Tag Archives: AstraZeneca

Human-on-a-chip predicts in vivo results based on in vitro model … for the first time

If successful the hope is that ‘human-on-a-chip’ will replace most, if not all, animal testing. This July 3, 2019 Hesperos news release (also on EurekAlert) suggests scientists are making serious gains in the drive to replace animal testing (Note: For anyone having difficulty with the terms, pharmacokinetics and pharmacodynamics, there are definitions towards the end of this posting, which may prove helpful),

Hesperos Inc., pioneers* of the “human-on-a-chip” in vitro system has announced the use of its innovative multi-organ model to successfully measure the concentration and metabolism of two known cardiotoxic small molecules over time, to accurately describe the drug behavior and toxic effects in vivo. The findings further support the potential of body-on-a-chip systems to transform the drug discovery process.

In a study published in Nature Scientific Reports, in collaboration with AstraZeneca, Hesperos described how they used a pumpless heart model and a heart:liver system to evaluate the temporal pharmacokinetic/pharmacodynamic (PKPD) relationship for terfenadine, an antihistamine that was banned due to toxic cardiac effects, as well as determine its mechanism of toxicity.

The study found there was a time-dependent, drug-induced response in the heart model. Further experiments were conducted, adding a metabolically competent liver module to the Hesperos Human-on-a-Chip® system to observe what happened when terfenadine was converted to fexofenadine. By doing so, the researchers were able to determine the driver of the pharmacodynamic (PD) effect and develop a mathematical model to predict the effect of terfenadine in preclinical species. This is the first time an in vitro human-on-a-chip system has been shown to predict in vivo outcomes, which could be used to predict clinical trial outcomes in the future.

“The ability to examine PKPD relationships in vitro would enable us to understand compound behavior prior to in vivo testing, offering significant cost and time savings,” said Dr. Shuler, President and CEO, Hesperos, Inc and Professor Emeritus, Cornell University. “We are excited about the potential of this technology to help us ensure that potential new drug candidates have a higher probability of success during the clinical trial process.”

Understanding the inter-relationship between pharmacokinetics (PK), the drug’s time course for absorption, distribution, metabolism and excretion, and PD, the biological effect of a drug, is crucial in drug discovery and development. Scientists have learned that the maximum drug effect is not always driven by the peak drug concentration. In some cases, time is a critical factor influencing drug effect, but often this concentration-effect-time relationship only comes to light during the advanced stages of the preclinical program. In addition, often the data cannot be reliably extrapolated to humans.

“It is costly and time consuming to discover that potential drug candidates may have poor therapeutic qualities preventing their onward progression,” said James Hickman, Chief Scientist at Hesperos and Professor at the University of Central Florida. “Being able to define this during early drug discovery will be a valuable contribution to the optimization of potential new drug candidates.”

As demonstrated with the terfenadine experiment, the PKPD modelling approach was critical for understanding both the flux of compound between compartments as well as the resulting PD response in the context of dynamic exposure profiles of both parent and metabolite, as indicated by Dr. Shuler.

In order to test the viability of their system in a real-world drug discovery setting, the Hesperos team collaborated with scientists at AstraZeneca, to test one of their failed small molecules, known to have a CV [cardiovscular?] risk.

One of the main measurements used to assess the electrical properties of the heart is the QT interval, which approximates the time taken from when the cardiac ventricles start to contract to when they finish relaxing. Prolongation of the QT interval on the electrocardiogram can lead to a fatal arrhythmia known as Torsade de Pointes. Consequently, it is a mandatory requirement prior to first-in-human administration of potential new drug candidates that their ability to inhibit the hERG channel (a biomarker for QT prolongation) is investigated.

In the case of the AstraZeneca molecule, the molecule was assessed for hERG inhibition early on, and it was concluded to have a low potential to cause in vivo QT prolongation up to 100 μM. In later pre-clinical testing, the QT interval increased by 22% at a concentration of just 3 μM. Subsequent investigations found that a major metabolite was responsible. Hesperos was able to detect a clear PD effect at concentrations above 3 μM and worked to determine the mechanism of toxicity of the molecule.

The ability of these systems to assess cardiac function non-invasively in the presence of both parent molecule and metabolite over time, using multiplexed and repeat drug dosing regimes, provides an opportunity to run long-term studies for chronic administration of drugs to study their potential toxic effects.

Hesperos, Inc. is the first company spun out from the Tissue Chip Program at NCATS (National Center for Advancing Translational Sciences), which was established in 2011 to address the long timelines, steep costs and high failure rates associated with the drug development process. Hesperos currently is funded through NCATS’ Small Business Innovation Research program to undertake these studies and make tissue chips technology available as a service based company.

“The application of tissue chip technology in drug testing can lead to advances in predicting the potential effects of candidate medicines in people,” said Danilo Tagle, Ph.D., associate director for special initiatives at NCATS.

###

About Hesperos
Hesperos, Inc. is a leader in efforts to characterize an individual’s biology with human-on-a-chip microfluidic systems. Founders Michael L. Shuler and James J. Hickman have been at the forefront of every major scientific discovery in this realm, from individual organ-on-a-chip constructs to fully functional, interconnected multi-organ systems. With a mission to revolutionize toxicology testing as well as efficacy evaluation for drug discovery, the company has created pumpless platforms with serum-free cellular mediums that allow multi-organ system communication and integrated computational PKPD modeling of live physiological responses utilizing functional readouts from neurons, cardiac, muscle, barrier tissues and neuromuscular junctions as well as responses from liver, pancreas and barrier tissues. Created from human stem cells, the fully human systems are the first in vitro solutions that accurately utilize in vitro systems to predict in vivo functions without the use of animal models, as featured in Science. More information is available at http://www.
hesperosinc.com

Years ago I went to a congress focused on alternatives to animal testing (August 22, 2014 posting) and saw a video of heart cells in a petri dish (in vitro) beating in a heartlike rhythm. It was something like this,

ipscira
Published on Oct 17, 2010 https://www.youtube.com/watch?v=BqzW9Jq-OVA

I found it amazing as did the scientist who drew my attention to it. After, it’s just a collection of heart cells. How do they start beating and keep time with each other?

Getting back to the latest research, here’s a link and a citation for the paper,

On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships by Christopher W. McAleer, Amy Pointon, Christopher J. Long, Rocky L. Brighton, Benjamin D. Wilkin, L. Richard Bridges, Narasimham Narasimhan Sriram, Kristin Fabre, Robin McDougall, Victorine P. Muse, Jerome T. Mettetal, Abhishek Srivastava, Dominic Williams, Mark T. Schnepper, Jeff L. Roles, Michael L. Shuler, James J. Hickman & Lorna Ewart. Scientific Reports volume 9, Article number: 9619 (2019) DOI: https://doi.org/10.1038/s41598-019-45656-4 Published: 03 July 2019

This paper is open access.

I happened to look at the paper and found good definitions of pharmacokinetics and pharmacodynamics. I know it’s not for everyone but if you’ve ever been curious about the difference (from the Introduction of On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships),

Integrative pharmacology is a discipline that builds an understanding of the inter-relationship between pharmacokinetics (PK), the drug’s time course for absorption, distribution, metabolism and excretion and pharmacodynamics (PD), the biological effect of a drug. In drug discovery, this multi-variate approach guides medicinal chemists to modify structural properties of a drug molecule to improve its chance of becoming a medicine in a process known as “lead optimization”.

*More than one person and more than one company and more than one country claims pioneer status where ‘human-on-a-chip’ is concerned.

Detecting off-target effects of CRISPR gene-editing

In amidst all the hyperbole about CRISPR (clustered regularly interspaced short palindromic repeats), the gene editing technology, you will sometimes find a mild cautionary note. It seems that CRISPR is not as precise as you might think.

Some months ago there was a story about research into detecting possible unanticipated (off target) effects from using CRISPR, from an April 19, 2019 news item on ScienceDaily,

Since the CRISPR genome editing technology was invented in 2012, it has shown great promise to treat a number of intractable diseases. However, scientists have struggled to identify potential off-target effects in therapeutically relevant cell types, which remains the main barrier to moving therapies to the clinic. Now, a group of scientists at the Gladstone Institutes and the Innovative Genomics Institute (IGI), with collaborators at AstraZeneca, have developed a reliable method to do just that.

An April 19, 2019 Gladstone Institutes press release by Julie Langelier, which originated the press release, provides details,

CRISPR edits a person’s genome by cutting the DNA at a specific location. The challenge is to ensure the tool doesn’t also make cuts elsewhere along the DNA—damage referred to as “off-target effects,” which could have unforeseen consequences.

In a study published in the journal Science, the two first authors, Beeke Wienert and Stacia Wyman, found a new way to approach the problem.

“When CRISPR makes a cut, the DNA is broken,” says Wienert, PhD, who began the work in Jacob E. Corn’s IGI laboratory and who is now a postdoctoral scholar in Bruce R. Conklin’s laboratory at Gladstone. “So, in order to survive, the cell recruits many different DNA repair factors to that particular site in the genome to fix the break and join the cut ends back together. We thought that if we could find the locations of these DNA repair factors, we could identify the sites that have been cut by CRISPR.”

To test their idea, the researchers studied a panel of different DNA repair factors. They found that one of them, called MRE11, is one of the first responders to the site of the cut. Using MRE11, the scientists developed a new technique, named DISCOVER-Seq, that can identify the exact sites in the genome where a cut has been made by CRISPR.

“The human genome is extremely large—if you printed the entire DNA sequence, you would end up with a novel as tall as a 16-story building,” explains Conklin, MD, senior investigator at Gladstone and deputy director at IGI. “When we want to cut DNA with CRISPR, it’s like we’re trying to remove one specific word on a particular page in that novel.”

“You can think of the DNA repair factors as different types of bookmarks added to the book,” Conklin adds. “While some may bookmark an entire chapter, MRE11 is a bookmark that drills down to the exact letter than has been changed.”

Different methods currently exist to detect CRISPR off-target effects. However, they come with limitations that range from producing false-positive results to killing the cells they’re examining. In addition, the most common method used to date is currently limited to cultured cells in the laboratory, excluding its use in patient-derived stem cells or animal tissue.

“Because our method relies on the cell’s natural repair process to identify cuts, it has proven to be much less invasive and much more reliable,” says Corn, PhD, who now runs a laboratory at ETH Zurich. “We were able to test our new DISCOVER-Seq method in induced pluripotent stem cells, patient cells, and mice, and our findings indicate that this method could potentially be used in any system, rather than just in the lab.”

The DISCOVER-Seq method, by being applied to new cell types and systems, has also revealed new insights into the mechanisms used by CRISPR to edit the genome, which will lead to a better understanding of the biology of how this tool works.

“The new method greatly simplifies the process of identifying off-target effects while also increasing the accuracy of the results,” says Conklin, who is also a professor of medical genetics and molecular pharmacology at UC San Francisco (UCSF). “This could allow us to better predict how genome editing would work in a clinical setting. As a result, it represents an essential step in improving pre-clinical studies and bringing CRISPR-based therapies closer to the patients in need.”

###

About the Study

The paper “Unbiased detection of CRISPR off-targets in vivo 1 using DISCOVER-Seq” was published by the journal Science on April 19, 2019. Gladstone’s Hannah L. Watry and Luke M. Judge (who is also at UCSF) contributed to this study. Other authors also include Christopher D. Richardson, Jonathan T. Vu, and Katelynn R. Kazane from IGI, Charles D. Yeh from ETH Zurich, as well as Pinar Akcakaya, Michelle J. Porritt, and Michaela Morlock from AstraZeneca.

The work was supported by Gladstone, the National Institutes of Health (grants EY028249 and HL13535801), the Li Ka Shing Foundation, the Heritage Medical Research Institute, the Fanconi Anemia Research Foundation, a Sir Keith Murdoch Fellowship from the American Australian Association, and an Early Career Fellowship from the National Health and Medical Research Council.

About the Gladstone Institute

To ensure our work does the greatest good, the Gladstone Institutes focuses on conditions with profound medical, economic, and social impact—unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with the University of California, San Francisco.

Before getting to the link and citation that I usually offer you might find this July 17, 2018 posting, The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle of interest. I wonder if this latest news affected the CRISPR market as the did the news in 2018.

In addition to the link in the press release, I am including a link and a citation for the study,

Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq by Beeke Wienert, Stacia K. Wyman, Christopher D. Richardson, Charles D. Yeh, Pinar Akcakaya, Michelle J. Porritt, Michaela Morlock, Jonathan T. Vu, Katelynn R. Kazane, Hannah L. Watry, Luke M. Judge, Bruce R. Conklin, Marcello Maresca, Jacob E. Corn. Science 19 Apr 2019: Vol. 364, Issue 6437, pp. 286-289 DOI: 10.1126/science.aav9023

This paper is behind a paywall.

Money

Over the last 10 or more years, I have, on occasion made a point, of finding out about the funding for various non-profit agencies and projects. I find that sort of thing interesting and have hoped that my readers might feel the same way.

It seems that my readers and I might not be the only ones to care about the source of funding. Joi Ito who held appointments with Harvard University and the Massachusetts Institute of Technology (MIT) resigned from his various appointments on Sept. 7, 2019 after news of major donations from Jeffrey Epstein (a disgraced financier and sex offender) to MIT were revealed. From the Joi Ito’s entry on Wikipedia (Note: Links have been removed),

Joichi “Joi” Ito (伊藤 穰一 Itō Jōichi, born June 19, 1966) is a Japanese activist, entrepreneur and venture capitalist. He is the former director of the MIT Media Lab, and a former professor of the practice of media arts and sciences at MIT. He is a former visiting professor of practice at the Harvard Law School.[1][2]

Ito has received recognition for his role as an entrepreneur focused on Internet and technology companies and has founded, among other companies, PSINet Japan, Digital Garage and Infoseek Japan. Ito is a strategic advisor to Sony Corporation[3] and general partner of Neoteny Labs.[4] Ito writes a monthly column in the Ideas section of Wired.[5]

Ito resigned from his roles at MIT, Harvard, the John D. and Catherine T. MacArthur Foundation, the Knight Foundation, PureTech Health and The New York Times Company on September 7, 2019, following allegations of financial ties to sex offender and financier Jeffrey Epstein.[2][6][7]

Many, many institutions have accepted funds from sketchy characters and orgnaizations. It’s not new to academia, the sciences, or the arts. For a contemporary view of how some of this works, take a look at Anand Giridharadas’s 2018 book, Winners Take All. From the webepage for the book,

WINNERS TAKE ALL
The Elite Charade of Changing the World
 
An insider’s groundbreaking investigation of how the global elite’s efforts to “change the world” preserve the status quo and obscure their role in causing the problems they later seek to solve.

Former New York Times columnist Anand Giridharadas takes us into the inner sanctums of a new gilded age, where the rich and powerful fight for equality and justice any way they can–except ways that threaten the social order and their position atop it. We see how they rebrand themselves as saviors of the poor; how they lavishly reward “thought leaders” who redefine “change” in winner-friendly ways; and how they constantly seek to do more good, but never less harm. We hear the limousine confessions of a celebrated foundation boss; witness an American president hem and haw about his plutocratic benefactors; and attend a cruise-ship conference where entrepreneurs celebrate their own self-interested magnanimity.

I don’t recall any mention of Epstein in Giridharadas’s book but he did have this to say on Twitter about Epstein,

Anand Giridharadas‏Verified account @AnandWrites



Everything that made Epstein’s life possible remains in place after his arrest: the Caribbean tax havens, the hidden real-estate deals, the buying of politicians, the nonprofits that sell reputational glow, the editors who cover for people of their class.

7:34 PM – 8 Jul 2019

it can’t be easy to withstand the temptation to take the money and hope that the misdoings have been exaggerated or that they have stopped. I imagine Ito and others are under constant pressure to get funds.

AstraZeneca

One of the partners in this research about CRISPR, AstraZeneca, is a pharmaceutical company. In fact, it’s one of the largest in the world (from the AstraZeneca Wikipedia entry; Note: Links have been removed),

AstraZeneca plc[4] is a British-Swedish multinational pharmaceutical and biopharmaceutical company. In 2013, it moved its headquarters to Cambridge, UK, and concentrated its R&D in three sites: Cambridge; Gaithersburg, Maryland, USA (location of MedImmune) for work on biopharmaceuticals; and Mölndal (near Gothenburg) in Sweden, for research on traditional chemical drugs.[5] AstraZeneca has a portfolio of products for major disease areas including cancer, cardiovascular, gastrointestinal, infection, neuroscience, respiratory and inflammation.[6]

The company was founded in 1999 through the merger of the Swedish Astra AB and the British Zeneca Group[7][8] (itself formed by the demerger of the pharmaceutical operations of Imperial Chemical Industries in 1993). Since the merger it has been among the world’s largest pharmaceutical companies and has made numerous corporate acquisitions, including Cambridge Antibody Technology (in 2006), MedImmune (in 2007), Spirogen (in 2013) and Definiens (by MedImmune in 2014).

Controversies

Seroquel
In April 2010 AstraZeneca settled a qui tam lawsuit brought by Stefan P. Kruszewski for $520 million to settle allegations that the company defrauded Medicare, Medicaid, and other government-funded health care programs in connection with its marketing and promotional practices for the blockbuster atypical antipsychotic, Seroquel.[76]
In March 2011, AstraZeneca settled a lawsuit in the United States totalling $68.5 million to be divided up to 38 states.[77]
Nexium
The company’s most commercially successful medication is esomeprazole (Nexium). The primary uses are treatment of gastroesophageal reflux disease, treatment and maintenance of erosive esophagitis, treatment of duodenal ulcers caused by Helicobacter pylori, prevention of gastric ulcers in those on chronic NSAID therapy, and treatment of gastrointestinal ulcers associated with Crohn’s disease. When it is manufactured the result is a mixture of two mirror-imaged molecules, R and S. Two years before the omeprazole patent expired, AstraZeneca patented S-omeprazole in pure form, pointing out that since some people metabolise R-omeprazole slowly, pure S-omeprazole treatment would give higher dose efficiency and less variation between individuals.[78] In March 2001, the company began to market Nexium, as it would a brand new drug.[79]

In 2007, Marcia Angell, former editor-in-chief of the New England Journal of Medicine and a lecturer in social medicine at the Harvard Medical School, said in Stern, a German-language weekly newsmagazine, that AstraZeneca’s scientists had misrepresented their research on the drug’s efficiency, saying “Instead of using presumably comparable doses [of each drug], the company’s scientists used Nexium in higher dosages. They compared 20 and 40 mg Nexium with 20 mg Prilosec. With the cards having been marked in that way, Nexium looked like an improvement – which however was only small and shown in only two of the three studies.”[83]
Bildman fraud, and faithless servant clawback

Study
In 2004, University of Minnesota research participant Dan Markingson committed suicide while enrolled in an industry-sponsored pharmaceutical trial comparing three FDA-approved atypical antipsychotics: Seroquel (quetiapine), Zyprexa (olanzapine), and Risperdal (risperidone). University of Minnesota Professor of Bioethics Carl Elliott noted that Markingson was enrolled in the study against the wishes of his mother, Mary Weiss, and that he was forced to choose between enrolling in the study or being involuntarily committed to a state mental institution.[89] Further investigation revealed financial ties to AstraZeneca by Markingson’s psychiatrist, Stephen C. Olson, oversights and biases in AstraZeneca’s trial design, and the inadequacy of university Institutional Review Board (IRB) protections for research subjects.[90][unreliable source?] A 2005 FDA investigation cleared the university. Nonetheless, controversy around the case has continued. A Mother Jones article[89] resulted in a group of university faculty members sending a public letter to the university Board of Regents urging an external investigation into Markingson’s death.[91]

Is it ok to take money and/or other goods and services from them?

Innovative Genomics Institute (IGI)

Also mentioned as a partner in the research, is the Innovative Genomics Institute (IGI). Here’s more from the company’s Overview webpage (Note: Links have been removed),,

The IGI began in 2014 through the Li Ka Shing Center for Genetic Engineering, which was created thanks to a generous donation from the Li Ka Shing Foundation. [emphasis mine] The Innovative Genomics Initiative formed as a partnership between the University of California, Berkeley and the University of California, San Francisco. Combining the fundamental research expertise and the biomedical talent at UCB and UCSF, the Innovative Genomics Initiative focused on unraveling the mechanisms underlying CRISPR-based genome editing and applying this technology to improve human health. Early achievements include improving the efficiency of gene replacement and foundational work toward a treatment for sickle cell disease.

In late 2015, generous philanthropic donations enabled a bolder vision and broader mission for the IGI. With this expansion came a significant enhancement of the organization, and in January 2017, the IGI officially re-launched as the Innovative Genomics Institute.

As it turns out, there is a Li Ka-shing and he has a bit of a history with Vancouver (Canada). First, here’s more about him from the Li Ka-shing Wikipedia entry,(Note: Links have been removed),

Sir Li Ka-shing GBM KBE JP[4] (born 13 June 1928)[5][6] is a Hong Kong business magnate, investor, and philanthropist. As of June 2019, Li is the 30th richest person in the world, with an estimated net wealth of US$29.4 billion.[3] He is the senior advisor for CK Hutchison Holdings,[7] after he retired from the Chairman of the Board in May 2018;[8] through it, he is the world’s leading port investor, developer, and operator of the largest health and beauty retailer in Asia and Europe.[9]

Besides business through his flagship companies Cheung Kong Property Holdings and CK Hutchison Holdings Limited, Li Ka-shing has also personally invested extensively in real estate in Singapore and Canada. He was the single largest shareholder of Canadian Imperial Bank of Commerce (CIBC), the fifth largest bank in Canada, until the sale of his share in 2005 (with all proceedings donated, see below). He is also the majority shareholder of a major energy company, Husky Energy, based in Alberta, Canada.[48]

In January 2005, Li announced plans to sell his $1.2 billion CAD stake in the Canadian Imperial Bank of Commerce, with all proceeds going to private charitable foundations established by Li, including the Li Ka Shing Foundation in Hong Kong and the Li Ka Shing (Canada) Foundation based in Toronto, Ontario.[49]

His son Victor Li was kidnapped in 1996 on his way home after work by gangster “Big Spender” Cheung Tze-keung. Li Ka-shing paid a ransom of HK$1 billion, directly to Cheung who had come to his house.[53] A report was never filed with Hong Kong police. Instead the case was pursued by Mainland authorities, leading to Cheung’s execution in 1998, an outcome not possible under Hong Kong law. Rumours circulated of a deal between Li and the Mainland.[53] In interviews, when this rumor was brought up, Li brushed it off and dismissed it completely.

Li Ka-shing was well known here in Vancouver due to his purchase of a significant chunk of land in the city. This January 9, 2015 article by Glen Korstrum for Business in Vancouver notes some rather interesting news and contextualizes with Li’s Vancouver history,

Hong Kong billionaire Li Ka-shing is restructuring his empire and shifting his base to the Cayman Islands and away from the Chinese special administrative region.

His January 9 [2015] announcement came the same day that Forbes ranked him as Hong Kong’s richest man for the 17th consecutive year, with a total wealth of US$33.5 billion.

Li is best known in Vancouver for buying an 82.5-hectare parcel of land around False Creek for $328 million in 1988 along with partners, who included fellow Hong Kong tycoons, Lee Shau Kee and Cheng Yu Tung.

The group formed Concord Pacific, which redeveloped the site that had been home to Vancouver’s 1986 world’s fair, Expo ’86.

Li cashed out of Concord Pacific in the late 1990s and, in 2007, invested in Deltaport through his Hutchison Port Holdings.

Li’s biggest Canadian holding is his controlling stake in Husky Energy. …

Intriguing, yes? It also makes the prospect of deciding whose money you’re going to accept a bit more complicated than it might seem.

Gladstone Institutes

In what seems to be a decided contrast to the previous two partners, here’s more from the Gladstone Institutes, About Us, History webpage,

Born in London in 1910, J. David Gladstone was orphaned as a boy and came to North America at age 10. He began a career in real estate in Southern California at age 28, eventually making his fortune as the first developer to create the region’s enclosed shopping malls (such as the Northridge Fashion Center mall). His accidental death in 1971 left an estate valued at about $8 million to support medical students interested in research.

It soon became clear to the three trustees administering Mr. Gladstone’s trust that his legacy could support a far more substantial philanthropic enterprise. In 1979, they launched The J. David Gladstone Institutes under the leadership of Robert W. Mahley, MD, PhD, a leading cardiovascular scientist who at the time was working at the National Institutes of Health.

In 2010, after three decades of leading Gladstone, Dr. Mahley stepped down in order to return to more active research. That same year, R. Sanders “Sandy” Williams, MD, left Duke University, where he had been Dean of the School of Medicine—as well as Senior Vice Chancellor and Senior Advisor for International Strategy—to become Gladstone’s new president. The following year, the S.D. Bechtel, Jr. Foundation [emphasis mine] helped launch the Center for Comprehensive Alzheimer’s Disease Research with a generous $6M lead gift, while the Roddenberry Foundation [emphasis mine] gave $5 million to launch the Roddenberry Center for Stem Cell Biology and Medicine. Also in 2011, the independent and philanthropic Gladstone Foundation formed with the mission of expanding the financial resources available to drive’s Gladstone’s mission.

The S. D. Bechtel jr. mentioned is associated with Bechtel, an international engineering firm. I did not find any scandals or controversies in the Bechtel Wikipedia entry. That seemed improbable so I did a little digging and found a January 30, 2015 (?) article by Matthew Brunwasser for foreignpolicy.com (Note: A link has been removed),

Steamrolled; A special investigation into the diplomacy of doing business abroad.

One of Europe’s poorest countries wanted a road, so U.S. mega-contractor Bechtel sold it a $1.3 billion highway, with the backing of a powerful American ambassador. Funny thing is, the highway is barely being used—and the ambassador is now working for Bechtel.

Bechtel, the largest contractor by revenue in the United States and the third-largest internationally, according to an annual list compiled by the Engineering News-Record, has in recent years constructed expensive highways in Kosovo, Croatia, Romania, and Albania. A six-month investigation by the Investigative Reporting Program at the University of California at Berkeley Graduate School of Journalism has found that these highways were boondoggles for the countries in which they were constructed, and that members of governments and international institutions often saw problems coming before Bechtel (along with its Turkish joint venture partner, Enka) even began work on the roads.

My other source is a May 8, 1988 article by Walter Russell Mead for the Los Angeles Time,s

From San Francisco to Saudi Arabia, the Bechtel Group Inc. has left its mark around the world. Yet the privately owned Bechtel Group is one of the country’s most mysterious operations–or was, until the publication of Laton McCartney’s critical and controversial “Friends in High Places.”

Those who believe that “Dynasty” and “Falcon Crest” describe life at the top of America’s corporate pyramids will find a picture here that makes the most far-fetched TV plots look dull. One Bechtel executive was torn to pieces by an angry mob; another, kidnaped, survived two days in the trunk of a Mercedes that had been driven over the edge of a cliff but caught on an obstacle half way down. Wheeling and dealing from Beirut to the Bohemian Grove, Bechtel executives fought off Arab and Jewish nationalists, angry senators, bitter business rivals, and furious consumer groups to build the world’s largest construction and engineering firm.

Poor Bechtel sometimes seems damned if it does and damned if it doesn’t. No major corporation could undertake foreign operations on Bechtel’s scale without some cooperation from the U.S. government–and few companies could refuse a government request that, in return, they provide cover for intelligence agents. Given the enormous scope of Bechtel’s operations in global trouble spots–a $20-billion industrial development in Saudi Arabia, for example–it could only proceed with assurances that its relations with both Saudi and American governments were good. Where, exactly, is the line between right and wrong? [emphasis mine]

… The white elephants Bechtel scattered across the American landscape–particularly the nuclear power plants that threaten to bankrupt some of the country’s largest utility systems–are monuments to wasted talent and misdirected resources.

Finally, I get to the Roddenberry Foundation, which was founded by Gene Roddenberry’s (Star Trek) son. Here’s more from the About Us, Origin webpage,

Gene Roddenberry, creator of the Star Trek series, brought to his audiences meaningful and thought-provoking science fiction to “think, question, and challenge the status quo” with the intention of creating “a brighter future”. His work has touched countless lives and continues to entertain and inspire audiences worldwide. In 2010, Gene’s son Rod established the Roddenberry Foundation to build on his father’s legacy and philosophy of inclusion, diversity, and respect for life to drive social change and meaningfully improve the lives of people around the world.

While there are many criticisms of Mr. Roddenberry, there doesn’t seem to be anything that would be considered a serious scandal on the order of a Jeffrey Epstein or the whisper of scandal on the order of Sir Li Ka-shing or Bechtel.

Final comments

It’s a good thing when research is funded and being able to detect off-target effects from CRISPR is very good, assuming the research holds up to closer scrutiny.

As for vetting your donors, that’s tricky. Of course, Epstein was already a convicted sex offender when Ito accepted his funding for MIT but I cannot emphasize enough the amount of pressure these folks are under. Academia is always hungry for money. Hopefully this incident will introduce checks and balances in the donor process.

Training drugs

This summarizes some of what’s happening in nanomedicine and provides a plug (boost) for the  University of Cambridge’s nanotechnology programmes (from a June 26, 2017 news item on Nanowerk),

Nanotechnology is creating new opportunities for fighting disease – from delivering drugs in smart packaging to nanobots powered by the world’s tiniest engines.

Chemotherapy benefits a great many patients but the side effects can be brutal.
When a patient is injected with an anti-cancer drug, the idea is that the molecules will seek out and destroy rogue tumour cells. However, relatively large amounts need to be administered to reach the target in high enough concentrations to be effective. As a result of this high drug concentration, healthy cells may be killed as well as cancer cells, leaving many patients weak, nauseated and vulnerable to infection.

One way that researchers are attempting to improve the safety and efficacy of drugs is to use a relatively new area of research known as nanothrapeutics to target drug delivery just to the cells that need it.

Professor Sir Mark Welland is Head of the Electrical Engineering Division at Cambridge. In recent years, his research has focused on nanotherapeutics, working in collaboration with clinicians and industry to develop better, safer drugs. He and his colleagues don’t design new drugs; instead, they design and build smart packaging for existing drugs.

The University of Cambridge has produced a video interview (referencing a 1966 movie ‘Fantastic Voyage‘ in its title)  with Sir Mark Welland,

A June 23, 2017 University of Cambridge press release, which originated the news item, delves further into the topic of nanotherapeutics (nanomedicine) and nanomachines,

Nanotherapeutics come in many different configurations, but the easiest way to think about them is as small, benign particles filled with a drug. They can be injected in the same way as a normal drug, and are carried through the bloodstream to the target organ, tissue or cell. At this point, a change in the local environment, such as pH, or the use of light or ultrasound, causes the nanoparticles to release their cargo.

Nano-sized tools are increasingly being looked at for diagnosis, drug delivery and therapy. “There are a huge number of possibilities right now, and probably more to come, which is why there’s been so much interest,” says Welland. Using clever chemistry and engineering at the nanoscale, drugs can be ‘taught’ to behave like a Trojan horse, or to hold their fire until just the right moment, or to recognise the target they’re looking for.

“We always try to use techniques that can be scaled up – we avoid using expensive chemistries or expensive equipment, and we’ve been reasonably successful in that,” he adds. “By keeping costs down and using scalable techniques, we’ve got a far better chance of making a successful treatment for patients.”

In 2014, he and collaborators demonstrated that gold nanoparticles could be used to ‘smuggle’ chemotherapy drugs into cancer cells in glioblastoma multiforme, the most common and aggressive type of brain cancer in adults, which is notoriously difficult to treat. The team engineered nanostructures containing gold and cisplatin, a conventional chemotherapy drug. A coating on the particles made them attracted to tumour cells from glioblastoma patients, so that the nanostructures bound and were absorbed into the cancer cells.

Once inside, these nanostructures were exposed to radiotherapy. This caused the gold to release electrons that damaged the cancer cell’s DNA and its overall structure, enhancing the impact of the chemotherapy drug. The process was so effective that 20 days later, the cell culture showed no evidence of any revival, suggesting that the tumour cells had been destroyed.

While the technique is still several years away from use in humans, tests have begun in mice. Welland’s group is working with MedImmune, the biologics R&D arm of pharmaceutical company AstraZeneca, to study the stability of drugs and to design ways to deliver them more effectively using nanotechnology.

“One of the great advantages of working with MedImmune is they understand precisely what the requirements are for a drug to be approved. We would shut down lines of research where we thought it was never going to get to the point of approval by the regulators,” says Welland. “It’s important to be pragmatic about it so that only the approaches with the best chance of working in patients are taken forward.”

The researchers are also targeting diseases like tuberculosis (TB). With funding from the Rosetrees Trust, Welland and postdoctoral researcher Dr Íris da luz Batalha are working with Professor Andres Floto in the Department of Medicine to improve the efficacy of TB drugs.

Their solution has been to design and develop nontoxic, biodegradable polymers that can be ‘fused’ with TB drug molecules. As polymer molecules have a long, chain-like shape, drugs can be attached along the length of the polymer backbone, meaning that very large amounts of the drug can be loaded onto each polymer molecule. The polymers are stable in the bloodstream and release the drugs they carry when they reach the target cell. Inside the cell, the pH drops, which causes the polymer to release the drug.

In fact, the polymers worked so well for TB drugs that another of Welland’s postdoctoral researchers, Dr Myriam Ouberaï, has formed a start-up company, Spirea, which is raising funding to develop the polymers for use with oncology drugs. Ouberaï is hoping to establish a collaboration with a pharma company in the next two years.

“Designing these particles, loading them with drugs and making them clever so that they release their cargo in a controlled and precise way: it’s quite a technical challenge,” adds Welland. “The main reason I’m interested in the challenge is I want to see something working in the clinic – I want to see something working in patients.”

Could nanotechnology move beyond therapeutics to a time when nanomachines keep us healthy by patrolling, monitoring and repairing the body?

Nanomachines have long been a dream of scientists and public alike. But working out how to make them move has meant they’ve remained in the realm of science fiction.

But last year, Professor Jeremy Baumberg and colleagues in Cambridge and the University of Bath developed the world’s tiniest engine – just a few billionths of a metre [nanometre] in size. It’s biocompatible, cost-effective to manufacture, fast to respond and energy efficient.

The forces exerted by these ‘ANTs’ (for ‘actuating nano-transducers’) are nearly a hundred times larger than those for any known device, motor or muscle. To make them, tiny charged particles of gold, bound together with a temperature-responsive polymer gel, are heated with a laser. As the polymer coatings expel water from the gel and collapse, a large amount of elastic energy is stored in a fraction of a second. On cooling, the particles spring apart and release energy.

The researchers hope to use this ability of ANTs to produce very large forces relative to their weight to develop three-dimensional machines that swim, have pumps that take on fluid to sense the environment and are small enough to move around our bloodstream.

Working with Cambridge Enterprise, the University’s commercialisation arm, the team in Cambridge’s Nanophotonics Centre hopes to commercialise the technology for microfluidics bio-applications. The work is funded by the Engineering and Physical Sciences Research Council and the European Research Council.

“There’s a revolution happening in personalised healthcare, and for that we need sensors not just on the outside but on the inside,” explains Baumberg, who leads an interdisciplinary Strategic Research Network and Doctoral Training Centre focused on nanoscience and nanotechnology.

“Nanoscience is driving this. We are now building technology that allows us to even imagine these futures.”

I have featured Welland and his work here before and noted his penchant for wanting to insert nanodevices into humans as per this excerpt from an April 30, 2010 posting,
Getting back to the Cambridge University video, do go and watch it on the Nanowerk site. It is fun and very informative and approximately 17 mins. I noticed that they reused part of their Nokia morph animation (last mentioned on this blog here) and offered some thoughts from Professor Mark Welland, the team leader on that project. Interestingly, Welland was talking about yet another possibility. (Sometimes I think nano goes too far!) He was suggesting that we could have chips/devices in our brains that would allow us to think about phoning someone and an immediate connection would be made to that person. Bluntly—no. Just think what would happen if the marketers got access and I don’t even want to think what a person who suffers psychotic breaks (i.e., hearing voices) would do with even more input. Welland starts to talk at the 11 minute mark (I think). For an alternative take on the video and more details, visit Dexter Johnson’s blog, Nanoclast, for this posting. Hint, he likes the idea of a phone in the brain much better than I do.

I’m not sure what could have occasioned this latest press release and related video featuring Welland and nanotherapeutics other than guessing that it was a slow news period.

More on synthetic windpipe; Swedes and Italians talk about nanoscience and medicine

There was a Swedish-Italian workshop on nanoscience and medical technology held in Stockholm, Sweden, Sept. 29 and 30, 2011. It rates a mention here largely because there’s some additional information about the synthetic windpipe transplant that took place in June 2011 in Sweden. From the Oct. 14, 2011 news item on Nanowerk,

A very important session was devoted to “tissue engineering”, i.e. the creation of artificial tissues and organs to replace diseased or damaged ones, thus reducing the need for human organs from donors for transplantation, whose availability is always difficult to predict. A “keynote lecturer”, in this field was held by Prof. Paolo Macchiarini, who recently joined the Karolinska Institute in Stockholm (the Institute that awards the Nobel Prize in Medicine each year).

Prof. Macchiarini presented the results of his recent surgery works, performed at the Karolinska, where for the first time a synthetic trachea (windpipe) made of porous nanocomposites was transplanted into a human patient. This was the base for the trachea reconstruction using stem cells from the patient himself, thus eliminating any possible problem of rejection. The artificial structure was designed to dissolve in a few months, leaving a totally natural organ. [emphasis mine] It is clear that this could be a first step in a revolution in regenerative medicine, reducing the need for conventional transplants, but it is also clear that the Prof. Macchiarini was able to perform this action thanks to the collaboration of experts in nanotechnology for the design of the scaffold, bioreactors for the growth of stem cells and biological tissues and dedicated infrastructure in Stockholm.

I must have missed it when the event (trachea transplant) was first made public (mentioned in my Aug. 2, 2011 posting) but I never realized the biocomposite was meant to dissolve.

Here’s a little more about the workshop, from the news item,

During the workshop, 18 Swedish and 18 Italian experts offered a comprehensive overview of the most prominent activities in the two Countries in several fields: bio-sensors, bio-electronics, contrast media for imaging and bio-analysis, nanoparticles for drug delivery eventually combined with diagnosis possibilities (known in the field as “theranostics”).

Several companies from both countries, including Bracco, Finceramica and Colorbbia from Italy as well as AstraZeneca and Spago Imaging from Sweden, presented their recent results in the field and gave a clear overview of the potential impact of nanotechnology in improving existing products as well as generating new solutions for the grand challenges that medicine is facing.

There are more details in the news item and at the Italian Embassy in Sweden’s Office of the Scientific Attaché in Sweden, Norway and Iceland workshop page.