Tag Archives: Autodesk

10- to 15-year-olds as superhero cyborgs

It’s not the first time someone’s tried to redesign a prosthetic (an Aug. 7, 2009 posting touched on reimagining prosthetic arms and other topics) but it’s the first project I’ve seen where children are the featured designers. A Jan. 27, 2016 article by Emily Price for The Guardian describes the idea,

In a hidden room in the back of a pier overlooking the San Francisco Bay, a young girl shoots glitter across the room with a flick of her wrist. On the other side of the room, a boy is shooting darts from his wrist – some travelling at least 20ft high, onto a landing above. It feels like a superhero training center or a party for the next generation of X-Men and, in a way, it is.

This is Superhero Cyborgs, an event that brings six children together with 3D design specialists and augmentation experts to create unique prosthetics that will turn each child into a kind of superhero.

The children are aged between 10 and 15 and all have upper-limb differences, having either been born without a hand or having lost a limb. They are spending five days with prosthetics experts and a design team from 3D software firm Autodesk, creating prosthetics that turn a replacement hand into something much more special.

“We started asking: ‘Why are we trying to replicate the functionality of a hand?’ when we could really do anything. Things that are way cooler that hands aren’t able to do,” says Kate Ganim, co-founder and co-director at KidMob, the nonprofit group that organised this project in partnership with San Rafael, California 3D software firm Autodesk. KidMob first ran this type of project at Rhode Island’s Brown University in 2014.

Details of each superhero prosthetic are being posted on the DIY site Instructables and hacking site Project Ignite in the hope that it inspires other groups, schools and individuals to follow suit. “A classroom might work on building a project and then donate a finished hand to someone they know or appoint it to someone in the community who is in need,” O’Rourke said.

I searched the Project Ignite website using the term ‘superhero cyborg’ and did not receive a single hit. I also used the search term on the Instructables website and got many hits but did not see one that resembled any of the project descriptions in Price’s article. Unfortunately, Price did not offer any suggestions for search terms.

Getting back to the project, Jessica Hullinger has written a March 28, 2016 article about Superhero Cyborgs for Fast Company where she follows one of the participants (Note: Links have been removed),

Jordan [Jordan Reeves, a 10-year-old from Columbia, Missouri] was born with a limb difference: her left arm stops just above the elbow. When she found out she was headed to the Superhero Cyborg workshop, she was over the moon. “I was like, ‘Wow, I can’t believe I’m actually doing this,'” she says.

Over the course of five days, she and five other kids between the ages of 10 and 15 worked with design experts and engineers from Autodesk to brainstorm ideas. “Basically, if they could design the prosthetic or body modification of their dreams in a superhero context, what would that look like?” asks Sarah O’Rourke, a senior product marketing manager with Autodesk.

For Jordan, it looks very sparkly. Her plan was to transform her arm into a cannon that spread a delightful cloud of glitter wherever she went. She started with a few sketches. Then she created a 3-D-printed cast of her arm and a plastic cuff made to fit over it, for prototyping purposes. The kids used Autodesk’s 3-D design tools like TinkerCAD and Fusion 360 to test their prototypes. …

“For us, our interest is in getting kids familiar with taking an idea from concept to execution and learning the skills along the way to do that,” says Ganim. “Ideally, it’s not about the end product they end up with out of workshop; it’s more about realizing they’re not just subject to what’s available on the market. It creates this interesting closed loop system where they’re both designer and end user. That is very powerful.”

The workshop is over now but the children will continue for a few months working on their designs and, in some cases, creating prostheses that can have practical applications.

You can find out more about Superhero Cyborgs in a Feb. 7, 2016 posting on the KIDmob website blog,

SuperHeroCyborgSydney
Sydney: A dual water gun shooter that will automatically refill itself

I got more information on KIDmob on the About page,

KIDmob is the mobile, kid-integrated design firm. We are a Bay Area fiscally sponsored not-for-profit organization that believes design education is an opportunity for creative engagement and community empowerment. We take our passion on the road to bring our innovative approach to local communities around the world.

We engage in the design process through project-based learning. KIDmob workshops use the design process as a beginning curriculum framework on which to build a customized local project brief, based on a partner-identified need. Our workshops facilitate partners in devising imaginative solutions for their community, by their community. We strive to foster local stewardship within all of our projects.

We promote an energetic, hands-on approach to learning – our workshops create an immersive environment of moving, shaking, sketching, whirling, splatting, slicing, sawing, jitterbugging creativity. When we are not swimming in post-it notes, we like to explore all kinds of technologies, from pencils to circuitry mills, as tools for creative expression.

Cosmetics giant, L’Oréal, to 3D print skin

L’Oréal, according to a May 19, 2015 BBC (British Broadcasting Corporation) online news item, has partnered with Organovo, a 3D bioprinting startup, to begin producing skin,

French cosmetics firm L’Oreal is teaming up with bio-engineering start-up Organovo to 3D-print human skin.

It said the printed skin would be used in product tests.

Organovo has already made headlines with claims that it can 3D-print a human liver but this is its first tie-up with the cosmetics industry.

Experts said the science might be legitimate but questioned why a beauty firm would want to print skin. [emphasis mine]

L’Oreal currently grows skin samples from tissues donated by plastic surgery patients. It produces more than 100,000, 0.5 sq cm skin samples per year and grows nine varieties across all ages and ethnicities.

Its statement explaining the advantage of printing skin, offered little detail: “Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

The beauty and cosmetics industry has a major interest in technology, especially anything to do with the skin. I’m curious as to what kind of an expert wouldn’t realize that cosmetics companies test products on skin and might like to have a ready supply. Still, I have to admit to surprise when I first (2006) started researching nanotechnology;  L’Oréal at one point was the sixth largest nanotechnology patent holder in the US (see my Nanotech Mysteries Wiki page: Marketers put the buy in nano [scroll down to Penetration subhead]). In 2008 L’Oréal company representatives were set for a discussion on their nanotechnology efforts and the precautionary principle, which was to be hosted by the Wilson Center’s Project for Emerging Nanotechnologies (PEN). The company cancelled at a rather interesting time as I had noted in my June 19, 2008 posting. (scroll down about 40% of the way until you see mention of Dr. Andrew Maynard).

Back to 3D printing technology and cosmetics giants, a May 5, 2015 Organovo/L’Oréal press release provides more detail about the deal,

L’Oreal USA, the largest subsidiary of the world’s leading beauty company, has announced a partnership with 3-D bioprinting company Organovo Holdings, Inc. (NYSE MKT: ONVO) (“Organovo”).  Developed between L’Oreal’s U.S.-based global Technology Incubator and Organovo, the collaboration will leverage Organovo’s proprietary NovoGen Bioprinting Platform and L’Oreal’s expertise in skin engineering to develop 3-D printed skin tissue for product evaluation and other areas of advanced research.

This partnership marks the first-ever application of Organovo’s groundbreaking technology within the beauty industry.

“We developed our technology incubator to uncover disruptive innovations across industries that have the potential to transform the beauty business,” said Guive Balooch, Global Vice President of L’Oreal’s Technology Incubator.  “Organovo has broken new ground with 3-D bioprinting, an area that complements L’Oreal’s pioneering work in the research and application of reconstructed skin for the past 30 years. Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

Organovo’s 3D bioprinting enables the reproducible, automated creation of living human tissues that mimic the form and function of native tissues in the body.

“We are excited to be partnering with L’Oreal, whose leadership in the beauty industry is rooted in scientific innovation and a deep commitment to research and development,” said Keith Murphy, Chairman and Chief Executive Officer at Organovo. “This partnership is a great next step to expand the applications of Organovo’s 3-D bioprinting technology and to create value for both L’Oreal and Organovo by building new breakthroughs in skin modeling.”

I don’t have much information about Organovo here, certainly nothing about the supposed liver (how did I miss that?), but there is a Dec. 26, 2012 posting about its deal with software giant, Autodesk.

Autodesk in the tissue printing business

I came across the information about Autodesk’s venture into tissue printing in a Dec. 19, 2012 article by Kelsey Campbell-Dollaghan for Fast Company Co.Design.com (Note: Links have been removed),

Bioprinters–or 3-D printing hybrids that can print human tissue–have been around for a few years now. As the technology emerged, a single nagging question stuck out in the mind of this post-architecture school student: what’s the software of choice for a scientist modeling a human organ?

Today, an announcement from biomedical startup Organovo and software giant Autodesk goes a long way towards answering it. …

The Organovo Dec. 18, 2012 press release provides some detail about the deal,

Organovo Holdings, Inc. (OTCQX: ONVO) (“Organovo”), a creator and manufacturer of functional, three-dimensional human tissues for medical research and therapeutic applications, is working together with researchers at Autodesk, Inc., the leader in cloud-based design and engineering software, to create the first 3D design software for bioprinting.

The software, which will be used to control Organovo’s NovoGen MMX bioprinter, will represent a major step forward in usability and functionality for designing three-dimensional human tissues, and has the potential to open up bioprinting to a broader group of users.

This looks like it’s going to be a proprietary system, i.e., the software is designed for one type of hardware, Organovo’s hardware, reminiscent of the  late 1990s where printers in the graphic arts field were, in some cases, were trapped into proprietary computer-to-plate printing systems. There was an open source vs. proprietary systems competition which was eventually won by open source systems.

Organovo’s press release describes the technology they’ve developed,

Organovo’s 3D bioprinting technology is used to create living human tissues that are three-dimensional, architecturally correct, and made entirely of living human cells. The resulting structures can function like native human tissues, and represent an opportunity for advancement in medical research, drug discovery and development, and in the future, surgical therapies and transplantation.

The Dec. 17, 2012 article by Kim-Mai Cutler for TechCrunch adds more technical and business detail (Note: Link removed.),

Organovo, which went public earlier this year through a small cap offering and has a market cap of $98 million, manufactures a bioprinter that can create 1 millimeter-thick tissues. Based on research out of the University of Missouri, the company’s technology creates a bio-ink from cells and deposits new cells in a layer-by-layer matrix according to a computer design.

The Dec. 18, 2012 article by Joseph Flaherty for Wired magazine offers an analysis of the business advantages for both companies (Note: Links removed.),

Autodesk, the industry leader in CAD software, has announced it is partnering with biological printer manufacturer Organovo to create 3-D design software for designing and printing living tissue.

It’s an area of interest to Autodesk, whose software runs the industrial design and architecture worlds, allowing them to expand further into new fields by helping researchers interface with new tools.

“Autodesk is an excellent fit for developing new software for 3D bioprinters,” Organovo CEO Keith Murphy says in a press release. “This partnership will lead to advances in bioprinting, including both greater flexibility and throughput internally, and the potential long-term ability for customers to design their own 3D tissues for production by Organovo.”Jeff Kowalski, senior VP/CTO at Autodesk, echoes Murphy’s sentiment. “Bioprinting has the potential to change the world,” he says. “It’s a blend of engineering, biology and 3D printing, which makes it a natural for Autodesk. I think working with Organovo to explore and evolve this emerging field will yield some fascinating and radical advances in medical research.”

While this announcement is certainly big news, we’re multiple revisions away from 3-D printing replacement body parts. Even after the technical difficulties of printing organs or even tissue for live human use are worked through, any resulting process will need to be validated through complex clinical trials and a long review by the FDA and international authorities. Still, it will be exciting to see what medical researchers and DIY biohackers will do with these tools.

Oddly, as of today (Dec. 26, 2012) Autodesk has yet to post a press release about this deal on its own website.