Tag Archives: Australian National University

Overall winner of the 2024 global Dance Your PhD: Kangaroo Time (Club Edit)

I can’t resist the dance. First, the submission for the American Association for the Advancement of Science (AAAS) Dance Your Ph.D. competition on Youtube and then, the video,

Science and Artistic Rationale:

In our 2024 AAAS [American Association for the Advancement of Science]/Science Magazine Dance Your Ph.D. Contest submission, we explore kangaroo behavior through dance and promote diversity. The performance, titled “Kangaroo Time”, is based on my [Weliton Menário Costa] Ph.D. field research at Wilsons Promontory National Park, Australia, conducted at the Australian National University in collaboration with the University of Sherbrooke, Canada. My thesis, “Personality, Social Environment, and Maternal-Level Effects: Insights from a Wild Kangaroo Population”, is accessible here: https://openresearch-repository.anu.e…. I am honored to have worked under the expert supervision of Prof Loeske Kruuk and Prof Marco Festa-Bianchet. We delve into animal personality, defined as consistent behavior that distinguishes individuals, and social plasticity, the extent to which behavior changes in response to the social environment. We explain how both personality traits and social environment influence kangaroo behavior, including responses to stimuli like a remote-controlled car, and we demonstrate the role of personality on social dynamics. The diversity of the dancers, ranging from classical to urban styles, reflects the variations in kangaroo personality, e.g. bolder to shier. These dancers, unchoreographed, improvise their movements, responding to cues and interacting with each other. The dance thus serves as a visual narrative, capturing how kangaroos react based not only on their instincts but also on their social context. This approach demonstrates that kangaroo decisions are a complex interplay of intrinsic tendencies (personality) and social awareness leading to adjustment (plasticity). I hope this performance makes the scientific concepts both accessible and engaging for the audience. I completed my Ph.D. at the Australian National University, Canberra, in 2021, and worked as a Research Officer. Now, I’m pursuing music, having released my debut EP “Yours Academically, Dr. WELI” and the single “Kangaroo Time (Club Edit),” featured in the video. This project represents a fusion of my scientific work and my foray into performance and creative arts, combining animal behavior with artistic expression.

A February 26, 2024 Australian National University (ANU) press release on EurekAlert provides more detail about the researcher and about his work with kangaroos, Note: Links have been removed,

Dr Weliton Menário Costa, a PhD graduate from The Australian National University (ANU), has been announced the overall winner of the 2024 global Dance Your PhD contest after wowing judges with his wickedly creative and quirky dance submission, ‘Kangaroo Time (Club Edit)’.

One of the world’s leading researchers in kangaroo behaviour, he is the first person from ANU to win the Dance Your PhD competition, and just the fourth person from an Australian institution to do so since its inception in 2008. Better known as ‘WELI’, the singer-songwriter, creator and biologist weaves together a funky beat, original songwriting, drag queens and Brazilian funk dancers to create something that’s both entertaining and educational; the final product is something that looks like it’s been plucked straight out of The Adventures of Priscilla, Queen of the Desert.

WELI stars in and directs the music video, which draws on his Brazilian roots to illustrate the distinct and varying personality traits of kangaroos using the powerful mediums of song and dance. The original and club mixes have been played more than 7,000 times on Spotify, and the song has already featured in clubs, festivals, dance classes and radio stations.

“Winning this contest is the equivalent of winning Eurovision for me. I think it not only shows the incredible might of the research conducted here in Australia, but also how creative we are as a nation. Even us scientists!” he said.

Reflecting on the success of ‘Kangaroo Time’ and the global mark it’s made on the scientific community and further afield, WELI notes that at the core of his video is a message of inclusivity and diversity – something he hopes will be one of the main takeaways that viewers hold onto.

“As a queer immigrant from a linguistically diverse developing country, I understand the challenges of feeling disconnected in certain environments,” he said.

“One of the main messages I wanted to convey through this piece of work is that differences lead to diversity, and this is evident throughout the entire video. It’s evident with the different dancers that herald from various cultures and backgrounds.

“I think it’s extremely important that we celebrate diversity and creating a video explaining kangaroo personality was an excellent medium for me to do this.”

In 2017, WELI relocated from his home country of Brazil to Canberra to undertake a PhD in animal behaviour at the ANU Research School of Biology, which he finished in 2021.

Armed with a remote-controlled car, the ANU graduate spent more than three years studying the spectrum of behavioural differences of a group of more than 300 wild eastern grey kangaroos in Victoria.

“We found that kangaroos like to socialise in groups but prefer smaller social circles. Like humans, kangaroo personalities manifest early in life. Mothers and their offspring have similar personalities, and so do siblings,” he said.

“Kangaroos are very socially aware and will adjust their behaviour based off cues from other roos.

“The diversity of the dancers, from classical ballet to twerking, and the urban street dancers to the Brazilian dancing styles, reflect the variations in kangaroo personality across the full spectrum, from bolder types to shier roos.”

On the surface, ‘Kangaroo Time’ is an effective display of science communication that expertly utilises the creative arts medium. It’s engaging, quirky and niche. But WELI admits the decision to incorporate the words kangaroo time into the video’s title acts as a double entendre of sorts.

“The use of kangaroo time is not just to explain my research studying kangaroo personality – it’s also about my time living and studying in Australia as a whole,” he said.

“It’s been a time of exploration for me, a time where I’ve been able to reconnect with and grow my passion for music, dance and the creative arts.

“Working on this project was the spark I needed to encourage me to take that next step with my music. It’s made me realise I want to focus on my music for the next little while and put my scientific career on the backburner.

“Speaking of which, I’m about to release a new EP called ‘Yours Academically, Dr WELI’!”

WELI will continue working at ANU as a Visiting Fellow until early 2025.

The Dance Your PhD contest challenges researchers from across the globe to explain their PhD in a simple, effective and engaging way – bridging the gap between the scientific community and the general public.

There’s more about WELI in George Booth’s February 27, 2024 article (‘It’s like winning Eurovision’: an ANU graduate’s journey from kangaroo whisperer to global dance sensation) for ANU Reporter.

It was nice to stumble across a ‘Dance your PhD contest’ story. Unfortunately, that doesn’t happen often. I have two previous postings (from 2011and 2018) about the contest. Strangely, both are Canadian-centric,

Enjoy!

Dial-a-frog?

Frog and phone – Credit: Marta Yebra Alvarez

There is a ‘frogphone’ but you won’t be talking or communicating directly with frogs, instead you will get data about them, according to a December 6, 2019 British Ecological Society press release (also on EurekAlert),

Researchers have developed the ‘FrogPhone’, a novel device which allows scientists to call up a frog survey site and monitor them in the wild. The FrogPhone is the world’s first solar-powered remote survey device that relays environmental data to the observer via text messages, whilst conducting real-time remote acoustic surveys over the phone. These findings are presented in the British Ecological Society Journal Methods in Ecology and Evolution today [December 6, 2019].

The FrogPhone introduces a new concept that allows researchers to “call” a frog habitat, any time, from anywhere, once the device has been installed. The device has been developed at the University of New South Wales (UNSW) Canberra and the University of Canberra in collaboration with the Australian Capital Territory (ACT) and Region Frogwatch Program and the Australian National University.

The FrogPhone utilises 3G/4G cellular mobile data coverage and capitalises on the characteristic wideband audio of mobile phones, which acts as a carrier for frog calls. Real time frog calls can be transmitted across the 3G/4G network infrastructure, directly to the user’s phone. This supports clear sound quality and minimal background noise, allowing users to identify the calls of different frog species.

“We estimate that the device with its current microphone can detect calling frogs from a 100-150m radius” said lead author Dr. Adrian Garrido Sanchis, Associate Lecturer at UNSW Canberra. “The device allows us to monitor the local frog population with more frequency and ease, which is significant as frog species are widely recognised as indicators of environmental health” said the ACT and Region Frogwatch coordinator and co-author, Anke Maria Hoefer.

The FrogPhone unifies both passive acoustic and active monitoring methods, all in a waterproof casing. The system has a large battery capacity coupled to a powerful solar panel. It also contains digital thermal sensors to automatically collect environmental data such as water and air temperature in real-time. The FrogPhone uses an open-source platform which allows any researcher to adapt it to project-specific needs.

The system simulates the main features of a mobile phone device. The FrogPhone accepts incoming calls independently after three seconds. These three seconds allow time to activate the temperature sensors and measure the battery storage levels. All readings then get automatically texted to the caller’s phone.

Acoustic monitoring of animals generally involves either site visits by a researcher or using battery-powered passive acoustic devices, which record calls and store them locally on the device for later analysis. These often require night-time observation, when frogs are most active. Now, when researchers dial a device remotely, the call to the FrogPhone can be recorded indirectly and analysed later.

Ms. Hoefer remarked that “The FrogPhone will help to drastically reduce the costs and risks involved in remote or high intensity surveys. Its use will also minimize potential negative impacts of human presence at survey sites. These benefits are magnified with increasing distance to and inaccessibility of a field site.”

A successful field trial of the device was performed in Canberra from August 2017 to March 2018. Researchers used spectrograms, graphs which allow the visual comparison of the spectrum of frequencies of frog signals over time, to test the recording capabilities of the FrogPhone.

Ms. Hoefer commented that “The spectrogram comparison between the FrogPhone and the standard direct mobile phone methodology in the lab, for the calls of 9 different frog species, and the field tests have proven that the FrogPhone can be successfully used as a new alternative to conduct frog call surveys.”

The use of the current FrogPhone is limited to areas with adequate 3G/4G phone coverage. Secondly, to listen to frogs in a large area, several survey devices would be needed. In addition, it relies on exposure to sunlight.

Future additions to the FrogPhone could include a satellite communications module for poor signal areas, or the use of multidirectional microphones for large areas. Lead author Garrido Sanchis emphasized that “In densely vegetated areas the waterproof case of the FrogPhone allows the device to be installed as a floating device in the middle of a pond, to maximise solar access to recharge the batteries”.

Dr. Garrido Sanchis said “While initially tested in frogs, the technology used for the FrogPhone could easily be extended to capture other animal vocalisation (e.g. insects and mammals), expanding the applicability to a wide range of biodiversity conservation studies”.

Here’s what the FrogPhone looks like onsite,

The FrogPhone installed at the field site. Credit: Kumudu Munasinghe

Here’s a link to and a citation for the paper,

The FrogPhone: A novel device for real‐time frog call monitoring by Adrian, Garrido Sanchis, Lorenzo Bertolelli, Anke Maria Hoefer, Marta Yebra Alvarez, Kumudu Munasinghe. Methods in Ecology and Evolution https://doi.org/10.1111/2041-210X.13332 First published [online]: 04 December 2019

This paper is open access.

The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle

Setting the stage

Not unexpectedly, CRISPR-Cas9  or clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 can be dangerous as these scientists note in a July 16, 2018 news item on phys.org,

Scientists at the Wellcome Sanger Institute have discovered that CRISPR/Cas9 gene editing can cause greater genetic damage in cells than was previously thought. These results create safety implications for gene therapies using CRISPR/Cas9 in the future as the unexpected damage could lead to dangerous changes in some cells.

Reported today (16 July 2018) in the journal Nature Biotechnology, the study also revealed that standard tests for detecting DNA changes miss finding this genetic damage, and that caution and specific testing will be required for any potential gene therapies.

This CRISPR-Cas9 image reminds me of popcorn,

CRISPR-associated protein Cas9 (white) from Staphylococcus aureus based on Protein Database ID 5AXW. Credit: Thomas Splettstoesser (Wikipedia, CC BY-SA 4.0)[ downloaded from https://phys.org/news/2018-07-genome-crisprcas9-gene-higher-thought.html#jCp]

A July 16, 2018 Wellcome Sanger Institute press release (also on EurekAlert), which originated the news item, offers a little more explanation,

CRISPR/Cas9 is one of the newest genome editing tools. It can alter sections of DNA in cells by cutting at specific points and introducing changes at that location. Already extensively used in scientific research, CRISPR/Cas9 has also been seen as a promising way to create potential genome editing treatments for diseases such as HIV, cancer or sickle cell disease. Such therapeutics could inactivate a disease-causing gene, or correct a genetic mutation. However, any potential treatments would have to prove that they were safe.

Previous research had not shown many unforeseen mutations from CRISPR/Cas9 in the DNA at the genome editing target site. To investigate this further the researchers carried out a full systematic study in both mouse and human cells and discovered that CRISPR/Cas9 frequently caused extensive mutations, but at a greater distance from the target site.

The researchers found many of the cells had large genetic rearrangements such as DNA deletions and insertions. These could lead to important genes being switched on or off, which could have major implications for CRISPR/Cas9 use in therapies. In addition, some of these changes were too far away from the target site to be seen with standard genotyping methods.

Prof Allan Bradley, corresponding author on the study from the Wellcome Sanger Institute, said: “This is the first systematic assessment of unexpected events resulting from CRISPR/Cas9 editing in therapeutically relevant cells, and we found that changes in the DNA have been seriously underestimated before now. It is important that anyone thinking of using this technology for gene therapy proceeds with caution, and looks very carefully to check for possible harmful effects.”

Michael Kosicki, the first author from the Wellcome Sanger Institute, said: “My initial experiment used CRISPR/Cas9 as a tool to study gene activity, however it became clear that something unexpected was happening. Once we realised the extent of the genetic rearrangements we studied it systematically, looking at different genes and different therapeutically relevant cell lines, and showed that the CRISPR/Cas9 effects held true.”

The work has implications for how CRISPR/Cas9 is used therapeutically and is likely to re-spark researchers’ interest in finding alternatives to the standard CRISPR/Cas9 method for gene editing.

Prof Maria Jasin, an independent researcher from Memorial Slone Kettering Cancer Centre, New York, who was not involved in the study said: “This study is the first to assess the repertoire of genomic damage arising at a CRISPR/Cas9 cleavage site. While it is not known if genomic sites in other cell lines will be affected in the same way, this study shows that further research and specific testing is needed before CRISPR/Cas9 is used clinically.”

For anyone who’d like to better understand the terms gene editing and CRISPR-Cas9, the Wellcome Sanger Institute provides these explanatory webpages, What is genome editing? and What is CRISPR-Cas9?

For the more advanced, here’s a link and a citation for the paper,

Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements by Michael Kosicki, Kärt Tomberg, & Allan Bradley. Nature Biotechnology DOI: https://doi.org/10.1038/nbt.4192 Published 16 July 2018

This paper appears to be open access.

The kerfuffle

It seems this news has affected the CRISPR market. From a July 16, 2018 article by Cale Guthrie Weissman for Fast Company,

… CRISPR could unknowingly delete or alter non-targeted genes, which could lead to myriad unintended consequences. This is especially frightening, since the technology is going to be used in human clinical trials.

Meanwhile, other scientists working with CRISPR are trying to downplay the findings, telling STAT [a life sciences and business journalism website] that there have been no reported adverse effects similar to what the study describes. The news, however, has brought about a market reaction–at least three publicly traded companies that focus on CRISPR-based therapies are in stock nosedive. Crispr Therapeutics is down by over 6%; Editas fell by over 3%; and Intellia Therapeutics dropped by over 5%. [emphasis mine]

Damage control

Gaetan Burgio (geneticist, Australian National University)  in a July 16, 2018 essay on phys.org (originating from The Conversation) suggests some calm (Note: Links have been removed),

But a new study has called into question the precision of the technique [CRISPR gene editing technology].

The hope for gene editing is that it will be able to cure and correct diseases. To date, many successes have been reported, including curing deafness in mice, and in altering cells to cure cancer.

Some 17 clinical trials in human patients are registered [emphasis mine] testing gene editing on leukaemias, brain cancers and sickle cell anaemia (where red blood cells are misshaped, causing them to die). Before implementing CRISPR technology in clinics to treat cancer or congenital disorders, we must address whether the technique is safe and accurate.

There are a few options for getting around this problem. One option is to isolate the cells we wish to edit from the body and reinject only the ones we know have been correctly edited.

For example, lymphocytes (white blood cells) that are crucial to killing cancer cells could be taken out of the body, then modified using CRISPR to heighten their cancer-killing properties. The DNA of these cells could be sequenced in detail, and only the cells accurately and specifically gene-modified would be selected and delivered back into the body to kill the cancer cells.

While this strategy is valid for cells we can isolate from the body, some cells, such as neurons and muscles, cannot be removed from the body. These types of cells might not be suitable for gene editing using Cas9 scissors.

Fortunately, researchers have discovered other forms of CRISPR systems that don’t require the DNA to be cut. Some CRISPR systems only cut the RNA, not the DNA (DNA contains genetic instructions, RNA convey the instructions on how to synthesise proteins).

As RNA [ribonucleic acid] remains in our cells only for a specific period of time before being degraded, this would allow us to control the timing and duration of the CRISPR system delivery and reverse it (so the scissors are only functional for a short period of time).

This was found to be successful for dementia in mice. Similarly, some CRISPR systems simply change the letters of the DNA, rather than cutting them. This was successful for specific mutations causing diseases such as hereditary deafness in mice.

I agree with Burgio’s conclusion (not included here) that we have a lot more to learn and I can’t help wondering why there are 17 registered human clinical trials at this point.

Growing shells atom-by-atom

The University of California at Davis (UC Davis) and the University of Washington (state) collaborated in research into fundamental questions on how aquatic animals grow. From an Oct. 24, 2016 news item on ScienceDaily,

For the first time scientists can see how the shells of tiny marine organisms grow atom-by-atom, a new study reports. The advance provides new insights into the mechanisms of biomineralization and will improve our understanding of environmental change in Earth’s past.

An Oct. 24, 2016 UC Davis news release by Becky Oskin, which originated the news item, provides more detail,

Led by researchers from the University of California, Davis and the University of Washington, with key support from the U.S. Department of Energy’s Pacific Northwest National Laboratory, the team examined an organic-mineral interface where the first calcium carbonate crystals start to appear in the shells of foraminifera, a type of plankton.

“We’ve gotten the first glimpse of the biological event horizon,” said Howard Spero, a study co-author and UC Davis geochemistry professor. …

Foraminifera’s Final Frontier

The researchers zoomed into shells at the atomic level to better understand how growth processes may influence the levels of trace impurities in shells. The team looked at a key stage — the interaction between the biological ‘template’ and the initiation of shell growth. The scientists produced an atom-scale map of the chemistry at this crucial interface in the foraminifera Orbulina universa. This is the first-ever measurement of the chemistry of a calcium carbonate biomineralization template, Spero said.

Among the new findings are elevated levels of sodium and magnesium in the organic layer. This is surprising because the two elements are not considered important architects in building shells, said lead study author Oscar Branson, a former postdoctoral researcher at UC Davis who is now at the Australian National University in Canberra. Also, the greater concentrations of magnesium and sodium in the organic template may need to be considered when investigating past climate with foraminifera shells.

Calibrating Earth’s Climate

Most of what we know about past climate (beyond ice core records) comes from chemical analyses of shells made by the tiny, one-celled creatures called foraminifera, or “forams.” When forams die, their shells sink and are preserved in seafloor mud. The chemistry preserved in ancient shells chronicles climate change on Earth, an archive that stretches back nearly 200 million years.

The calcium carbonate shells incorporate elements from seawater — such as calcium, magnesium and sodium — as the shells grow. The amount of trace impurities in a shell depends on both the surrounding environmental conditions and how the shells are made. For example, the more magnesium a shell has, the warmer the ocean was where that shell grew.

“Finding out how much magnesium there is in a shell can allow us to find out the temperature of seawater going back up to 150 million years,” Branson said.

But magnesium levels also vary within a shell, because of nanometer-scale growth bands. Each band is one day’s growth (similar to the seasonal variations in tree rings). Branson said considerable gaps persist in understanding what exactly causes the daily bands in the shells.

“We know that shell formation processes are important for shell chemistry, but we don’t know much about these processes or how they might have changed through time,” he said. “This adds considerable uncertainty to climate reconstructions.”

Atomic Maps

The researchers used two cutting-edge techniques: Time-of-Flight Secondary Ionization Mass Spectrometry (ToF-SIMS) and Laser-Assisted Atom Probe Tomography (APT). ToF-SIMS is a two-dimensional chemical mapping technique which shows the elemental composition of the surface of a polished sample. The technique was developed for the elemental analysis of complex polymer materials, and is just starting to be applied to natural samples like shells.

APT is an atomic-scale three-dimensional mapping technique, developed for looking at internal structures in advanced alloys, silicon chips and superconductors. The APT imaging was performed at the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy Office of Science User Facility at the Pacific Northwest National Laboratory.

This foraminifera is just starting to form its adult spherical shell. The calcium carbonate spherical shell first forms on a thin organic template, shown here in white, around the dark juvenile skeleton. Calcium carbonate spines then extend from the juvenile skeleton through the new sphere and outward. The bright flecks are algae that the foraminifera “farm” for sustenance.Howard Spero/University of California, Davis

This foraminifera is just starting to form its adult spherical shell. The calcium carbonate spherical shell first forms on a thin organic template, shown here in white, around the dark juvenile skeleton. Calcium carbonate spines then extend from the juvenile skeleton through the new sphere and outward. The bright flecks are algae that the foraminifera “farm” for sustenance.Howard Spero/University of California, Davis

An Oct. 24, 2016 University of Washington (state) news release (also on EurekAlert) adds more information (there is a little repetition),

Unseen out in the ocean, countless single-celled organisms grow protective shells to keep them safe as they drift along, living off other tiny marine plants and animals. Taken together, the shells are so plentiful that when they sink they provide one of the best records for the history of ocean chemistry.

Oceanographers at the University of Washington and the University of California, Davis, have used modern tools to provide an atomic-scale look at how that shell first forms. Results could help answer fundamental questions about how these creatures grow under different ocean conditions, in the past and in the future. …

“There’s this debate among scientists about whether shelled organisms are slaves to the chemistry of the ocean, or whether they have the physiological capacity to adapt to changing environmental conditions,” said senior author Alex Gagnon, a UW assistant professor of oceanography.

The new work shows, he said, that they do exert some biologically-based control over shell formation.

“I think it’s just incredible that we were able to peer into the intricate details of those first moments that set how a seashell forms,” Gagnon said. “And that’s what sets how much of the rest of the skeleton will grow.”

The results could eventually help understand how organisms at the base of the marine food chain will respond to more acidic waters. And while the study looked at one organism, Orbulina universa, which is important for understanding past climate, the same method could be used for other plankton, corals and shellfish.

The study used tools developed for materials science and semiconductor research to view the shell formation in the most detail yet to see how the organisms turn seawater into solid mineral.

“We’re interested more broadly in the question ‘How do organisms make shells?'” said first author Oscar Branson, a former postdoctoral researcher at the University of California, Davis who is now at Australian National University in Canberra. “We’ve focused on a key stage in mineral formation — the interaction between biological template materials and the initiation of shell growth by an organism.”

These tiny single-celled animals, called foraminifera, can’t reproduce anywhere but in their natural surroundings, which prevents breeding them in captivity. The researchers caught juvenile foraminifera by diving in deep water off Southern California. Then they then raised them in the lab, using tiny pipettes to feed them brine shrimp during their weeklong lives.

Marine shells are made from calcium carbonate, drawing the calcium and carbon from surrounding seawater. But the animal first grows a soft template for the mineral to grow over. Because this template is trapped within the growing skeleton, it acts as a snapshot of the chemical conditions during the first part of skeletal growth.

To see this chemical picture, the authors analyzed tiny sections of foraminifera template with a technique called atom probe tomography at the Pacific Northwest National Laboratory. This tool creates an atom-by-atom picture of the organic template, which was located using a chemical tag.

Results show that the template contains more magnesium and sodium atoms than expected, and that this could influence how the mineral in the shell begins to grow around it.

“One of the key stages in growing a skeleton is when you make that first bit, when you build that first bit of structure. Anything that changes that process is a key control point,” Gagnon said.

The clumping suggests that magnesium and sodium play a role in the first stages of shell growth. If their availability changes for any reason, that could influence how the shell grows beyond what simple chemistry would predict.

“We can say who the players are — further experiments will have to tell us exactly how important each of them is,” Gagnon said.

Follow-up work will try to grow the shells and create models of their formation to see how the template affects growth under different conditions, such as more acidic water.

“Translating that into, ‘Can these forams survive ocean acidification?’ is still many steps down the line,” Gagnon cautioned. “But you can’t do that until you have a picture of what that surface actually looks like.”

The researchers also hope that by better understanding the exact mechanism of shell growth they could tease apart different aspects of seafloor remains so the shells can be used to reconstruct more than just the ocean’s past temperature. In the study, they showed that the template was responsible for causing fine lines in the shells — one example of the rich chemical information encoded in fossil shells.

“There are ways that you could separate the effects of temperature from other things and learn much more about the past ocean,” Gagnon said.

Here’s a link to and a citation for the paper,

Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation, Proceedings of the National Academy of Sciences, www.pnas.org/cgi/doi/10.1073/pnas.1522864113

This paper is behind a paywall.

A science communication education program in Australia

Alan Alda (US actor and science communicator) was invited to celebrate the opening of the Australia National Centre for the Public Awareness of Science (CPAS) on Tuesday, March 8, 2016 according to a March 8, 2016 CPAS press release (Note: Links have been removed),

Actor Alan Alda, best known for his starring role in the television series M*A*S*H, opened new facilities for CPAS today [March 8, 2016].

Mr Alda, US Ambassador to Australia his Excellency John Berry, ANU [Australian National University] Vice-Chancellor Professor Brian Schmidt, and CPAS Director Professor Joan Leach opened the new building with speeches in the greenery of University Avenue, followed by ribbon cutting at the new CPAS office.

The opening follows a new partnership agreement between CPAS and the Alan Alda Center for Communicating Science, based in Stony Brook University’s School of Journalism in the United States.

Mr Alda is a visiting professor in Stony Brook University’s School of Journalism and was a founding member of the Alda Center in 2009. His vision was to teach scientists the skills he had mastered as an actor to help them communicate better with policymakers and the public.

Mr Alda said it was time for CPAS and the Alan Alda Centre to join forces and to start collaborating.

“It couldn’t be better. We both have something to offer the other,” Mr Alda said.

“The Centre here has an extraordinary grasp of the history and theory of science communication. We have in turn innovative ways of teaching the actual skills of communication.

“We have turned many people who are not comfortable facing an audience, or even worse comfortable facing an audience but making an audience uncomfortable facing them, we’ve turned them into master communicators, and they are happy about it and their science is reaching the pubic.”

Professor Schmidt said the new facilities celebrated the partnership between ANU and the Alan Alda Center and he looked forward to seeing the result of the new collaboration.

“CPAS is one of the jewels in the crown of ANU,” Professor Schmidt said.

“The centre is Australia’s oldest and most diverse academic science communication centre, and it was formed in 1996. It took very special people to come up with the vision for CPAS, and its development blazed a trail that has been emulated since by other institutions.”

The event was completed by a two hour workshop for CPAS students and stuff run by Alda Center Associate Director, Dr Christine O’Connell, and Mr Alda. The workshop was the first taste of the collaborative exchange yet to come between the two institutions.

There is a March 10, 2016 interview/chat with Alan Alda by Rod Lambert and Will Grant featuring text and audio files on The Conversation.com (Note: Links have been removed),

Rod: Did you experience any particular kinds of resistance to try to sell this message that scientists should communicate more?

Alan: Ten or 15 years ago, when I began trying to sell this idea, I did get plenty of resistance. I don’t know how many universities I talked to, it was just a handful, but I didn’t get any enthusiasm until I talked to Stony Brook University in New York, and they started the Center for Communicating Science there, which I’m so thrilled is now collaborating with the National Centre for the Public Awareness of Science. It’s like a dream come true, you’re our first international affiliation.

Rod: You’re welcome. Obviously there’s nothing in it for us, we’re just doing this out of the kindness of our hearts (laughs).

Alan: Ha ha ha, well you’ve got all this experience. We’ve got some pretty innovative ideas that we’ve been working on. We kind of use the Stony Brook University setting as our laboratory and we then spread what we’ve learned around the States.

Now we will be sharing it with you and we hope to get your innovations and ideas, and help to share them because we now have the network that’s growing. Every month, it gets a little larger.

We have 17 universities and medical schools and institutions in America that are hooked into this network. We’re going to be sharing all the things, all the creative ideas that come out of each of these places.

That really appeals to me because the people who really want to see communication thrive, the communication of science, they get so enthused about it. It’s hard to get them to stop working night and day on it because you see the results blooming and it makes me very happy.

They also cover Alda’s disinterest in becoming a doctor (ironic given that he’s probably best known for his role as a doctor in the MASH television series) and his presence at the March 9 – 13, 2016 World Science Festival in Brisbane.

For anyone who may recognize the World Science Festival name, it’s the progenitor for this event in Australia (from the World Science Festival in Brisbane About page),

The World Science Festival began in New York in 2008 and is an annual weeklong celebration and exploration of science. Through gripping debates, original theatrical works, interactive explorations, musical performances, intimate salons, and major outdoor experiences, the Festival takes science out of the laboratory and into the streets, parks, museums, galleries and premier performing arts venues of New York City.

The World Science Festival brings together great minds in science and the arts to produce live and digital content that presents the wonders of science and the drama of scientific discovery to a broad general audience. Hailed a “new cultural institution” by the New York Times, the Festival has featured scientific and cultural luminaries including Stephen Hawking, Maggie Gyllenhaal, E.O. Wilson, John Lithgow, Sir Paul Nurse, Glenn Close, Harold Varmus, Yo-Yo Ma, Steven Weinberg, Philip Glass, Eric Lander, Steven Chu, Chuck Close, Richard Leakey, Bobby McFerrin, Sylvia Earle, Anna Deavere Smith, Oliver Sacks, Liev Schreiber, Mary-Claire King, Charlie Kaufman, Bill T. Jones, John Hockenberry, Elizabeth Vargas among many others. The annual Festivals have collectively drawn more than 1.3 million visitors since 2008, and millions more have viewed the programs online.

World Science U is the Foundation’s online education arm where students and lifelong learners can dive more deeply through artfully produced digital education content presented by world-renowned scientists.

The World Science Festival is a production of the World Science Foundation, a not-for-profit organisation headquartered in New York City. The Foundation’s mission is to cultivate a general public informed by science, inspired by its wonder, convinced of its value, and prepared to engage with its implications for the future.

WSF Brisbane

The inaugural World Science Festival Brisbane will bring some of the world’s greatest thought leaders to Queensland, showcase local scientists and performers from around the Asia Pacific region, and host the brightest and the best from previous events in New York.

At the World Science Festival Brisbane, the biggest stars of science will present the beauty, complexity, and importance of science through diverse, multidisciplinary programming that is the World Science Festival signature. The inaugural World Science Festival Brisbane will take place between 9 and 13 March 2016 and is presented by the Queensland Museum.

Queensland Museum is located at South Bank in the heart of Brisbane’s Cultural Precinct, and is the most visited museum in Australia*. Permanent attractions include: the Sciencentre, which offers a wealth of interactive science and technology experiences; the Discovery Centre, the Lost Creatures: Stories from Ancient Queensland Gallery; and the Dandiiri Maiwar Aboriginal and Torres Islander Centre.

The Museum also regularly hosts national and international travelling exhibitions and offers a range of public and educational programs and activities, which attract more than 1 million visitors to the Cultural Precinct each year. Queensland Museum exhibits and stores a significant proportion of the State Collection and houses several research and conservation laboratories.

A little digging resulted in a few more details about this WSF Brisbane undertaking in a Media Kit for the 2016 inaugural event.

Exclusive rights have been granted to the Queensland Museum to present the event in the Asia-Pacific region for the next six years.

The inaugural World Science Festival Brisbane will bring some of the world’s greatest thought leaders  to Queensland, showcase local scientists and performers from around the Asia-Pacific region, and host the brightest and the best from previous events in New York.

The inaugural World Science Festival Brisbane will take place over four days and five nights across the South Bank Cultural Precinct from Wednesday 9 to Sunday 13 March 2016.

More than 100 scientific luminaries from nine countries will gather for the inaugural World Science Festival Brisbane at venues across the Cultural Precinct and South Bank.

Some of science’s brightest stars making special appearances at the festival include Emmy award-winning actor, author, science enthusiast and World Science Festival board member Alan Alda; Nobel Laureatephysicist  Brian Schmidt; pioneering marine biologist Sylvia Earle;  celebrated astronaut Andy Thomas; renowned physicist, best-selling author and festival co-founder Brian Greene, and many more.

Tracy Day, Co-Founder and CEO of the World Science Festival remarked, “By recasting science with art, music and story, we’re shifting science toward the centre of culture. We’re touching all those people  who love the arts but run the other way, when it comes to science.

Over 100 events (free and ticketed) make up the World Science Festival Brisbane program from Wednesday 9 – Sunday 13 March 2016. Highlights include:

• Celebrating the recent 100th Anniversary of Einstein’s General Theory of Relativity, two premiere performances and a deep dive into the science, impact and unresolved mysteries of Einstein’s most profound discovery:

− Light Falls – a new theatrical work featuring festival co-founder Brian Greene and an ensemble cast; written by Greene and created with composer Jeff Beal (“House of Cards”) and the 2015 Tony-award winning team from 59 Productions (An American in Paris);

− Dear Albert – a reading for the stage written by Alan Alda, featuring Jason Klarwein as Albert Einstein, with Anna McGahan and Christen O’Leary;

− Relativity Since Einstein – an illuminating exploration of Einstein’s ground-breaking insights, moderated by Greene and featuring a line-up of top thinkers in the field.

• Street Science! – a free two-day extravaganza for the whole family featuring everything from live turtle hatching, drones, coding workshops and robot combat to gastronomic demonstrations, taxidermy exhibitions and science-adventure storytelling

• New York Signature Events: The line-up for the inaugural WSF Brisbane includes six Signature Events straight from New York. Provocative, entertaining and accessible, these fast-paced programs explore ground-breaking discoveries, cutting-edge science and the latest technological innovations, guided by leading thinkers from around the world, including:

− Dawn of the Human Age – are we entering a new geological epoch: the Human Age?

 − Alien Life: Will We Know It When We Find It? Scientists across disciplines – astronomers, astrophysicists, and astrobiologists – are intensely studying the evolution of life on Earth and listening for signals from outer space to help identify life in the universe.

− The Moral Math of Robots – Can machines learn right from wrong? As the first generation of driverless cars and battlefield warbots filter into society, scientists are working to develop moral decision-making skills in robots. Break or swerve? Shoot or stand down?

• Diverse and uniquely fascinating events for general audiences and students that showcase scientists, researchers, philosophers, artists, authors, inventors and more, exploring and debating questions about the universe, our changing world, and the role science plays in some of the most urgent issues of our time. Including:

− Can We Save our Reefs in Time? – Global ideas that may help preserve our amazing natural reefs are on the agenda when leading experts discuss revolutionary scientific measures that could assist marine scientists and biologists determine exactly what’s happening to the Great Barrier Reef, and indeed reefs all over the world.

− Chasing Down the Comet – landing a spacecraft on a comet at 40,000 k mph, with scientists from the European Space Agency and NASA who actually did it.

− Catching up with the Jetsons: Cities in 2050 – world renowned scientists, urban planners, and futurists consider the future of the city.

−The Martian film and talk – a once in a lifetime opportunity hear an astronaut and a NASA scientist discuss whether the blockbuster movie gets the science right, with Andy Thomas and Pamela Conrad.

• Salon events that dive deeper into the science of specific topics with informal discussions challenging participants to consider their shared passions from a fresh perspective.

• Hands-on workshops where budding scientists can spend time with working scientists, learning about their fascinating work in fields as diverse as genetics, art conservation, biology, the environment, ichthyology, game design, zoology, palaeontology, robotics and sports engineering.

Congratulations to the organizers for pulling together an exciting programme. BTW, the original World Science Festival will be taking place June 1 – 5, 2016 in New York.

Getting back to CPAS and for anyone interested in it (the only institution that I’ve seen offering science communication degrees for undergraduates, masters, and PhDs), there’s more from their History page,

The roots of CPAS started to grow in the 1980s, when two ANU academics – physicist Dr Mike Gore (now Professor), the founder of Australia’s National Science and Technology Centre, Questacon, and biologist Professor Chris Bryant, then ANU Dean of Science – started up a Graduate Certificate in Science Communication program. They established it as a formal training program and recognised qualification for groups of postgraduate students who had been performing outreach science shows with Questacon since the early 1980s. That program has become the Master of Science Communication Outreach degree, still run by CPAS, which is the host program for the Shell Questacon Science Circus, still run by Questacon.

In 1996 the ANU employed Dr Sue Stocklmayer (now Professor) as a new science communication academic to work full time on developing the program and other science communication teaching and research ventures at the University. It was she who proposed the establishment of a Centre for the Public Awareness of Science. Professor Bryant was the first CPAS Director, but stepped aside in 1998, when Dr Stocklmayer took the reins. She remained the Director until 2015. In 2016, Professor Joan Leach assumed the role of CPAS Director.

The ibis was chosen as the CPAS mascot because it was the totem symbol of the Egyptian god Thoth, God of Science and Wisdom and Scribe of the Gods. The Ibis is also a ubiquitous travelling bird.

The opening ceremony for CPAS was performed by Professor Richard Dawkins, the first Charles Simonyi professor of the Public Understanding of Science at Oxford. After receiving an honorary degree (Hon D Litt) from the University he spent the rest of the afternoon at CPAS, in its old quarters of what is now the Peter Baume Buiding. There he cracked a ceremonial ‘ibis egg’ and mixed with members of the university. Photos of the event can be seen below.

Since its humble origins CPAS has become a world class science communication centre, growing in staff and student numbers, offering science communication education at all levels from undergraduate to PhD, building a comprehensive research program, and engaging in diverse science outreach and policy activities. CPAS staff regularly travel to numerous countries across the world, offering science communication education, training and support to science communicators, science centre staff and science teachers. In 2000 CPAS became an accredited Centre for the Australian National Commission for UNESCO. CPAS also boasts current partnerships with Questacon, Shell Australia, the National University of Singapore, the Government of Vietnam, the Australian Government’s Inspiring Australia program, the Science Communication Research and Education Network, and the Science Circus Africa initiative.

That’s all, folks.

Building architecture inspires new light-bending material

Usually, it’s nature which inspires scientists but not this time. Instead, a building in Canberra, Australia has provided the inspiration according to a March 24, 2015 news item on Nanowerk,

Physicists inspired by the radical shape of a Canberra building have created a new type of material which enables scientists to put a perfect bend in light.

The creation of a so-called topological insulator could transform the telecommunications industry’s drive to build an improved computer chip using light.

Leader of the team, Professor Yuri Kivshar from The Australian National University (ANU) said the revolutionary material might also be useful in microscopes, antenna design, and even quantum computers.

“There has been a hunt for similar materials in photonics based on large complicated structures,” said Professor Kivshar, who is the head of the Nonlinear Physics Centre in ANU Research School of Physics and Engineering.

“Instead we used a simple, small-scale zigzag structure to create a prototype of these novel materials with amazing properties.”

The structure was inspired by the Nishi building near ANU, which consists of rows of offset zigzag walls.

Here’s what the building looks like,

Caption: Alex Slobozhanyuk (L) and Andrey Miroshnichenko with models of their material structures in front of the Nishi building that inspired them. Credit: Stuart Hay, ANU

Caption: Alex Slobozhanyuk (L) and Andrey Miroshnichenko with models of their material structures in front of the Nishi building that inspired them.
Credit: Stuart Hay, ANU

A March 24, 2015 Australian National University press release, which originated the news item, goes on to describe topological insulators and what makes this ‘zigzag’ approach so exciting,

Topological insulators have been initially developed for electronics, and the possibility of building an optical counterpart is attracting a lot of attention.

The original zigzag structure of the material was suggested in the team’s earlier collaboration with Dr Alexander Poddubny, from Ioffe Institute in Russia, said PhD student Alexey Slobozhanyuk.

“The zigzag structure creates a coupling throughout the material that prevents light from travelling through its centre,” Mr Slobozhanyuk said.

“Instead light is channelled to the edges of the material, where it becomes completely localised by means of a kind of quantum entanglement known as topological order.”

Fellow researcher Dr Andrew Miroshnichenko said the building inspired the researchers to think of multiple zigzags.

“We had been searching for a new topology and one day I looked at the building and a bell went off in my brain,” said fellow researcher Dr Andrey Miroshnichenko.

“On the edges of such a material the light should travel completely unhindered, surfing around irregularities that would normally scatter the light.

“These materials will allow light to be bent around corners with no loss of signal,” he said.

The team showed that the exceptional attributes of the material are related to its structure, or topology, and not to the molecules it is made from.

“In our experiment we used an array of ceramic spheres, although the initial theoretical model used metallic subwavelength particles,” said Dr Miroshnichenko.

“Even though they are very different materials they gave the same result.”

In contrast with other international groups attempting to create topological insulators with large scale structures, the team used spheres that were smaller than the wavelength of the microwaves in their successful experiments.

Dr Poddubny devised the theory when he realised there was a direct analogy between quantum Kitaev’s model of Majorana fermions and optically coupled subwavelength scatterers.

Mr Slobozhanyuk said the team could control which parts of the material surface the light is channelled to by changing the polarisation of the light.

“This opens possibilities ranging from nanoscale light sources for enhancing microscopes, highly efficient antennas or even quantum computing,” he said.

“The structure couples the two sides of the material, so they could be used as entangled qubits for quantum computing.”

It would be nice to offer a link to a published paper but I cannot find one.

Tibetan Buddhist singing bowls inspire more efficient solar cells

There’s no mention as to whether or not Dr Niraj Lal practices any form of meditation or how he came across Tibetan Buddhist singing bowls but somehow he was inspired by them when studying for his PhD at Cambridge University (UK). From a Sept. 8, 2014 news item by Niall Byrne for physorg.com,

The shape of a centuries-old Buddhist singing bowl has inspired a Canberra scientist to re-think the way that solar cells are designed to maximize their efficiency.

Dr Niraj Lal, of the Australian National University,  found during his PhD at the University of Cambridge, that small nano-sized versions of Buddhist singing bowls resonate with light in the same way as they do with sound, and he’s applied this shape to solar cells to increase their ability to capture more light and convert it into electricity.

A Sept. ?, 2014 news release from Australian science communication company, Science in Public, fills in a few more details without any mention of Lal’s meditation practices, should he have any,

“Current standard solar panels lose a large amount of light-energy as it hits the surface, making the panels’ generation of electricity inefficient,” says Niraj. “But if the cells are singing bowl-shaped, then the light bounces around inside the cell for longer”.

Normally used in meditation, music, and relaxation, Buddhist singing bowls make a continuous harmonic ringing sound when the rim of the metal bowl is vibrated with a wooden or other utensil.

During his PhD, Niraj discovered that his ‘nanobowls’ manipulated light by creating a ‘plasmonic’ resonance, which quadrupled the laboratory solar cell’s efficiency compared to a similarly made flat solar cell.

Now, Niraj and his team aim to change all that by applying his singing-bowl discovery to tandem solar cells: a technology that has previously been limited to aerospace applications.

In research which will be published in the November issue of IEEE Journal of Photonics, Niraj and his colleagues have shown that by layering two different types of solar panels on top of each other in tandem, the efficiency of flat rooftop solar panels can achieve 30 per cent—currently, laboratory silicon solar panels convert only 25 per cent of light into electricity, while commercial varieties convert closer to 20 per cent.

The tandem cell design works by absorbing a sunlight more effectively —each cell is made from a different material so that it can ‘see’ a different light wavelength.

“To a silicon solar cell, a rainbow just looks like a big bit of red in the sky—they don’t ‘see’ the blue, green or UV light—they convert all light to electricity as if it was red ,” says Niraj. “But when we put a second cell on top, which ‘sees’ the blue part of light, but allows the red to pass through to the ‘red-seeing’ cell below, we can reach a combined efficiency of more than 30 percent.”

Niraj and a team at ANU are now looking at ways to super-charge the tandem cell design by applying the Buddhist singing bowl shape to further increase efficiency.

“If we can make a solar cell that ‘sees’ more colours and  keeps the right light in the right layers, then we could increase efficiency even further,” says Niraj.

“Every extra percent in efficiency saves you thousands of dollars over the lifetime of the panel,” says Niraj. “Current roof-top solar panels have been steadily increasing in efficiency, which has been a big driver of the fourfold drop in the price for these panels over the last five years.”

More importantly, says Niraj, greater efficiency will allow solar technology to compete with fossil fuels and meet the challenges of climate change and access.

“Electricity is also one of the most enabling technologies we have ever seen, and linking people in rural areas around the world to electricity is one of the most powerful things we can do.”

At the end of the Science in Public news release there’s mention of a science communication competition,

Niraj was a 2014 national finalist of FameLab Australia. FameLab is a global science communication competition for early-career scientists. His work is supported by the Australian Research Council and ARENA – the Australian Renewable Energy Agency.

About FameLab

In 2014, the British Council and Fresh Science have joined forces to bring FameLab to Australia.

FameLab Australia will offer specialist science media training and, ultimately, the chance for early-career researchers to pitch their research at the FameLab International Grand Final in the UK at The Times Cheltenham Science Festival from 3 to 5 June 2014.

FameLab is an international communication competition for scientists, including engineers and mathematicians. Designed to inspire and motivate young researchers to actively engage with the public and with potential stakeholders, FameLab is all about finding the best new voices of science and engineering across the world.

Founded in 2005 by The Times Cheltenham Science Festival, FameLab, working in partnership with the British Council, has already seen more than 5,000 young scientists and engineers participate in over 23 different countries — from Hong Kong to South Africa, USA to Egypt.

Now, FameLab comes to Australia in a landmark collaboration with the British Council and Fresh Science — Australia’s very own science communication competition.

For more information about FameLab Australia, head to www.famelab.org.au

You can find out more about Australia’s Fresh Science here.

Getting back to Dr. Lal, here’s a video he made about his work and where he demonstrates a Tibetan Buddhist singing bowl (this is a very low tech video and the sound quality isn’t great),

Here’s a link to and a citation for Lal’s most recent paper,

Optics and Light Trapping for Tandem Solar Cells on Silicon by Lal, N.N.; White, T.P. ; and Catchpole, K.R. Photovoltaics, IEEE Journal of  (Volume:PP ,  Issue: 99) Page(s): 1 – 7 ISSN : 2156-3381 DOI: 10.1109/JPHOTOV.2014.2342491 Published online 19 August 2014

The paper is behind a paywall but there is open access to Lal’s 2012 University of Cambridge PhD thesis on his approach,

Enhancing solar cells with plasmonic nanovoids by Lal, Niraj Narsey
URI: http://www.dspace.cam.ac.uk/handle/1810/243864 Date:2012-07-03

Hap;y reading!

From Australia: a recipe for baking lenses

Here’s the recipe from an April 24, 2014 Optical Society news release on EurekAlert,

All that’s needed is an oven, a microscope glass slide and a common, gel-like silicone polymer called polydimethylsiloxane (PDMS). First, drop a small amount of PDMS onto the slide. Then bake it at 70 degrees Celsius to harden it, creating a base. Then, drop another dollop of PDMS onto the base and flip the slide over. Gravity pulls the new droplet down into a parabolic shape. Bake the droplet again to solidify the lens. More drops can then be added to hone the shape of the lens that also greatly increases the imaging quality of the lens. “It’s a low cost and easy lens-making recipe,” Lee [ Steve Lee from the Research School of Engineering at Australian National University] says.

I’m still marveling over this image,

Caption: This photo shows a single droplet lens suspended on a fingertip. Credit: Stuart Hay. Courtesy: The Optical Society

Caption: This photo shows a single droplet lens suspended on a fingertip. Credit: Stuart Hay. Courtesy: The Optical Society

For anyone who doesn’t know much about producing lenses and why these baked droplets could improve lives, the Optical Society news release provides some insight,

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost less than a penny apiece.

Because they’re so inexpensive, the lenses can be used in a variety of applications, including tools to detect diseases in the field, scientific research in the lab and optical lenses and microscopes for education in classrooms.

“What I’m really excited about is that it opens up lens fabrication technology,” says Steve Lee from the Research School of Engineering at Australian National University (ANU) …

Many conventional lenses are made the same way lenses have been made since the days of Isaac Newton—by grinding and polishing a flat disk of glass into a particular curved shape. Others are made with more modern methods, such as pouring gel-like materials molds. But both approaches can be expensive and complex, Lee says. With the new method, the researchers harvest solid lenses of varying focal lengths by hanging and curing droplets of a gel-like material—a simple and inexpensive approach that avoids costly or complicated machinery.

“What I did was to systematically fine-tune the curvature that’s formed by a simple droplet with the help of gravity, and without any molds,” he explains.

Although people have long recognized that a droplet can act as a lens, no one tried to see how good a lens it could be. Now, the team has developed a process that pushes this concept to its limits, Lee says.

The researchers made lenses about a few millimeters thick with a magnification power of 160 times and a resolution of about 4 microns (millionths of a meter)—two times lower in optical resolution than many commercial microscopes, but more than three orders of magnitude lower in cost. “We’re quite surprised at the magnification enhancement using such a simple process,” he notes.

An April 24, 2014 Australian National University (ANU) news release on EurekAlert adds more details to the story,

The lenses are made by using the natural shape of liquid droplets.

“We put a droplet of polymer onto a microscope cover slip and then invert it. Then we let gravity do the work, to pull it into the perfect curvature,” Dr Lee said.

“By successively adding small amounts of fluid to the droplet, we discovered that we can reach a magnifying power of up to 160 times with an imaging resolution of four micrometers.”

The polymer, polydimethylsiloxane (PDMS), is the same as that used for contact lenses, and it won’t break or scratch.

“It would be perfect for the third world. All you need is a fine tipped tool, a cover slip, some polymer and an oven,” Dr Lee said.

The first droplet lens was made by accident. [emphasis mine]

I nearly threw them away. [emphasis mine] I happened to mention them to my colleague Tri Phan, and he got very excited,” Dr Lee said.

“So then I decided to try to find the optimum shape, to see how far I could go. When I saw the first images of yeast cells I was like, ‘Wow!'”

Dr Lee and his team worked with Dr Phan to design a lightweight 3D-printable frame to hold the lens, along with a couple of miniature LED lights for illumination, and a coin battery.

The technology taps into the current citizen science revolution [emphasis mine], which is rapidly transforming owners of smart phones into potential scientists. There are also exciting possibilities for remote medical diagnosis.

Dr Phan said the tiny microscope has a wide range of potential uses, particularly if coupled with the right smartphone apps.

“This is a whole new era of miniaturisation and portability – image analysis software could instantly transform most smartphones into sophisticated mobile laboratories,” Dr Phan said.

“I am most able to see the potential for this device in the practice of medicine, although I am sure specialists in other fields will immediately see its value for them.”

Dr Lee said the low-cost lens had already attracted interest from a German group interested in using disposable lenses for tele-dermatology.

“There are also possibilities for farmers,” he said. “They can photograph fungus or insects on their crops, upload the pictures to the internet where a specialist can identify if they are a problem or not.”

That Lee created his first droplet by accident and almost threw it away echoes many, many other science stories. In addition to that age old science story, I love the simplicity of the idea, the reference to Isaac Newton, and the inclusion of citizen science.

Here’s a link to and a citation for the paper,

Fabricating low cost and high performance elastomer lenses using hanging droplets by W. M. Lee, A. Upadhya, P. J. Reece, and Tri Giang Phan. Biomedical Optics Express, Vol. 5, Issue 5, pp. 1626-1635 (2014) http://dx.doi.org/10.1364/BOE.5.001626

This paper is open access.

I wish Lee and his team great success in making this technology available, assuming that it lives up to its promise.

New method of Rayleigh scattering for better semiconductors

Rayliegh scattering provides a scientific explanation first devised in the 19th century for why the sky is blue during the day and why it turns red in the evening. A March 4, 2014 news item on Nanowerk describes some research into measuring semiconductor nanowires with a new Rayleigh scattering technique,

A new twist on a very old physics technique could have a profound impact on one of the most buzzed-about aspects of nanotechnology.

Researchers at the University of Cincinnati [UC] have found that their unique method of light-matter interaction analysis appears to be a good way of helping make better semiconductor nanowires.

The March 4, 2014 University of Cincinnati news release, which originated the news item, has the researcher describing his work in further detail (Note: Links have been removed),

“Semiconductor nanowires are one of the hottest topics in the nanoscience research field in the recent decade,” says Yuda Wang, a UC doctoral student. “Due to the unique geometry compared to conventional bulk semiconductors, nanowires have already shown many advantageous properties, particularly in novel applications in such fields as nanoelectronics, nanophotonics, nanobiochemistry and nanoenergy.”

Wang will present the team’s research “Transient Rayleigh Scattering Spectroscopy Measurement of Carrier Dynamics in Zincblende and Wurtzite Indium Phosphide Nanowires” at the American Physical Society (APS) meeting to be held March 3-7 [2014] in Denver. …

Key to this research is UC’s new method of Rayleigh scattering, a phenomenon first described in 1871 and the scientific explanation for why the sky is blue in the daytime and turns red at sunset. The researchers’ Rayleigh scattering technique probes the band structures and electron-hole dynamics inside a single indium phosphide nanowire, allowing them to observe the response with a time resolution in the femtosecond range – or one quadrillionth of a second.

“Basically, we can generate a live picture of how the electrons and holes are excited and slowly return to their original states, and the mechanism behind that can be analyzed and understood,” says Wang, of UC’s Department of Physics. “It’s all critical in characterizing the optical or electronic properties of a semiconducting nanowire.”

Semiconductors are at the center of modern electronics. Computers, TVs and cellphones have them. They’re made from the crystalline form of elements that have scientifically beneficial electrical conductivity properties.

Wang says the burgeoning range of semiconductor nanowire applications – such as smaller, more energy-efficient electronics – has brought rapid improvement to nanowire fabrication techniques. He says his team’s research could offer makers of nanotechnology a new and highly effective option for measuring the physics inside nanowires.

“The key to a good optimization process is an excellent feedback, or a characterization method,” Wang says. “Rayleigh scattering appears to be an exceptional way to measure several nanowire properties simultaneously in a non-invasive and high-quality manner.”

Additional contributors to this research are UC alumnus Mohammad Montazeri; UC physics professors Howard Jackson and Leigh Smith and adjunct associate professor Jan Yarrison-Rice, all of the McMicken College of Arts and Sciences; and Tim Burgess, Suriati Paiman, Hoe Tan, Qiang Gao and Chennupati Jagadish of Australian National University.

You can get more information about the American Physical Society March 3 – 7, 2014 meeting in Denver, Colorado here.

With a song in your heart and multiplexed images in an atomic vapor

A specific piece of research has inspired a song with lyrics based on the text of a research paper and, weirdly, it works. You will have a song in your heart and on your lips and it’s all to do with storing images in an atomic vapor,

Hot, hot, hot, eh?

As for the research paper itself (Temporally multiplexed storage of images in a Gradient Echo Memory), it’s currently availab.e at arXiv.org or in Optics Express, Vol. 20, Issue 11, pp. 12350-12358 (2012) DOI: 10.1364/OE.20.012350(authors: Quentin Glorieux, Jeremy B. Clark, Alberto M. Marino, Zhifan Zhou, Paul D. Lett). The May 29, 2012 news item on Nanowerk offers some tantalizing tidbits about the work,

The storage of light-encoded messages on film and compact disks and as holograms is ubiquitous—grocery scanners, Netflix disks, credit-card images are just a few examples. And now light signals can be stored as patterns in a room-temperature vapor of atoms. Scientists at the Joint Quantum Institute [JQI] have stored not one but two letters of the alphabet in a tiny cell filled with rubidium (Rb) atoms which are tailored to absorb and later re-emit messages on demand. This is the first time two images have simultaneously been reliably stored in a non-solid medium and then played back.

In effect, this is the first stored and replayed atomic movie. Because the JQI researchers are able to store and replay two separate images, or “frames,” a few micro-seconds apart, the whole sequence can qualify as a feat of cinematography.

Here’s a little more detail about how this was done and some information about the implications,

Having stored one image (the letter N), the JQI physicists then stored a second image, the letter T, before reading both letters back in quick succession. The two “frames” of this movie, about a microsecond apart, were played back successfully every time, although typically only about 8 percent of the original light was redeemed, a percentage that will improve with practice. According to Paul Lett, one of the great challenges in storing images this way is to keep the atoms embodying the image from diffusing away. The longer the storage time (measured so far to be about 20 microseconds) the more diffusion occurs. The result is a fuzzy image.

Paul Lett plans to link up these new developments in storing images with his previous work on squeezed light. “Squeezing” light is one way to partially circumvent the Heisenberg uncertainty principle governing the ultimate measurement limitations. By allowing a poorer knowledge of a stream of light—say the timing of the light, its phase—one gain a sharper knowledge of a separate variable—in this case the light’s amplitude. This increased capability, at le ast for the one variable, allows higher precision in certain quantum measurements.

“The big thing here,” said Lett, “is that this allows us to do images and do pulses (instead of individual photons) and it can be matched (hopefully) to our squeezed light source, so that we can soon try to store “quantum images” and make essentially a random access memory for continuous variable quantum information. The thing that really attracted us to this method—aside from its being pretty well-matched to our source of squeezed light—is that the ANU [Australian National University] group was able to get 87% recovery efficiency from it – which is, I think, the best anyone has seen in any optical system, so it holds great promise for a quantum memory.”

I may never totally understand this work but at least I now have a song to sing and for anyone who wants more details, the May 27, 2012 news item on Nanowerk provides details and images, as well as, another opportunity to watch the song.  I did check out the video on YouTube and found that it’s by therockcookiebottom and is part of a project, Song A Day: 1000 Days and Counting that singer-songwriter, Jonathan Mann started in Jan. 2009. I imagine that means he  must be nearing the end. Thank you Jonathan for a very entertaining and educational song. He does offer memberships to support him and his song-a-day project and opportunities to hire him for any songwriting projects you may have.