi.org/10.1371/journal.pone.0207625 Published: December 12, 2018

This paper is open access. BTW, I loved the title for the press release (Helping the anti-parasitic medicine go down) for its reference to the song, A spoonful of sugar helps the medicine go down, in the 1964 film musical, Mary Poppins, and the shout out for the sort of sequel, Mary Poppins Returns, released on Dec. 19, 2018.

International Women’s Day March 8, 2017 and UNESCO/L’Oréal’s For Women in Science (Rising Talents)

Before getting to the science, here’s a little music in honour of March 8, 2017 International Women’s Day,

There is is a Wikipedia entry devoted to Rise Up (Parachute Club song), Note: Links have been removed<

“Rise Up” is a pop song recorded by the Canadian group Parachute Club on their self-titled 1983 album. It was produced and engineered by Daniel Lanois, and written by Parachute Club members Billy Bryans, Lauri Conger, Lorraine Segato and Steve Webster with lyrics contributed by filmmaker Lynne Fernie.

An upbeat call for peace, celebration, and “freedom / to love who we please,” the song was a national hit in Canada, and was hailed as a unique achievement in Canadian pop music:

“ Rarely does one experience a piece of music in white North America where the barrier between participant and observer breaks down. Rise Up rises right up and breaks down the wall.[1] ”

According to Segato, the song was not written with any one individual group in mind, but as a universal anthem of freedom and equality;[2] Fernie described the song’s lyrics as having been inspired in part by West Coast First Nations rituals in which young girls would “rise up” at dawn to adopt their adult names as a rite of passage.[3]

It remains the band’s most famous song, and has been adopted as an activist anthem for causes as diverse as gay rights, feminism, anti-racism and the New Democratic Party.[4] As well, the song’s reggae and soca-influenced rhythms made it the first significant commercial breakthrough for Caribbean music in Canada.

L’Oréal UNESCO For Women in Science

From a March 8, 2017 UNESCO press release (received via email),

Fifteen outstanding young women researchers, selected
among more than 250 candidates in the framework of the 19th edition of
the L’Oréal-UNESCO For Women in Science awards, will receive the
International Rising Talent fellowship during a gala on 21 March at the
hotel Pullman Tour Eiffel de Paris. By recognizing their achievements at
a key moment in their careers, the _For Women in Science programme aims
to help them pursue their research.

Since 1998, the L’Oréal-UNESCO _For Women in Science programme [1]
has highlighted the achievements of outstanding women scientists and
supported promising younger women who are in the early stages of their
scientific careers. Selected among the best national and regional
L’Oréal-UNESCO fellows, the International Rising Talents come from
all regions of the world (Africa and Arab States, Asia-Pacific, Europe,
Latin America and North America).

Together with the five laureates of the 2017 L’Oreal-UNESCO For Women
in Science awards [2], they will participate in a week of events,
training and exchanges that will culminate with the award ceremony on 23
March 2017 at the Mutualité in Paris.

The 2017 International Rising Talent are recognized for their work in
the following five categories:

WATCHING THE BRAIN AT WORK

* DOCTOR LORINA NACI, Canada
Fundamental medicine
In a coma: is the patient conscious or unconscious?     * ASSOCIATE
PROFESSOR MUIREANN IRISH, Australia

Clinical medicine
Recognizing Alzheimer’s before the first signs appear.

ON THE ROAD TO CONCEIVING NEW MEDICAL TREATMENTS

* DOCTOR HYUN LEE, Germany
Biological Sciences
Neurodegenerative diseases: untangling aggregated proteins.
* DOCTOR NAM-KYUNG YU, Republic of Korea
Biological Sciences
Rett syndrome: neuronal cells come under fire
* DOCTOR STEPHANIE FANUCCHI, South Africa
Biological Sciences
Better understanding the immune system.
* DOCTOR JULIA ETULAIN, Argentina
Biological Sciences
Better tissue healing.

Finding potential new sources of drugs

* DOCTOR RYM BEN SALLEM, Tunisia
Biological Sciences
New antibiotics are right under our feet.
* DOCTOR HAB JOANNA SULKOWSKA, Poland
Biological Sciences
Unraveling the secrets of entangled proteins.

GETTING TO THE HEART OF MATTER

* MS NAZEK EL-ATAB, United Arab Emirates
Electrical, Electronic and Computer Engineering
Miniaturizing electronics without losing memory.
* DOCTOR BILGE DEMIRKOZ, Turkey
Physics
Piercing the secrets of cosmic radiation.
* DOCTOR TAMARA ELZEIN, Lebanon
Material Sciences
Trapping radioactivity.
* DOCTOR RAN LONG, China
Chemistry
Unlocking the potential of energy resources with nanochemistry.

EXAMINING THE PAST TO SHED LIGHT ON THE FUTURE – OR VICE VERSA

* DOCTOR FERNANDA WERNECK, Brazil
Biological Sciences
Predicting how animal biodiversity will evolve.
* DOCTOR SAM GILES, United Kingdom
Biological Sciences
Taking another look at the evolution of vertebrates thanks to their
braincases.
* DOCTOR ÁGNES KÓSPÁL, Hungary
Astronomy and Space Sciences
Looking at the birth of distant suns and planets to better understand
the solar system.

Congratulations to all of the winners!

You can find out more about these awards and others on the 2017 L’Oréal-UNESCO For Women in Science Awards webpage or on the For Women In Science website. (Again in honour of the 2017 International Women’s Day, I was the 92758th signer of the For Women in Science Manifesto.)

International Women’s Day origins

Thank you to Wikipedia (Note: Links have been removed),

International Women’s Day (IWD), originally called International Working Women’s Day, is celebrated on March 8 every year.[2] It commemorates the movement for women’s rights.

The earliest Women’s Day observance was held on February 28, 1909, in New York and organized by the Socialist Party of America.[3] On March 8, 1917, in the capital of the Russian Empire, Petrograd, a demonstration of women textile workers began, covering the whole city. This was the beginning of the Russian Revolution.[4] Seven days later, the Emperor of Russia Nicholas II abdicated and the provisional Government granted women the right to vote.[3] March 8 was declared a national holiday in Soviet Russia in 1917. The day was predominantly celebrated by the socialist movement and communist countries until it was adopted in 1975 by the United Nations.

It seems only fitting to bookend this post with another song (Happy International Women’s Day March 8, 2017),

While the lyrics are unabashedly romantic, the video is surprisingly moody with a bit of a ‘stalker vive’ although it does end up with her holding centre stage while singing and bouncing around in time to Walking on Sunshine.

Using melanin in bioelectronic devices

Brazilian researchers are working with melanin to make biosensors and other bioelectronic devices according to a Dec. 20, 2016 news item on phys.org,

Bioelectronics, sometimes called the next medical frontier, is a research field that combines electronics and biology to develop miniaturized implantable devices capable of altering and controlling electrical signals in the human body. Large corporations are increasingly interested: a joint venture in the field has recently been announced by Alphabet, Google’s parent company, and pharmaceutical giant GlaxoSmithKline (GSK).

One of the challenges that scientists face in developing bioelectronic devices is identifying and finding ways to use materials that conduct not only electrons but also ions, as most communication and other processes in the human organism use ionic biosignals (e.g., neurotransmitters). In addition, the materials must be biocompatible.

Resolving this challenge is one of the motivations for researchers at São Paulo State University’s School of Sciences (FC-UNESP) at Bauru in Brazil. They have succeeded in developing a novel route to more rapidly synthesize and to enable the use of melanin, a polymeric compound that pigments the skin, eyes and hair of mammals and is considered one of the most promising materials for use in miniaturized implantable devices such as biosensors.

A Dec. 14, 2016 FAPESP (São Paulo Research Foundation) press release, which originated the news item, further describes both the research and a recent meeting where the research was shared (Note: A link has been removed),

Some of the group’s research findings were presented at FAPESP Week Montevideo during a round-table session on materials science and engineering.

The symposium was organized by the Montevideo Group Association of Universities (AUGM), Uruguay’s University of the Republic (UdelaR) and FAPESP and took place on November 17-18 at UdelaR’s campus in Montevideo. Its purpose was to strengthen existing collaborations and establish new partnerships among South American scientists in a range of knowledge areas. Researchers and leaders of institutions in Uruguay, Brazil, Argentina, Chile and Paraguay attended the meeting.

“All the materials that have been tested to date for applications in bioelectronics are entirely synthetic,” said Carlos Frederico de Oliveira Graeff, a professor at UNESP Bauru and principal investigator for the project, in an interview given to Agência FAPESP.

“One of the great advantages of melanin is that it’s a totally natural compound and biocompatible with the human body: hence its potential use in electronic devices that interface with brain neurons, for example.”

Application challenges

According to Graeff, the challenges of using melanin as a material for the development of bioelectronic devices include the fact that like other carbon-based materials, such as graphene, melanin is not easily dispersible in an aqueous medium, a characteristic that hinders its application in thin-film production.

Furthermore, the conventional process for synthesizing melanin is complex: several steps are hard to control, it can last up to 56 days, and it can result in disorderly structures.

In a series of studies performed in recent years at the Center for Research and Development of Functional Materials (CDFM), where Graeff is a leading researcher and which is one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP, he and his collaborators managed to obtain biosynthetic melanin with good dispersion in water and a strong resemblance to natural melanin using a novel synthesis route.

The process developed by the group at CDMF takes only a few hours and is based on changes in parameters such as temperature and the application of oxygen pressure to promote oxidation of the material.

By applying oxygen pressure, the researchers were able to increase the density of carboxyl groups, which are organic functional groups consisting of a carbon atom double bonded to an oxygen atom and single bonded to a hydroxyl group (oxygen + hydrogen). This enhances solubility and facilitates the suspension of biosynthetic melanin in water.

“The production of thin films of melanin with high homogeneity and quality is made far easier by these characteristics,” Graeff said.

By increasing the density of carboxyl groups, the researchers were also able to make biosynthetic melanin more similar to the biological compound.

In living organisms, an enzyme that participates in the synthesis of melanin facilitates the production of carboxylic acids. The new melanin synthesis route enabled the researchers to mimic the role of this enzyme chemically while increasing carboxyl group density.

“We’ve succeeded in obtaining a material that’s very close to biological melanin by chemical synthesis and in producing high-quality film for use in bioelectronic devices,” Graeff said.

Through collaboration with colleagues at research institutions in Canada [emphasis mine], the Brazilian researchers have begun using the material in a series of applications, including electrical contacts, pH sensors and photovoltaic cells.

More recently, they have embarked on an attempt to develop a transistor, a semiconductor device used to amplify or switch electronic signals and electrical power.

“Above all, we aim to produce transistors precisely in order to enhance this coupling of electronics with biological systems,” Graeff said.

I’m glad to have gotten some information about the work in South America. It’s one of FrogHeart’s shortcomings that I have so little about the research in that area of the world. I believe this is largely due to my lack of Spanish language skills. Perhaps one day there’ll be a universal translator that works well. In the meantime, it was a surprise to see Canada mentioned in this piece. I wonder which Canadian research institutions are involved with this research in South America.

Generating clean fuel with individual gold atoms

A July 22, 2016 news item on Nanowerk highlights an international collaboration focused on producing clean fuel,

A combined experimental and theoretical study comprising researchers from the Chemistry Department and LCN [London Centre for Nanotechnology], along with groups in Argentina, China, Spain and Germany, has shed new light on the behaviour of individual gold atoms supported on defective thin cerium dioxide films – an important system for catalysis and the generation of clean hydrogen for fuel.

A July ??, 2016 LCN press release, which originated the news item, expands on the theme of catalysts, the research into individual gold atoms, and how all this could result in clean fuel,

Catalysis plays a vital role in our world; an estimated 80% of all chemical and materials are made via processes which involve catalysts, which are commonly a mixture of metals and oxides. The standard motif for these heterogeneous catalysts (where the catalysts are solid and the reactants are in the gas phase) is of a high surface area oxide support that is decorated with metal nanoparticles a few nanometres in diameter. Cerium dioxide (ceria, CeO2) is a widely used support material for many important industrial processes; metal nanoparticles supported on ceria have displayed high activities for applications including car catalytic converters, alcohol synthesis, and for hydrogen production. There are two key attributes of ceria which make it an excellent active support material: its oxygen storage and release ability, and its ability to stabilise small metal particles under reaction conditions. A recent system that has been the focus of much interest has been that of gold nanoparticles and single atoms with ceria, which has demonstrated high activity towards the water-gas-shift reaction, (CO + H2O —> CO2 + H2) a key stage in the generation of clean hydrogen for use in fuel cells.

The nature of the active sites of these catalysts and the role that defects play are still relatively poorly understood; in order to study them in a systematic fashion, the researchers prepared model systems which can be characterised on the atomic scale with a scanning tunnelling microscope.

Figure: STM images of CeO2-x(111) ultrathin films before and after the deposition of Au single atoms at 300 K. The bright lattice is from the oxygen atoms at the surface – vacancies appear as dark spots

These model systems comprised well-ordered, epitaxial ceria films less than 2 nm thick, prepared on a metal single crystal, upon which single atoms and small clusters of gold were evaporated onto under ultra-high-vacuum (essential to prevent contamination of the surfaces). Oxygen vacancy defects – missing oxygen atoms in the top layer of the ceria – are relatively common at the surface and appear as dark spots in the STM images. By mapping the surface before and after the deposition of gold, it is possible to analyse the binding of the metal atoms, in particular there does not appear to be any preference for binding in the vacancy sites at 300 K.

Publishing their results in Physical Review Letters, the researchers combined these experimental results with theoretical studies of the binding energies and diffusion rates across the surface. They showed that kinetic effects governed the behaviour of the gold atoms, prohibiting the expected occupation of the thermodynamically more stable oxygen vacancy sites. They also identified electron transfer between the gold atoms and the ceria, leading to a better understanding of the diffusion phenomena that occur at this scale, and demonstrated that the effect of individual surface defects may be more minor than is normally imagined.

Here’s a link to and a citation for the paper,

Diffusion Barriers Block Defect Occupation on Reduced CeO2(111) by P.G. Lustemberg, Y. Pan, B.-J. Shaw, D. Grinter, Chi Pang, G. Thornton, Rubén Pérez, M. V. Ganduglia-Pirovano, and N. Nilius. Phys. Rev. Lett. Vol. 116, Iss. 23 — 10 June 2016 2016DOI:http://dx.doi.org/10.1103/PhysRevLett.116.236101 Published 9 June 2016

This paper is behind a paywall.

Upcoming PoetryFilm appearances and events

It’s been a while since I last (in a March 17, 2015 post) featured PoetryFilm. Here’s the latest from the organization’s Oct. 2015 newsletter,

Forthcoming
  • I have been invited to join the International Jury for the CYCLOP International Videopoetry Festival, 20-22 November 2015 (Kiev, Ukraine)
  • PoetryFilm Paradox events, featuring poetry films about love, as part of the BFI LOVE season, 6 and 22 December 2015 (London, UK)
  • PoetryFilm screening + Zata Banks in conversation with filmmaker Roxana Vilk at The Scottish Poetry Library, 3 December 2015 (Scotland, UK)
  • I have been invited to judge the Carbon Culture Review poetry film competition (USA)
  • poetryfilmkanal in Germany recently invited me to write an article about the poetry film artform – it can be read here

FYI, the “I” in the announcement’s text is for Zata Banks, the founder and director of PoetryFilm since 2002.

There’s more about the CYCLOP International Videopoetry Festival in a Sept. 13, 2015 posting on the PoetryFilm website,

*The 5th CYCLOP International Videopoetry Festival will take place on 20 – 22 November 2015 in Ukraine (Kyiv). The festival programme features video poetry-related lectures, workshops, round tables, discussions, presentations of international contests and festivals, as well as a demonstration of the best examples of Ukrainian and world videopoetry, a competitive programme, an awards ceremony and other related projects.

One of the projects is a new Contest for International poetry films within the framework of the CYCLOP festival. The International Jury: Alastair Cook (Filmpoem Festival, Edinburgh, Scotland), Zata Banks (PoetryFilm, London, United Kingdom), Javier Robledo (VideoBardo, Buenos Aires, Argentina), John Bennet (videopoet, USA),  Alice Lyons (Videopoet, Sligo, Ireland), Sigrun Hoellrigl (Art Visuals & Poetry, Vienna, Austria), Lucy English (Liberated Words, Bristol, United Kingdom), Tom Konyves (poet, video producer, educator and a pioneer in the field of videopoetry, British Columbia, Canada), Polina Horodyska (CYCLOP Videopoetry Festival, Kyiv, Ukraine) and Thomas Zandegiacomo (ZEBRA Poetry Film Festival, Berlin, Germany).

*Copy taken from the CYCLOP website

You can find the CYCLOP website here but you will need Ukrainian language reading skills.

I can’t find a website for the Carbon Culture Review poetry film competition or a webpage for it on the Carbon Culture Review website but  here’s what they have to say about themselves on the journal’s About page,

Carbon Culture Review is a journal at the intersection of new literature, art, technology and contemporary culture. We define culture broadly as the values, attitudes, actions and inventions of our global society and its subcultures in our modern age. Carbon Culture Review is distributed in the United States and countries throughout the world by Publisher’s Distribution Group, Inc. and Annas International as well as digitally through 0s&1s, Magzter and Amazon. CCR is a member of Councils of Literary Magazines and Presses and also publishes monthly online issues.

The last item from the announcement that I’m highlighting is Zata’s essay for poetryfilmkanal ,

Poetry films offer creative opportunities for exploring new semiotic modes and for communicating messages and meanings in innovative ways. Poetry films open up new methods of engagement, new audiences, and new means of self-expression, and also provide rich potential for the creation, perception and experience of emotion and meaning.

We are surrounded by communicative signs in literature, art, culture and in the world at large. Whilst words represent one system of communicating, there are many other ways of making meanings, for instance, colour semiotics, typographic design, and haptic, olfactive, gustatory and durational experiences – indeed, a comprehensive list could be infinite. The uses of spoken and written words to communicate represent just two approaches among many. Through using meaning-making systems other than words, by communicating without words, or by not using words alone, we can bypass these direct signifiers and tap directly into pools of meaning, or the signifieds, associated with those words. Different combinations of systems, or modes, can reinforce each other, render meanings more complex and subtle, or contrast with each other to illuminate different perspectives. Powerful juxtapositions, associations and new meanings can therefore emerge.

The essay is a good introduction for beginners and a good refresher for those in need. Btw, I understand Zata got married in March 2015. Congratulations to Zata and Joe!

South American countries and others visit Iran’s Nanotechnology Initiative Council

The Iran Nanotechnology Initiative Council (INIC) news release states eight South American countries visited. By my count there were six South American countries (Argentina, Brazil, Ecuador, Bolivia, Venezuela, and Uruguay,), one North American country (Mexico), and one Caribbean country (Cuba). All eight can be described as Latin American countries.

An easy to understand error (I once forgot Mexico is part of North America and, for heaven sakes, I live in Canada and really should know better) as the designations can be confusing. That cleared up, here’s what the June 15, 2015 INIC news release had to say about the visit,

The ambassadors and charge d’affaires of 8 South American countries of Argentina, Brazil, Ecuador, Bolivia, Cuba, Venezuela, Uruguay and Mexico paid a visit to Iran Nanotechnology Initiative Council (INIC) to become familiar with its activities.

Among the objectives of the visit, which was requested by the abovementioned countries, mention can be made of introduction with INIC and its activities, presentation of nanotechnology achievements and products in the country by the INIC, creation and modification of international cooperation and creation of appropriate environment for exporting nanotechnology-based products to these countries.

In this visit, the programs, achievements and objectives of nanotechnology development in Iran were explained by the authorities of INIC. In addition and due to the needs of the countries whose representatives were present in the visit, a number of experts from the Iranian knowledge-based companies presented their nanotechnology products in the fields of packaging of agricultural products with long durability and water purification.

As usual with something from INIC, I long for more detail, e.g., when did the visit take place?

H/t to Nanotechnology Now June 15, 2015 news item.

Canadian government spending on science and technology is down for the fourth year in a row

It seems there a steady downward trajectory where Canadian science and technology spending is concerned. Stephen Hui in a May 28, 2014 article for the Georgia Straight, breaks the latest news from Statistics Canada (Note: A link has been removed),

The Canadian government is expected to spend less money on science and technology in 2014-15 compared to the previous fiscal year, continuing a trend that began in 2011-12. [emphasis mine]

According to Statistics Canada, federal departments and agencies are projected to record $10.3 billion (all figures in current dollars) in science and tech expenditures in 2014-15, a decrease of 5.4 percent from 2013-14.

Federal science and tech spending peaked at $12 billion in 2010-11 and has declined every year since then.

In fact, an earlier July 30, 2013 news item in Huffington Post noted a decrease in the 2013-14 budget,

The federal agency says spending for the 2013-14 fiscal year is expected to decrease 3.3 per cent from the previous period, to $10.5 billion.

It adds research and development is expected to account for two-thirds of anticipated science and technology spending.

The finding is contained in Statistics Canada’s annual survey of all federal government departments and agencies believed to be performing or funding science and technology activities.

The survey, released Tuesday [July 2013], covers the period from Sept. 10, 2012 to Jan. 11, 2013.

Statistics Canada says spending on science and technology has been steadily decreasing since 2009-10. [emphasis mine]

According to Hui’s source, the Statistics Canada’s The Daily, May 28,2014: Federal government spending on science and technology, 2014/2015, the trend started in 2011/12. I’m not sure which specific Statistics Canada publication was the source for the Huffington Post’s start date for the decline.

Interestingly, the OECD (Organization for Economic Cooperation and Development) Science, Technology and Industry Scoreboard 2013 dates the decline to 2001. From my Oct. 30, 2013 posting (excerpted from the scorecard),

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

If I understand this rightly, Canadian business spending on R&D has been steadily declining for more than a decade and, since 2010 or so, Canadian government spending is also steadily declining. Does anyone else see this as a problem?

The contrast with Brazil is startling. From a June 2, 2014 Institute of Physics news release (also on EurekAlert but dated as June 1, 2014),

As Brazil gets set to host the 2014 FIFA World Cup this month amid concerns about the amount of public money being used to stage the world’s largest sporting event, Physics World‘s editorial team reveals in a new special report how physicists are taking full advantage of the four-fold increase in science funding that the government has invested over the past 10 years.

Since this news comes from the physics community, the news release focuses on physics-related developments,

Negotiations are currently under way to make Brazil an associate member of the CERN particle-physics lab in Geneva, while the country is also taking a leading role in the Pierre Auger Observatory – an international project based in Argentina designed to study ultrahigh-energy cosmic rays. [emphasis mine]

Building is also under way to create a world-leading synchrotron source, Sirius and Brazil is poised to become the first non-European member of the European Southern Observatory.

Carlos Henrique de Brito Cruz, a physicist at the University of Campinas and scientific director at FAPESP – one of Brazil’s most important funding agencies – told Physics World that the expectation is for Brazilian scientists to take a leadership role in such large research projects “and not just watch as mere participants”.

Considering the first graduate programmes in physics did not emerge in Brazilian universities until 1960, the rise to becoming one of the leading participants in international collaborations has been a rapid one.

The reputation of Brazilian physics has grown in line with a massive increase in science funding, which rose from R$12bn (about £3bn) in 2000 to R$50bn (around £13bn) in 2011.

Brazil’s spending on R&D now accounts for 1.2% of the gross domestic product and 40% of the total funding comes from companies.

The Brazilian Physical Society has around 6000 members comprising almost all research physicists in the country, who wrote around 25 000 research articles in international science journals between 2007 and 2010.

A lack of funding in the past had forced Brazilian scientists to focus on cheaper, theoretical research, but this has now changed and there is an almost even split between theory and experiment at universities.

Yet Brazil still suffers from several long-standing problems, the most significant being the poor standard of science education in high schools. A combination of low pay and lack of recognition makes physics teaching an unpopular choice of occupation despite attempts to tackle the problem.

Even those students who do see physics as a career option end up struggling and under-prepared for the rigours of an undergraduate physics course. Vitor de Souza, an astrophysicist at the Physics Institute at São Carlos, which is part of the University of São Paulo, told Physics World that of the 120 students who start a four-year physics degree at his university, only 10-20 actually graduate.

Another problem in Brazil is a fundamental disconnect between academic research and industrial development, with universities not sure how to handle spin-off firms and companies suspicious of universities.

More broadly, physicists feel that Brazilian society does not recognize the value of science, and that this can only be overcome when the physics community becomes more ambitious and more audacious.

You can find the special issue of Physics World here (it is open access).

As I noted in this May 30, 2014 posting (and elsewhere) featuring the new Agency of Science Communication, Technology and Innovation of Argentina (ACCTINA),,

The PCST [13th International Public Communication of Science and Technology Conference] international conference takes place every two years. The 2014 PCST conference took place in Salvador, Brazil. Conferences like this would seem to confirm the comments I made in a May 20, 2014 posting,

Returning to 2014, the [World Cup {soccer}] kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

While the science and technology community in Brazil has its concerns, I imagine most Canadian scientists would thrill to being the recipients of the funding bonanza of 1.2%  of the gross domestic product. According to the Conference Board of Canada, research and development spending in Canada was 0.8% of GDP for 2011 (from the Conference Board of Canada’s Public R&D spending webpage),

[downloaded from http://www.conferenceboard.ca/hcp/details/innovation/publicrandd.aspx]

[downloaded from http://www.conferenceboard.ca/hcp/details/innovation/publicrandd.aspx]

Did you notice, Canada the in 2011 was on the edge of getting a C grade along with the US? Meanwhile, if Brazil was listed, it would get top marks.

The question as to how much money is not enough for research and development (R&D) spending is complex and I don’t think it’s easily answered but it would be nice to see some discussion.

Agency of Science Communication, Technology and Innovation of Argentina (ACCTINA)

In a May 9, 2014 posting for SciDev.Net, Cecilia Rosen mentions an announcement about a new science communication agency for Argentina (Note: A link has been removed),

For a while now, Argentina has seemed serious about science as a means for development. This week, at the 13th International Public Communication of Science and Technology Conference (PCST2014), there was fresh evidence of this.

I learned that President Cristina Kirchner’s government is setting up a specialised agency within the science ministry to boost science communication in the country. This is part of the government’s strategic goals for 2014.

It will be called the Agency of Science Communication, Technology and Innovation of Argentina (ACCTINA), and should be formally launched by the end of this year, if things go smoothly, according to Vera Brudny, head of the project at the ministry.

On the sidelines of PCST2014, she told me that ACCTINA will replace the National Program for Science Popularisation.

That’s an interesting move and unfortunately following up on this at some future date is going to be tricky since I don’t have any Spanish language skills.

For anyone interested in more about SciDev.Net, there’s this from the What we do page,

SciDev.Net is committed to putting science at the heart of global development.

Our website is the world’s leading source of reliable and authoritative news, views and analysis on information about science and technology for global development.

We engage primarily with development professionals, policymakers, researchers, the media and the informed public.

Our main office is based in London but we have seven editions: Sub-Saharan Africa English, Sub-Saharan Africa French, South Asia, Latin America & Caribbean, South-East Asia & Pacific, Middle-East & North Africa and Global. Between us we manage a worldwide network of registered users, advisors, consultants and freelance journalists who drive our activities and vision.

The 13th International Public Communication of Science and Technology Conference (PCST2014) is produced by the Network for the Public Communication of Science and Technology (PCST). Here’s more from the About PCST page,

PCST is a network of individuals from around the world who are active in producing and studying PCST. It sponsors international conferences, an electronic discussion list, and symposiums. The aim is to encourage discussion and debate across professional, cultural, international, and disciplinary boundaries.

Members of the PCST Network come from a range of backgrounds:

  • Researchers working on the theory and practice of science communication
  • Communication staff working for research organisations
  • Staff at science centres and museums
  • Science journalists
  • Students on the ethics and philosophy of science and the public
  • Writers and editors of scientific material
  • Web designers
  • Scientists who communicate with the public
  • Visual and performing artists working on science themes.

The PCST international conference takes place every two years. The 2014 PCST conference took place in Salvador, Brazil. Conferences like this would seem to confirm the comments I made in a May 20, 2014 posting,

Returning to 2014, the [World Cup {soccer}] kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

Perhaps Argentina is getting ready to give Brazil a run for its money (slang for ‘provide some competition’).

Reading your way out of aMAZEme; a labyrinth of books

Can it get better than a maze made out of books?Yes, it can. The maze is patterned after Jorge Luis Borges’ fingerprints.

250,000 books were assembled by Brazilian artists,  Marcos Saboya and Gualter Pupo, who collaborated with production company Hungry Man to create this installation, aMAZEme, being shown and experienced in London, UK.  From the Aug. 12, 2012 posting by GrrlScientist for the Guardian science blogs,

Do you think is it possible to bring together such disparate topics as literature, performance art, installation, architecture and cinema? … we see how one man’s love of books and labyrinths (and fingerprints) came together to create an interesting audience-participation installation designed to raise funds to reduce poverty.

… this is [an homage to] Argentinean writer and educator Jorge Luis Borges, celebrating his love of books and labyrinths (and fingerprints?). A smaller version of this piece was previously created in Rio de Janeiro, but the London installation is much more ambitious.

If you happen to be in London, UK between now (Aug. 13, 2012) and Aug. 26, 2012, you can purchase tickets. From a description on the event page,

By participating in the installation, the audience discovers new textures, images and emotions. They become surrounded- hypnotized – by words and thoughts, designs and patterns. There appear to be secrets hidden in the installation’s walls; walls of up to 2.5 metres high, built from thousands of books, forming a large Maze of more than 500 square metres. The construction of the labyrinth and the public’s participation will be filmed by video cameras and sent to the “aMAZEme” website as well as to social media sites. Touch screens will be installed to look up information and to screen content, which will also be shown in monitors throughout the installation.

The public will be able to navigate through this hypnotic and surprising “book labyrinth” or attend daily performances from literary figures.

The artists have provided  a time-lapsed video showing the maze as it’s being constructed,

The Aug. 4, 2012 posting on the ART IS ALIVE blog provides this detail,

Projections of literary quotes directly onto the labyrinth walls and the accompanying audio will immerse the audience in a world of literature. Presented for the first time outside of Brazil, aMAZEme has been built in situ from 26 July and visitors can watch it grow over the course of the week. When the maze is deconstructed at the end of the exhibition, all of the books will be donated to Oxfam.

You might also want to check out the aMAZEme labyrinth images in Alice’s July 31, 2012 posting on the My Modern Met blog.  For anyone unfamiliar with Jorge Luis Borges, here’s excerpt  from a Wikipedia essay (Note: I have removed some links and footnotes),

Jorge Francisco Isidoro Luis Borges (24 August 1899 – 14 June 1986), known as Jorge Luis Borges (Spanish pronunciation: [ˈxorxe ˈlwis ˈβorxes]), was an Argentine short-story writer, essayist, poet and translator born in Buenos Aires. His work embraces the “character of unreality in all literature”. His most famous books, Ficciones (1944) and The Aleph (1949), are compilations of short stories interconnected by common themes such as dreams, labyrinths, libraries, mirrors, animals, fictional writers, philosophy, religion and God.

I wonder if anyone is tempted to pull a book from the maze for closer examination and what would happen. That’s always my impulse when I see a mass of books. There’s usually something I’d like to examine more closely.