Tag Archives: Australian Research Council

‘Smart’ windows from Australia

My obsession with smart windows has been lying dormant until now. This February 25, 2018 RMIT University (Australia) press release on EurekAlert has reawkened it,

Researchers from RMIT University in Melbourne Australia have developed a new ultra-thin coating that responds to heat and cold, opening the door to “smart windows”.

The self-modifying coating, which is a thousand times thinner than a human hair, works by automatically letting in more heat when it’s cold and blocking the sun’s rays when it’s hot.

Smart windows have the ability to naturally regulate temperatures inside a building, leading to major environmental benefits and significant financial savings.

Lead investigator Associate Professor Madhu Bhaskaran said the breakthrough will help meet future energy needs and create temperature-responsive buildings.

“We are making it possible to manufacture smart windows that block heat during summer and retain heat inside when the weather cools,” Bhaskaran said.

“We lose most of our energy in buildings through windows. This makes maintaining buildings at a certain temperature a very wasteful and unavoidable process.

“Our technology will potentially cut the rising costs of air-conditioning and heating, as well as dramatically reduce the carbon footprint of buildings of all sizes.

“Solutions to our energy crisis do not come only from using renewables; smarter technology that eliminates energy waste is absolutely vital.”

Smart glass windows are about 70 per cent more energy efficient during summer and 45 per cent more efficient in the winter compared to standard dual-pane glass.

New York’s Empire State Building reported energy savings of US$2.4 million and cut carbon emissions by 4,000 metric tonnes after installing smart glass windows. This was using a less effective form of technology.

“The Empire State Building used glass that still required some energy to operate,” Bhaskaran said. “Our coating doesn’t require energy and responds directly to changes in temperature.”

Co-researcher and PhD student Mohammad Taha said that while the coating reacts to temperature it can also be overridden with a simple switch.

“This switch is similar to a dimmer and can be used to control the level of transparency on the window and therefore the intensity of lighting in a room,” Taha said. “This means users have total freedom to operate the smart windows on-demand.”

Windows aren’t the only clear winners when it comes to the new coating. The technology can also be used to control non-harmful radiation that can penetrate plastics and fabrics. This could be applied to medical imaging and security scans.

Bhaskaran said that the team was looking to roll the technology out as soon as possible.

“The materials and technology are readily scalable to large area surfaces, with the underlying technology filed as a patent in Australia and the US,” she said.

The research has been carried out at RMIT University’s state-of-the-art Micro Nano Research Facility with colleagues at the University of Adelaide and supported by the Australian Research Council.

How the coating works

The self-regulating coating is created using a material called vanadium dioxide. The coating is 50-150 nanometres in thickness.

At 67 degrees Celsius, vanadium dioxide transforms from being an insulator into a metal, allowing the coating to turn into a versatile optoelectronic material controlled by and sensitive to light.

The coating stays transparent and clear to the human eye but goes opaque to infra-red solar radiation, which humans cannot see and is what causes sun-induced heating.

Until now, it has been impossible to use vanadium dioxide on surfaces of various sizes because the placement of the coating requires the creation of specialised layers, or platforms.

The RMIT researchers have developed a way to create and deposit the ultra-thin coating without the need for these special platforms – meaning it can be directly applied to surfaces like glass windows.

Here’s a link to and a citation for the paper,

Insulator–metal transition in substrate-independent VO2 thin film for phase-change device by Mohammad Taha, Sumeet Walia, Taimur Ahmed, Daniel Headland, Withawat Withayachumnankul, Sharath Sriram, & Madhu Bhaskaran. Scientific Reportsvolume 7, Article number: 17899 (2017) doi:10.1038/s41598-017-17937-3 Published online: 20 December 2017

This paper is open access.

For anyone interested in more ‘smart’ windows, you can try that search term or ‘electrochromic’, ‘photochromic’, and ‘thermochromic’ , as well.

Seeing the future with quantum computing

Researchers at the University of Sydney (Australia) have demonstrated the ability to see the ‘quantum future’ according to a Jan. 16, 2017 news item on ScienceDaily,

Scientists at the University of Sydney have demonstrated the ability to “see” the future of quantum systems, and used that knowledge to preempt their demise, in a major achievement that could help bring the strange and powerful world of quantum technology closer to reality.

The applications of quantum-enabled technologies are compelling and already demonstrating significant impacts — especially in the realm of sensing and metrology. And the potential to build exceptionally powerful quantum computers using quantum bits, or qubits, is driving investment from the world’s largest companies.

However a significant obstacle to building reliable quantum technologies has been the randomisation of quantum systems by their environments, or decoherence, which effectively destroys the useful quantum character.

The physicists have taken a technical quantum leap in addressing this, using techniques from big data to predict how quantum systems will change and then preventing the system’s breakdown from occurring.

A Jan. 14, 2017 University of Sydney press release (also on EurekAlert), which originated the news item, expands on the theme,

“Much the way the individual components in mobile phones will eventually fail, so too do quantum systems,” said the paper’s senior author Professor Michael J.  Biercuk.

“But in quantum technology the lifetime is generally measured in fractions of a second, rather than years.”

Professor Biercuk, from the University of Sydney’s School of Physics and a chief investigator at the Australian Research Council’s Centre of Excellence for Engineered Quantum Systems, said his group had demonstrated it was possible to suppress decoherence in a preventive manner. The key was to develop a technique to predict how the system would disintegrate.

Professor Biercuk highlighted the challenges of making predictions in a quantum world: “Humans routinely employ predictive techniques in our daily experience; for instance, when we play tennis we predict where the ball will end up based on observations of the airborne ball,” he said.

“This works because the rules that govern how the ball will move, like gravity, are regular and known.  But what if the rules changed randomly while the ball was on its way to you?  In that case it’s next to impossible to predict the future behavior of that ball.

“And yet this situation is exactly what we had to deal with because the disintegration of quantum systems is random. Moreover, in the quantum realm observation erases quantumness, so our team needed to be able to guess how and when the system would randomly break.

“We effectively needed to swing at the randomly moving tennis ball while blindfolded.”

The team turned to machine learning for help in keeping their quantum systems – qubits realised in trapped atoms – from breaking.

What might look like random behavior actually contained enough information for a computer program to guess how the system would change in the future. It could then predict the future without direct observation, which would otherwise erase the system’s useful characteristics.

The predictions were remarkably accurate, allowing the team to use their guesses preemptively to compensate for the anticipated changes.

Doing this in real time allowed the team to prevent the disintegration of the quantum character, extending the useful lifetime of the qubits.

“We know that building real quantum technologies will require major advances in our ability to control and stabilise qubits – to make them useful in applications,” Professor Biercuk said.

Our techniques apply to any qubit, built in any technology, including the special superconducting circuits being used by major corporations.

“We’re excited to be developing new capabilities that turn quantum systems from novelties into useful technologies. The quantum future is looking better all the time,” Professor Biercuk said.

Here’s a link to and a  citation for the paper,

Prediction and real-time compensation of qubit decoherence via machine learning by Sandeep Mavadia, Virginia Frey, Jarrah Sastrawan, Stephen Dona, & Michael J. Biercuk. Nature Communications 8, Article number: 14106 (2017) doi:10.1038/ncomms14106 Published online: 16 January 2017

This paper is open access.

Dual purpose: loofah and battery?

Sadly, the proposed batteries are not dual purpose although they are based on loofah material. From a June 15, 2016 news item on phys.org,

Today’s mobile lifestyle depends on rechargeable lithium batteries. But to take these storage devices to the next level—to shore up the electric grid or for widespread use in vehicles, for example—they need a big boost in capacity. To get lithium batteries up to snuff for more ambitious applications, researchers report in the journal ACS Applied Materials & Interfaces a new solution that involves low-cost, renewable loofah sponges.

A June 15, 2016 American Chemical Society press release (also on EurekAlert), which originated the news item, expands on the theme,

The lithium-ion batteries that power most of our devices still have some room for improvement. But some experts predict that even when these batteries are fully optimized, they still will not be able to meet the power needs for larger-scale applications, such as taking a car 500 miles on one charge. Scientists looking to go beyond lithium-ion have turned to lithium-sulfur and other options. But a major challenge to commercializing these technologies remains: The cathodes crumble over time, leading to progressively lower capacity. Shanqing Zhang, Yanglong Hou, Li-Min Liu and colleagues wanted to find a way to stabilize these alternatives.

The researchers developed a “blocking” layer of highly conductive, porous carbon derived from a loofah sponge. The loofah-derived membrane helped prevent the cathode from dissolving in lithium-sulfur, lithium-selenium and lithium-iodine batteries — and all three types performed well consistently over 500 to 5,000 cycles. The loofah sponge carbon could be the advance needed to move these batteries forward in a low-cost, sustainable way, the researchers say.

Here’s a link to and a citation for the paper,

Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries by Xingxing Gui, Chuan-Jia Tong, Sarish Rehman, Li-Min Liu, Yanglong Hou, and Shanqing Zhang. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.6b02378 Publication Date (Web): June 02, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

The researchers have made an image illustrating the work available,

Courtesy American Chemical Society

Courtesy American Chemical Society

Here’s one final bit from the press release,

The authors acknowledge funding from the Australian Research Council, the National Natural Science Foundation of China and the Ministry of Education of China.

Funding sources can be very interesting and this adds confirmation of China’s focus on the environment and sustainability.

Boron nitride sponges for oil spill cleanups

The best part of the news is that the scientists are ready to test these sponges in industrial trials but first here’s why the Australians are so excited about the work from a Dec. 1, 2015 news item on Azonano,

Deakin University scientists have manufactured a revolutionary material that can clean up oil spills, which could save the earth from potential future disasters such as any repeat of the 2010 Gulf Coast BP disaster that wreaked environmental havoc and cost a reported $40 billion.

The major breakthrough material, which literally absorbs the oil like a sponge, is the result of support from the Australian Research Council and is now ready to be trialled by industry after two years of refinement in the laboratory at Deakin’s Institute for Frontier Materials (IFM).

Alfred Deakin Professor Ying (Ian) Chen, the lead author on a paper which outlines the team’s breakthrough in today’s edition of Nature Communications, said the material was the most exciting advancement in oil spill clean-up technology in decades.

Oil spills are a global problem and wreak havoc on our aquatic ecosystems, not to mention cost billions of dollars in damage.

“Everyone remembers the Gulf Coast disaster, but here in Australia they are a regular problem, and not just in our waters. Oil spills from trucks and other vehicles can close freeways for an entire day, again amounting to large economic losses. Professor Chen

But current methods of cleaning up oil spills are inefficient and unsophisticated, taking too long, causing ongoing and expensive damage, which is why the development of our technology was supported by the Australian Research Council.

“We are so excited to have finally got to this stage after two years of trying to work out how to turn what we knew was a good material into something that could be practically used.

A Nov. 30, 2015 Deakin University media release, which originated the news item, provides some technical details,

“In 2013 we developed the first stage of the material, but it was simply a powder. This powder had absorption capabilities, but you cannot simply throw powder onto oil – you need to be able to bind that powder into a sponge so that we can soak the oil up, and also separate it from water.”

The lead author on the paper, IFM scientist Dr Weiwei Lei,) an Australian Research Council Discovery Early Career Research Awardee, said turning the powder into a sponge was a big challenge.

“But we have finally done it by developing a new production technique,” Dr Lei said.

“The ground-breaking material is called a boron nitride nanosheet, which is made up of flakes which are just several nanometers (one billionth of a meter) in thickness with tiny holes which can increase its surface area per gram to effectively the size of 5.5 tennis courts.”

The research team, which included scientists from Drexel University, Philadelphia, and Missouri University of Science and Technology, started with boron nitride powder known as “white graphite” and broke it into atomically thin sheets that were used to make a sponge.

“The pores in the nanosheets provide the surface area to absorb oils and organic solvents up to 33 times its own weight,” Dr Lei said.

Professor Yury Gogotsi from Drexel University said boron nitride nanosheets did not burn, could withstand flame, and be used in flexible and transparent electrical and heat insulation, as well as many other applications.

“We are delighted that support from the Australian Research Council allowed us to participate in this interesting study and we could help our IFM colleagues to model and better understand this wonderful material, ” Professor Gogotsi said.

Professor Vadym Mochalin from Missouri University of Science and Technology said the mechanochemical technique developed meant it was possible to produce high-concentration stable aqueous colloidal solutions of boron nitride sheets, which could then be transformed into the ultralight porous aerogels and membranes for oil clean-up.

“The use of computational modelling helped us to understand the intimate details of this novel mechanochemical exfoliation process. It is a nice illustration of the power, which combined experimental plus modelling approach offers researchers nowadays.”

The research team is now ready to have their “sponge” trialled by industry. [emphasis mine]

The nanotechnology team at IFM has been working on boron nitride nanomaterials for two decades and is an internationally recognised leader in boron nitride nanotubes and nanosheets.

There was at least one other team working on  sponges, all these are composed of carbon nanotubes, for oil spills (mentioned in my April 17, 2012 posting) but they don’t seem to have been able to get their work out of the laboratory.

Here’s a link to and a citation for boron nitride sponges,

Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization by Weiwei Lei, Vadym N. Mochalin, Dan Liu, Si Qin, Yury Gogotsi, & Ying Chen. Nature Communications 6, Article number: 8849 doi:10.1038/ncomms9849 Published 27 November 2015

This is an open access paper.

Tibetan Buddhist singing bowls inspire more efficient solar cells

There’s no mention as to whether or not Dr Niraj Lal practices any form of meditation or how he came across Tibetan Buddhist singing bowls but somehow he was inspired by them when studying for his PhD at Cambridge University (UK). From a Sept. 8, 2014 news item by Niall Byrne for physorg.com,

The shape of a centuries-old Buddhist singing bowl has inspired a Canberra scientist to re-think the way that solar cells are designed to maximize their efficiency.

Dr Niraj Lal, of the Australian National University,  found during his PhD at the University of Cambridge, that small nano-sized versions of Buddhist singing bowls resonate with light in the same way as they do with sound, and he’s applied this shape to solar cells to increase their ability to capture more light and convert it into electricity.

A Sept. ?, 2014 news release from Australian science communication company, Science in Public, fills in a few more details without any mention of Lal’s meditation practices, should he have any,

“Current standard solar panels lose a large amount of light-energy as it hits the surface, making the panels’ generation of electricity inefficient,” says Niraj. “But if the cells are singing bowl-shaped, then the light bounces around inside the cell for longer”.

Normally used in meditation, music, and relaxation, Buddhist singing bowls make a continuous harmonic ringing sound when the rim of the metal bowl is vibrated with a wooden or other utensil.

During his PhD, Niraj discovered that his ‘nanobowls’ manipulated light by creating a ‘plasmonic’ resonance, which quadrupled the laboratory solar cell’s efficiency compared to a similarly made flat solar cell.

Now, Niraj and his team aim to change all that by applying his singing-bowl discovery to tandem solar cells: a technology that has previously been limited to aerospace applications.

In research which will be published in the November issue of IEEE Journal of Photonics, Niraj and his colleagues have shown that by layering two different types of solar panels on top of each other in tandem, the efficiency of flat rooftop solar panels can achieve 30 per cent—currently, laboratory silicon solar panels convert only 25 per cent of light into electricity, while commercial varieties convert closer to 20 per cent.

The tandem cell design works by absorbing a sunlight more effectively —each cell is made from a different material so that it can ‘see’ a different light wavelength.

“To a silicon solar cell, a rainbow just looks like a big bit of red in the sky—they don’t ‘see’ the blue, green or UV light—they convert all light to electricity as if it was red ,” says Niraj. “But when we put a second cell on top, which ‘sees’ the blue part of light, but allows the red to pass through to the ‘red-seeing’ cell below, we can reach a combined efficiency of more than 30 percent.”

Niraj and a team at ANU are now looking at ways to super-charge the tandem cell design by applying the Buddhist singing bowl shape to further increase efficiency.

“If we can make a solar cell that ‘sees’ more colours and  keeps the right light in the right layers, then we could increase efficiency even further,” says Niraj.

“Every extra percent in efficiency saves you thousands of dollars over the lifetime of the panel,” says Niraj. “Current roof-top solar panels have been steadily increasing in efficiency, which has been a big driver of the fourfold drop in the price for these panels over the last five years.”

More importantly, says Niraj, greater efficiency will allow solar technology to compete with fossil fuels and meet the challenges of climate change and access.

“Electricity is also one of the most enabling technologies we have ever seen, and linking people in rural areas around the world to electricity is one of the most powerful things we can do.”

At the end of the Science in Public news release there’s mention of a science communication competition,

Niraj was a 2014 national finalist of FameLab Australia. FameLab is a global science communication competition for early-career scientists. His work is supported by the Australian Research Council and ARENA – the Australian Renewable Energy Agency.

About FameLab

In 2014, the British Council and Fresh Science have joined forces to bring FameLab to Australia.

FameLab Australia will offer specialist science media training and, ultimately, the chance for early-career researchers to pitch their research at the FameLab International Grand Final in the UK at The Times Cheltenham Science Festival from 3 to 5 June 2014.

FameLab is an international communication competition for scientists, including engineers and mathematicians. Designed to inspire and motivate young researchers to actively engage with the public and with potential stakeholders, FameLab is all about finding the best new voices of science and engineering across the world.

Founded in 2005 by The Times Cheltenham Science Festival, FameLab, working in partnership with the British Council, has already seen more than 5,000 young scientists and engineers participate in over 23 different countries — from Hong Kong to South Africa, USA to Egypt.

Now, FameLab comes to Australia in a landmark collaboration with the British Council and Fresh Science — Australia’s very own science communication competition.

For more information about FameLab Australia, head to www.famelab.org.au

You can find out more about Australia’s Fresh Science here.

Getting back to Dr. Lal, here’s a video he made about his work and where he demonstrates a Tibetan Buddhist singing bowl (this is a very low tech video and the sound quality isn’t great),

Here’s a link to and a citation for Lal’s most recent paper,

Optics and Light Trapping for Tandem Solar Cells on Silicon by Lal, N.N.; White, T.P. ; and Catchpole, K.R. Photovoltaics, IEEE Journal of  (Volume:PP ,  Issue: 99) Page(s): 1 – 7 ISSN : 2156-3381 DOI: 10.1109/JPHOTOV.2014.2342491 Published online 19 August 2014

The paper is behind a paywall but there is open access to Lal’s 2012 University of Cambridge PhD thesis on his approach,

Enhancing solar cells with plasmonic nanovoids by Lal, Niraj Narsey
URI: http://www.dspace.cam.ac.uk/handle/1810/243864 Date:2012-07-03

Hap;y reading!

Aussies, Yanks, Canucks, and Koreans collaborate on artificial muscles

I received a media release (from the University of British Columbia [UBC]) about artificial muscles. I was expecting to see Dr. Hongbin Li’s name as one of the researchers but this is an entirely different kind of artificial muscle. Dr. Li works with artificial proteins to create new biomaterials (my May 5, 2010 posting). This latest work published in Science Express, Oct. 13, 2011,  involves carbon nanotubes and teams from Australia, Canada, Korea, and the US. From the Oct. 13, 2011, UBC media release,

An international team of researchers has invented new artificial muscles strong enough to rotate objects a thousand times their own weight, but with the same flexibility of an elephant’s trunk or octopus limbs.

In a paper published online today on Science Express, the scientists and engineers from the University of British Columbia, the University of Wollongong in Australia, the University of Texas at Dallas and Hanyang University in Korea detail their innovation. The study elaborates on a discovery made by research fellow Javad Foroughi at the University of Wollongong.

Using yarns of carbon nanotubes that are enormously strong, tough and highly flexible, the researchers developed artificial muscles that can rotate 250 degrees per millimetre of muscle length. This is more than a thousand times that of available artificial muscles composed of shape memory alloys, conducting organic polymers or ferroelectrics, a class of materials that can hold both positive and negative electric charges, even in the absence of voltage.

Here’s how the UBC media release recounts the story of these artificial muscles (Aside: The Australians take a different approach; I haven’t seen any material from the University of Texas at Dallas or the University of Hanyang),

The new material was devised at the University of Texas at Dallas and then tested as an artificial muscle in Madden’s [Associate Professor, John Madden, Dept. of Electrical and Computer Engineering] lab at UBC. A chance discovery by collaborators from Wollongong showed the enormous twist developed by the device. Guided by theory at UBC and further experiments in Wollongong and Texas, the team was able to extract considerable torsion and power from the yarns.

The Australians, not unnaturally focus on their own contributions, and, somewhat unexpectedly discuss nanorobots. From the ARC (Australian Research Council) Centre of Excellence for Electromaterials Science (ACES) at the University of Wollongong news release (?) [ETA Oct. 17, 2011: I forgot to include a link to the Australian news item; and here’s a link to the Oct. 16, 2011 Australian news item on Nanowerk] ,

The possibility of a doctor using tiny robots in your body to diagnose and treat medical conditions is one step closer to becoming reality today, with the development of artificial muscles small and strong enough to push the tiny Nanobots along.

Although Nanorobots (Nanobots) have received much attention for the potential medical use in the body, such as cancer fighting, drug delivery and parasite removal, one major hurdle in their development has been the issue of how to propel them along in the bloodstream.

An international collaborative team led by researchers at UOW’s Intelligent Polymer Research Institute, part of the ARC Centre of Excellence for Electromaterials Science (ACES), have developed a new twisting artificial muscle that could be used for propelling nanobots.   The muscles use very tough and highly flexible yarns of carbon nanotubes (nanoscale cylinders of carbon), which are twist-spun into the required form.  When voltage is applied, the yarns rotate up to 600 revolutions per minute, then rotate in reverse when the voltage is changed.

Due to their complexity, conventional motors are very difficult to miniaturise, making them unsuitable for use in nanorobotics.  The twisting artificial muscles, on the other hand, are simple and inexpensive to construct either in very long, or in millimetre lengths.

Interesting, non?

There’s an animation illustrating the nanorobots and the muscles,

In the animated video below, you first see a few bacteria like creatures swimming about. Their rotating flagella are highlighted with some detail of the flagella motor turning the “hook” and “filament” parts of the tail. We next see a similar type of rotating tail produced by a length of carbon nanotube thread that is inside a futuristic microbot. The yarn is immersed in a liquid electrolyte along with another electrode wire. Batteries and an electrical circuit are also inside the bot. When a voltage is applied the yarn partially untwists and turns the filament. Slow discharging of the yarn causes it to re-twist. In this way, we can imagine the micro-bot is propelled along in a series of short spurts.

I think the graphics resemble conception complete with sperm and eggs but I can see the nanorobots too. Here’s your chance to take a look,

ETA Oct. 14, 2011 11:20 am PST: I found a copy of the University of Texas at Dallas news release posted on Oct. 13, 2011 at Nanowerk. No mention of nanobots but if you’re looking for additional technical explanations, this would be good to read.

Kay O’Halloran interview on multimodal discourse: Part 3 of 3

Thanks to Kay O’Halloran for kindly giving me this interview and here’s the last part which also includes a bibliography.

3. I notice that you have a project examining PowerPoint in the classroom and in corporate settings which you are conducting for the Australian Research Council. Could you explain a little bit about the project?

The project ‘Towards a Social Theory of Semiotic Technology: Exploring PowerPoint’s Design and its Use Higher Education and Corporate Settings awarded by the Australian Research Council (ARC) (Discovery Grant No. DP09889939) is a collaborative project between Chief Investigator Professor Theo van Leeuwen (Dean for Faculty of Arts and Social Sciences, University of Technology, Sydney), Dr Emilia Djonov (Post-doctoral Fellow, University of Technology, Sydney) and myself. The following description of the project is drawn from our research proposal.

PowerPoint has become the dominant technology for designing and delivering presentations, particularly in education and business settings where success often depends on skills in the use of the application. Powerpoint is the subject of much debate and it creates strong reactions, both positive and negative. It’s either praised for increasing presenters’ confidence and eloquence (e.g. Gold 2002) or it’s condemned for limiting users’ ability to present complex ideas through an over-simplification of information presented in bullet points, linear slide-by-slide formats and illegible graphics (e.g. Tufte 2003).

From the multimodal perspective, Powerpoint is a semiotic technology which has a range of options (i.e. grammar) from which presenters make selections with regards to the linguistic text, images, animations and sounds. There are default themes which the presenter may choose as well. These choices integrate in multimodal presentations which are recontextualised by the speaker during the presentation. Most studies of Powerpoint adopt a different approach, however, by either exploring lecturers’ and students’ perceptions of PowerPoint to support learning, or alternatively they are experimental studies which investigate the effects of PowerPoint versus transparency-supported lectures on learning.

Our project adopts a multimodal approach to (a) conceptualise the grammar of Powerpoint through the study of its systems of meaning; (b) analyse and compare the choices which are made in higher education and corporate settings; and (c) investigate how these choices are contextualised in presentations. In this way, we will explore how the design of PowerPoint supports or hinders the achievement of the various goals of the presenters. At the moment, there are no studies which investigate differences in the use of Powerpoint across educational and corporate settings, and furthermore, there is no evidence for arguments that PowerPoint cannot support the representation of knowledge in technical disciplines such as engineering (Tufte, 2003) or the rich narrative and interpretative skills required for social science disciplines (Adams, 2006), nor is there evidence that PowerPoint has introduced corporate rhetoric into educational practices (Turkle, 2004). In addition, the study will provide guidelines for evaluating and improving the design and use of PowerPoint and other similar presentation software.

Bibliography

Adams, C. (2006). PowerPoint, habits of mind, and classroom culture. Journal of Curriculum Studies, 38(4), 389 – 411.

Gold, R. (2002). Reading PowerPoint. In N. J. Allen (Ed.), Working with words and images: New steps in an old dance. (pp. 256-270). Westport, Connecticut: Ablex.

Tufte, E. R. (2003). The cognitive style of PowerPoint (2nd edition). Cheshire, Connecticut: Graphics Press.

Turkle, S. (2004). The fellowship of the microchip: global technologies as evocative objects. In M. Suárez-Orozco & D.B. Qin-Hilliard (Eds.), Globalization: Culture and Education in the New Millennium (pp. 97-113). Berkeley, CA: University of California Press.