Tag Archives: Avengers: Infinity War

SIGGRAPH (Special Interest Group on Computer GRAPHics and Interactive Techniques) and their art gallery from Aug. 12 – 16, 2018 (making the world synthetic) in Vancouver (Canada)

While my main interest is the group’s temporary art gallery, I am providing a brief explanatory introduction and a couple of previews for SIGGRAPH 2018.

Introduction

For anyone unfamiliar with the Special Interest Group on Computer GRAPHics and Interactive Techniques (SIGGRAPH) and its conferences, from the SIGGRAPH Wikipedia entry Note: Links have been removed),

Some highlights of the conference are its Animation Theater and Electronic Theater presentations, where recently created CG films are played. There is a large exhibition floor, where several hundred companies set up elaborate booths and compete for attention and recruits. Most of the companies are in the engineering, graphics, motion picture, or video game industries. There are also many booths for schools which specialize in computer graphics or interactivity.

Dozens of research papers are presented each year, and SIGGRAPH is widely considered the most prestigious forum for the publication of computer graphics research.[1] The recent paper acceptance rate for SIGGRAPH has been less than 26%.[2] The submitted papers are peer-reviewed in a single-blind process.[3] There has been some criticism about the preference of SIGGRAPH paper reviewers for novel results rather than useful incremental progress.[4][5] …

This is the third SIGGRAPH Vancouver has hosted; the others were in 2011 and 2014.  The theme for the 2018 iteration is ‘Generations’; here’s more about it from an Aug. 2, 2018 article by Terry Flores for Variety,

While its focus is firmly forward thinking, SIGGRAPH 2018, the computer graphics, animation, virtual reality, games, digital art, mixed reality, and emerging technologies conference, is also tipping its hat to the past thanks to its theme this year: Generations. The conference runs Aug. 12-16 in Vancouver, B.C.

“In the literal people sense, pioneers in the computer graphics industry are standing shoulder to shoulder with researchers, practitioners and the future of the industry — young people — mentoring them, dabbling across multiple disciplines to innovate, relate, and grow,” says SIGGRAPH 2018 conference chair Roy C. Anthony, VP of creative development and operations at software and technology firm Ventuz. “This is really what SIGGRAPH has always been about. Generations really seemed like a very appropriate way of looking back and remembering where we all came from and how far we’ve come.”

SIGGRAPH 2018 has a number of treats in store for attendees, including the debut of Disney’s first VR film, the short “Cycles”; production sessions on the making of “Blade Runner 2049,” “Game of Thrones,” “Incredibles 2” and “Avengers: Infinity War”; as well as sneak peeks of Disney’s upcoming “Ralph Breaks the Internet: Wreck-It Ralph 2” and Laika’s “Missing Link.”

That list of ‘treats’ in the last paragraph makes the conference seem more like an iteration of a ‘comic-con’ than a technology conference.

Previews

I have four items about work that will be presented at SIGGRAPH 2018, First up, something about ‘redirected walking’ from a June 18, 2018 Association for Computing Machinery news release on EurekAlert,

CHICAGO–In the burgeoning world of virtual reality (VR) technology, it remains a challenge to provide users with a realistic perception of infinite space and natural walking capabilities in the virtual environment. A team of computer scientists has introduced a new approach to address this problem by leveraging a natural human phenomenon: eye blinks.

All humans are functionally blind for about 10 percent of the time under normal circumstances due to eye blinks and saccades, a rapid movement of the eye between two points or objects. Eye blinks are a common and natural cause of so-called “change blindness,” which indicates the inability for humans to notice changes to visual scenes. Zeroing in on eye blinks and change blindness, the team has devised a novel computational system that effectively redirects the user in the virtual environment during these natural instances, all with undetectable camera movements to deliver orientation redirection.

“Previous RDW [redirected walking] techniques apply rotations continuously while the user is walking. But the amount of unnoticeable rotations is limited,” notes Eike Langbehn, lead author of the research and doctoral candidate at the University of Hamburg. “That’s why an orthogonal approach is needed–we add some additional rotations when the user is not focused on the visuals. When we learned that humans are functionally blind for some time due to blinks, we thought, ‘Why don’t we do the redirection during eye blinks?'”

Human eye blinks occur approximately 10 to 20 times per minute, about every 4 to 19 seconds. Leveraging this window of opportunity–where humans are unable to detect major motion changes while in a virtual environment–the researchers devised an approach to synchronize a computer graphics rendering system with this visual process, and introduce any useful motion changes in virtual scenes to enhance users’ overall VR experience.

The researchers’ experiments revealed that imperceptible camera rotations of 2 to 5 degrees and translations of 4 to 9 cm of the user’s viewpoint are possible during a blink without users even noticing. They tracked test participants’ eye blinks by an eye tracker in a VR head-mounted display. In a confirmatory study, the team validated that participants could not reliably detect in which of two eye blinks their viewpoint was manipulated while walking a VR curved path. The tests relied on unconscious natural eye blinking, but the researchers say redirection during blinking could be carried out consciously. Since users can consciously blink multiple times a day without much effort, eye blinks provide great potential to be used as an intentional trigger in their approach.

The team will present their work at SIGGRAPH 2018, held 12-16 August in Vancouver, British Columbia. The annual conference and exhibition showcases the world’s leading professionals, academics, and creative minds at the forefront of computer graphics and interactive techniques.

“RDW is a big challenge since current techniques still need too much space to enable unlimited walking in VR,” notes Langbehn. “Our work might contribute to a reduction of space since we found out that unnoticeable rotations of up to five degrees are possible during blinks. This means we can improve the performance of RDW by approximately 50 percent.”

The team’s results could be used in combination with other VR research, such as novel steering algorithms, improved path prediction, and rotations during saccades, to name a few. Down the road, such techniques could some day enable consumer VR users to virtually walk beyond their living room.

Langbehn collaborated on the work with Frank Steinicke of University of Hamburg, Markus Lappe of University of Muenster, Gregory F. Welch of University of Central Florida, and Gerd Bruder, also of University of Central Florida. For the full paper and video, visit the team’s project page.

###

About ACM, ACM SIGGRAPH, and SIGGRAPH 2018

ACM, the Association for Computing Machinery, is the world’s largest educational and scientific computing society, uniting educators, researchers, and professionals to inspire dialogue, share resources, and address the field’s challenges. ACM SIGGRAPH is a special interest group within ACM that serves as an interdisciplinary community for members in research, technology, and applications in computer graphics and interactive techniques. SIGGRAPH is the world’s leading annual interdisciplinary educational experience showcasing the latest in computer graphics and interactive techniques. SIGGRAPH 2018, marking the 45th annual conference hosted by ACM SIGGRAPH, will take place from 12-16 August at the Vancouver Convention Centre in Vancouver, B.C.

They have provided an image illustrating what they mean (I don’t find it especially informative),

Caption: The viewing behavior of a virtual reality user, including fixations (in green) and saccades (in red). A blink fully suppresses visual perception. Credit: Eike Langbehn

Next up (2), there’s Disney Corporation’s first virtual reality (VR) short, from a July 19, 2018  Association for Computing Machinery news release on EurekAlert,

Walt Disney Animation Studios will debut its first ever virtual reality short film at SIGGRAPH 2018, and the hope is viewers will walk away feeling connected to the characters as equally as they will with the VR technology involved in making the film.

Cycles, an experimental film directed by Jeff Gipson, centers around the true meaning of creating a home and the life it holds inside its walls. The idea for the film is personal, inspired by Gipson’s childhood spending time with his grandparents and creating memories in their home, and later, having to move them to an assisted living residence.

“Every house has a story unique to the people, the characters who live there,” says Gipson. “We wanted to create a story in this single place and be able to have the viewer witness life happening around them. It is an emotionally driven film, expressing the real ups and downs, the happy and sad moments in life.”

For Cycles, Gipson also drew from his past life as an architect, having spent several years designing skate parks, and from his passion for action sports, including freestyle BMX. In Los Angeles, where Gipson lives, it is not unusual to find homes with an empty swimming pool reserved for skating or freestyle biking. Part of the pitch for Cycles came out of Gipson’s experience riding in these empty pools and being curious about the homes attached to them, the families who lived there, and the memories they made.

SIGGRAPH attendees will have the opportunity to experience Cycles at the Immersive Pavilion, a new space for this year’s conference. The Pavilion is devoted exclusively to virtual, augmented, and mixed reality and will contain: the VR Theater, a storytelling extravaganza that is part of the Computer Animation Festival; the Vrcade, a space for VR, AR, and MR games or experiences; and the well-known Village, for showcasing large-scale projects. SIGGRAPH 2018, held 12-16 August in Vancouver, British Columbia, is an annual gathering that showcases the world’s leading professionals, academics, and creative minds at the forefront of computer graphics and interactive techniques.

The production team completed Cycles in four months with about 50 collaborators as part of a professional development program at the studio. A key difference in VR filmmaking includes getting creative with how to translate a story to the VR “screen.” Pre-visualizing the narrative, for one, was a challenge. Rather than traditional storyboarding, Gipson and his team instead used a mix of Quill VR painting techniques and motion capture to “storyboard” Cycles, incorporating painters and artists to generate sculptures or 3D models of characters early on and draw scenes for the VR space. The creators also got innovative with the use of light and color saturation in scenes to help guide the user’s eyes during the film.

“What’s cool for VR is that we are really on the edge of trying to figure out what it is and how to tell stories in this new medium,” says Gipson. “In VR, you can look anywhere and really be transported to a different world, experience it from different angles, and see every detail. We want people watching to feel alive and feel emotion, and give them a true cinematic experience.”

This is Gipson’s VR directorial debut. He joined Walt Disney Animation Studios in 2013, serving as a lighting artist on Disney favorites like Frozen, Zootopia, and Moana. Of getting to direct the studio’s first VR short, he says, “VR is an amazing technology and a lot of times the technology is what is really celebrated. We hope more and more people begin to see the emotional weight of VR films, and with Cycles in particular, we hope they will feel the emotions we aimed to convey with our story.”

Apparently this is a still from the ‘short’,

Caption: Disney Animation Studios will present ‘Cycles’ , its first virtual reality (VR) short, at ACM SIGGRAPH 2018. Credit: Disney Animation Studios

There’s also something (3) from Google as described in a July 26, 2018 Association of Computing Machinery news release on EurekAlert,

Google has unveiled a new virtual reality (VR) immersive experience based on a novel system that captures and renders high-quality, realistic images from the real world using light fields. Created by a team of leading researchers at Google, Welcome to Light Fields is the tech giant’s splash into the nascent arena of light fields VR experiences, an exciting corner of VR video technology gaining traction for its promise to deliver extremely high-quality imagery and experiences in the virtual world.

Google released Welcome to Light Fields earlier this year as a free app on Steam VR for HTC Vive, Oculus Rift, and Windows Mixed Reality headsets. The creators will demonstrate the VR experience at SIGGRAPH 2018, in the Immersive Pavilion, a new space for this year’s conference. The Pavilion is devoted exclusively to virtual, augmented, and mixed reality and will contain: the Vrcade, a space for VR, AR, and MR games or experiences; the VR Theater, a storytelling extravaganza that is part of the Computer Animation Festival; and the well-known Village, for showcasing large-scale projects. SIGGRAPH 2018, held 12-16 August in Vancouver, British Columbia, is an annual gathering that showcases the world’s leading professionals, academics, and creative minds at the forefront of computer graphics and interactive techniques.

Destinations in Welcome to Light Fields include NASA’s Space Shuttle Discovery, delivering to viewers an astronaut’s view inside the flight deck, which has never been open to the public; the pristine teak and mahogany interiors of the Gamble House, an architectural treasure in Pasadena, CA; and the glorious St. Stephen’s Church in Granada Hills, CA, home to a stunning wall of more than 14,000 pieces of glimmering stained glass.

“I love that light fields in VR can teleport you to exotic places in the real world, and truly make you believe you are there,” says Ryan Overbeck, software engineer at Google who co-led the project. “To me, this is magic.”

To bring this experience to life, Overbeck worked with a team that included Paul Debevec, senior staff engineer at Google, who managed the project and led the hardware piece with engineers Xueming Yu, Jay Busch, and Graham Fyffe. With Overbeck, Daniel Erickson and Daniel Evangelakos focused on the software end. The researchers designed a comprehensive system for capturing and rendering high-quality, spherical light field still images from footage captured in the real world. They developed two easy-to-use light field camera rigs, based on the GoPro Hero4action sports camera, that efficiently capture thousands of images on the surface of a sphere. Those images were then passed through a cloud-based light-field-processing pipeline.

Among other things, explains Overbeck, “The processing pipeline uses computer vision to place the images in 3D and generate depth maps, and we use a modified version of our vp9 video codec

to compress the light field data down to a manageable size.” To render a light field dataset, he notes, the team used a rendering algorithm that blends between the thousands of light field images in real-time.

The team relied on Google’s talented pool of engineers in computer vision, graphics, video compression, and machine learning to overcome the unique challenges posed in light fields technology. They also collaborated closely with the WebM team (who make the vp9 video codec) to develop the high-quality light field compression format incorporated into their system, and leaned heavily on the expertise of the Jump VR team to help pose the images and generate depth maps. (Jump is Google’s professional VR system for achieving 3D-360 video production at scale.)

Indeed, with Welcome to Light Fields, the Google team is demonstrating the potential and promise of light field VR technology, showcasing the technology’s ability to provide a truly immersive experience with a level of unmatched realism. Though light fields technology has been researched and explored in computer graphics for more than 30 years, practical systems for actually delivering high-quality light field experiences has not yet been possible.

Part of the team’s motivation behind creating this VR light field experience is to invigorate the nascent field.

“Welcome to Light Fields proves that it is now possible to make a compelling light field VR viewer that runs on consumer-grade hardware, and we hope that this knowledge will encourage others to get involved with building light field technology and media,” says Overbeck. “We understand that in order to eventually make compelling consumer products based on light fields, we need a thriving light field ecosystem. We need open light field codecs, we need artists creating beautiful light field imagery, and we need people using VR in order to engage with light fields.”

I don’t really understand why this image, which looks like something belongs on advertising material, would be chosen to accompany a news release on a science-based distribution outlet,

Caption: A team of leading researchers at Google, will unveil the new immersive virtual reality (VR) experience “Welcome to Lightfields” at ACM SIGGRAPH 2018. Credit: Image courtesy of Google/Overbeck

Finally (4), ‘synthesizing realistic sounds’ is announced in an Aug. 6, 2018 Stanford University (US) news release (also on EurekAlert) by Taylor Kubota,

Advances in computer-generated imagery have brought vivid, realistic animations to life, but the sounds associated with what we see simulated on screen, such as two objects colliding, are often recordings. Now researchers at Stanford University have developed a system that automatically renders accurate sounds for a wide variety of animated phenomena.

“There’s been a Holy Grail in computing of being able to simulate reality for humans. We can animate scenes and render them visually with physics and computer graphics, but, as for sounds, they are usually made up,” said Doug James, professor of computer science at Stanford University. “Currently there exists no way to generate realistic synchronized sounds for complex animated content, such as splashing water or colliding objects, automatically. This fills that void.”

The researchers will present their work on this sound synthesis system as part of ACM SIGGRAPH 2018, the leading conference on computer graphics and interactive techniques. In addition to enlivening movies and virtual reality worlds, this system could also help engineering companies prototype how products would sound before being physically produced, and hopefully encourage designs that are quieter and less irritating, the researchers said.

“I’ve spent years trying to solve partial differential equations – which govern how sound propagates – by hand,” said Jui-Hsien Wang, a graduate student in James’ lab and in the Institute for Computational and Mathematical Engineering (ICME), and lead author of the paper. “This is actually a place where you don’t just solve the equation but you can actually hear it once you’ve done it. That’s really exciting to me and it’s fun.”

Predicting sound

Informed by geometry and physical motion, the system figures out the vibrations of each object and how, like a loudspeaker, those vibrations excite sound waves. It computes the pressure waves cast off by rapidly moving and vibrating surfaces but does not replicate room acoustics. So, although it does not recreate the echoes in a grand cathedral, it can resolve detailed sounds from scenarios like a crashing cymbal, an upside-down bowl spinning to a stop, a glass filling up with water or a virtual character talking into a megaphone.

Most sounds associated with animations rely on pre-recorded clips, which require vast manual effort to synchronize with the action on-screen. These clips are also restricted to noises that exist – they can’t predict anything new. Other systems that produce and predict sounds as accurate as those of James and his team work only in special cases, or assume the geometry doesn’t deform very much. They also require a long pre-computation phase for each separate object.

“Ours is essentially just a render button with minimal pre-processing that treats all objects together in one acoustic wave simulation,” said Ante Qu, a graduate student in James’ lab and co-author of the paper.

The simulated sound that results from this method is highly detailed. It takes into account the sound waves produced by each object in an animation but also predicts how those waves bend, bounce or deaden based on their interactions with other objects and sound waves in the scene.

Challenges ahead

In its current form, the group’s process takes a while to create the finished product. But, now that they have proven this technique’s potential, they can focus on performance optimizations, such as implementing their method on parallel GPU hardware, that should make it drastically faster.

And, even in its current state, the results are worth the wait.

“The first water sounds we generated with the system were among the best ones we had simulated – and water is a huge challenge in computer-generated sound,” said James. “We thought we might get a little improvement, but it is dramatically better than previous approaches even right out of the box. It was really striking.”

Although the group’s work has faithfully rendered sounds of various objects spinning, falling and banging into each other, more complex objects and interactions – like the reverberating tones of a Stradivarius violin – remain difficult to model realistically. That, the group said, will have to wait for a future solution.

Timothy Langlois of Adobe Research is a co-author of this paper. This research was funded by the National Science Foundation and Adobe Research. James is also a professor, by courtesy, of music and a member of Stanford Bio-X.

Researchers Timothy Langlois, Doug L. James, Ante Qu and Jui-Hsien Wang have created a video featuring highlights of animations with sounds synthesized using the Stanford researchers’ new system.,

The researchers have also provided this image,

By computing pressure waves cast off by rapidly moving and vibrating surfaces – such as a cymbal – a new sound synthesis system developed by Stanford researchers can automatically render realistic sound for computer animations. (Image credit: Timothy Langlois, Doug L. James, Ante Qu and Jui-Hsien Wang)

It does seem like we’re synthesizing the world around us, eh?

The SIGGRAPH 2018 art gallery

Here’s what SIGGRAPH had to say about its 2018 art gallery in Vancouver and the themes for the conference and the gallery (from a May 18, 2018 Associating for Computing Machinery news release on globalnewswire.com (also on this 2018 SIGGRAPH webpage),

SIGGRAPH 2018, the world’s leading showcase of digital art created using computer graphics and interactive techniques, will present a special Art Gallery, entitled “Origins,” and historic Art Papers in Vancouver, B.C. The 45th SIGGRAPH conference will take place 12–16 August at the Vancouver Convention Centre. The programs will also honor the generations of creators that have come before through a special, 50th anniversary edition of the Leonard journal. To register for the conference, visit S2018.SIGGRAPH.ORG.

The SIGGRAPH 2018 ART GALLERY is a curated exhibition, conceived as a dialogical space that enables the viewer to reflect on man’s diverse cultural values and rituals through contemporary creative practices. Building upon an exciting and eclectic selection of creative practices mediated through technologies that represent the sophistication of our times, the SIGGRAPH 2018 Art Gallery will embrace the narratives of the indigenous communities based near Vancouver and throughout Canada as a source of inspiration. The exhibition will feature contemporary media artworks, art pieces by indigenous communities, and other traces of technologically mediated Ludic practices.

Andrés Burbano, SIGGRAPH 2018 Art Gallery chair and professor at Universidad de los Andes, said, “The Art Gallery aims to articulate myth and technology, science and art, the deep past and the computational present, and will coalesce around a theme of ‘Origins.’ Media and technological creative expressions will explore principles such as the origins of the cosmos, the origins of life, the origins of human presence, the origins of the occupation of territories in the Americas, and the origins of people living in the vast territories of the Arctic.”

He continued, “The venue [in Vancouver] hopes to rekindle the original spark that ignited the collaborative spirit of the SIGGRAPH community of engineers, scientists, and artists, who came together to create the very first conference in the early 1970s.”

Highlights from the 2018 Art Gallery include:

Transformation Mask (Canada) [Technology Based]
Shawn Hunt, independent; and Microsoft Garage: Andy Klein, Robert Butterworth, Jonathan Cobb, Jeremy Kersey, Stacey Mulcahy, Brendan O’Rourke, Brent Silk, and Julia Taylor-Hell, Microsoft Vancouver

TRANSFORMATION MASK is an interactive installation that features the Microsoft HoloLens. It utilizes electronics and mechanical engineering to express a physical and digital transformation. Participants are immersed in spatial sounds and holographic visuals.

Somnium (U.S.) [Science Based]
Marko Peljhan, Danny Bazo, and Karl Yerkes, University of California, Santa Barbara

Somnium is a cybernetic installation that provides visitors with the ability to sensorily, cognitively, and emotionally contemplate and experience exoplanetary discoveries, their macro and micro dimensions, and the potential for life in our Galaxy. Some might call it “space telescope.”

Ernest Edmonds Retrospective – Art Systems 1968-2018 (United Kingdom) [History Based]
Ernest Edmonds, De Montfort University

Celebrating one of the pioneers of computer graphics-based art since the early 1970s, this Ernest Edmonds career retrospective will showcase snapshots of Edmonds’ work as it developed over the years. With one piece from each decade, the retrospective will also demonstrate how vital the Leonardo journal has been throughout the 50-year journey.

In addition to the works above, the Art Gallery will feature pieces from notable female artists Ozge Samanci, Ruth West, and Nicole L’Hullier. For more information about the Edmonds retrospective, read THIS POST ON THE ACM SIGGRAPH BLOG.

The SIGGRAPH 2018 ART PAPERS program is designed to feature research from artists, scientists, theorists, technologists, historians, and more in one of four categories: project description, theory/criticism, methods, or history. The chosen work was selected by an international jury of scholars, artists, and immersive technology developers.

To celebrate the 50th anniversary of LEONARDO (MIT Press), and 10 years of its annual SIGGRAPH issue, SIGGRAPH 2018 is pleased to announce a special anniversary edition of the journal, which will feature the 2018 art papers. For 50 years, Leonardo has been the definitive publication for artist-academics. To learn more about the relationship between SIGGRAPH and the journal, listen to THIS EPISODE OF THE SIGGRAPH SPOTLIGHT PODCAST.

“In order to encourage a wider range of topics, we introduced a new submission type, short papers. This enabled us to accept more content than in previous years. Additionally, for the first time, we will introduce sessions that integrate the Art Gallery artist talks with Art Papers talks, promoting richer connections between these two creative communities,” said Angus Forbes, SIGGRAPH 2018 Art Papers chair and professor at University of California, Santa Cruz.

Art Papers highlights include:

Alienating the Familiar with CGI: A Recipe for Making a Full CGI Art House Animated Feature [Long]
Alex Counsell and Paul Charisse, University of Portsmouth

This paper explores the process of making and funding an art house feature film using full CGI in a marketplace where this has never been attempted. It explores cutting-edge technology and production approaches, as well as routes to successful fundraising.

Augmented Fauna and Glass Mutations: A Dialogue Between Material and Technique in Glassblowing and 3D Printing [Long]
Tobias Klein, City University of Hong Kong

The two presented artworks, “Augmented Fauna” and “Glass Mutations,” were created during an artist residence at the PILCHUCK GLASS SCHOOL. They are examples of the qualities and methods established through a synthesis between digital workflows and traditional craft processes and thus formulate the notion of digital craftsmanship.

Inhabitat: An Imaginary Ecosystem in a Children’s Science Museum [Short]
Graham Wakefield, York University, and Haru Hyunkyung Ji, OCAD University

“Inhabitat” is a mixed reality artwork in which participants become part of an imaginary ecology through three simultaneous perspectives of scale and agency; three distinct ways to see with other eyes. This imaginary world was exhibited at a children’s science museum for five months, using an interactive projection-augmented sculpture, a large screen and speaker array, and a virtual reality head-mounted display.

What’s the what?

My father used to say that and I always assumed it meant summarize the high points, if you need to, and get to the point—fast. In that spirit, I am both fascinated and mildly appalled. The virtual, mixed, and augmented reality technologies, as well as, the others being featured at SIGGRAPH 2018 are wondrous in many ways but it seems we are coming ever closer to a world where we no longer interact with nature or other humans directly. (see my August 10, 2018 posting about the ‘extinction of experience’ for research that encourages more direct interaction with nature) I realize that SIGGRAPH is intended as a primarily technical experience but I think a little more content questioning these technologies and their applications (social implications) might be in order. That’s often the artist’s role but I can’t see anything in the art gallery descriptions that hint at any sort of fundamental critique.

Putting science back into pop culture and selling books

Clifford V. Johnson is very good at promoting books. I tip my hat to him; that’s an excellent talent to have, especially when you’ve written a book, in his case, it’s a graphic novel titled ‘The Dialogues: Conversations about the Nature of the Universe‘.

I first stumbled across professor (University of Southern California) and physicist Johnson and his work in this January 18, 2018 news item on phys.org,

How often do you, outside the requirements of an assignment, ponder things like the workings of a distant star, the innards of your phone camera, or the number and layout of petals on a flower? Maybe a little bit, maybe never. Too often, people regard science as sitting outside the general culture: A specialized, difficult topic carried out by somewhat strange people with arcane talents. It’s somehow not for them.

But really science is part of the wonderful tapestry of human culture, intertwined with things like art, music, theater, film and even religion. These elements of our culture help us understand and celebrate our place in the universe, navigate it and be in dialogue with it and each other. Everyone should be able to engage freely in whichever parts of the general culture they choose, from going to a show or humming a tune to talking about a new movie over dinner.

Science, though, gets portrayed as opposite to art, intuition and mystery, as though knowing in detail how that flower works somehow undermines its beauty. As a practicing physicist, I disagree. Science can enhance our appreciation of the world around us. It should be part of our general culture, accessible to all. Those “special talents” required in order to engage with and even contribute to science are present in all of us.

Here’s more his January 18, 2018 essay on The Conversation (which was the origin for the news item), Note: Links have been removed,

… in addition to being a professor, I work as a science advisor for various forms of entertainment, from blockbuster movies like the recent “Thor: Ragnarok,” or last spring’s 10-hour TV dramatization of the life and work of Albert Einstein (“Genius,” on National Geographic), to the bestselling novel “Dark Matter,” by Blake Crouch. People spend a lot of time consuming entertainment simply because they love stories like these, so it makes sense to put some science in there.

Science can actually help make storytelling more entertaining, engaging and fun – as I explain to entertainment professionals every chance I get. From their perspective, they get potentially bigger audiences. But good stories, enhanced by science, also spark valuable conversations about the subject that continue beyond the movie theater.
Science can be one of the topics woven into the entertainment we consume – via stories, settings and characters. ABC Television

Nonprofit organizations have been working hard on this mission. The Alfred P. Sloan Foundation helps fund and develop films with science content – “The Man Who Knew Infinity” (2015) and “Robot & Frank” (2012) are two examples. (The Sloan Foundation is also a funding partner of The Conversation US.)

The National Academy of Sciences set up the Science & Entertainment Exchange to help connect people from the entertainment industry to scientists. The idea is that such experts can provide Hollywood with engaging details and help with more accurate portrayals of scientists that can enhance the narratives they tell. Many of the popular Marvel movies – including “Thor” (2011), “Ant-Man” (2015) and the upcoming “Avengers: Infinity War” – have had their content strengthened in this way.

Encouragingly, a recent Pew Research Center survey in the U.S. showed that entertainment with science or related content is watched by people across “all demographic, educational and political groups,” and that overall they report positive impressions of the science ideas and scenarios contained in them.

Many years ago I realized it is hard to find books on the nonfiction science shelf that let readers see themselves as part of the conversation about science. So I envisioned an entire book of conversations about science taking place between ordinary people. While “eavesdropping” on those conversations, readers learn some science ideas, and are implicitly invited to have conversations of their own. It’s a resurrection of the dialogue form, known to the ancient Greeks, and to Galileo, as a device for exchanging ideas, but with contemporary settings: cafes, restaurants, trains and so on.

Clifford Johnson at his drafting table. Clifford V. Johnson, CC BY-ND

So over six years I taught myself the requisite artistic and other production techniques, and studied the language and craft of graphic narratives. I wrote and drew “The Dialogues: Conversations About the Nature of the Universe” as proof of concept: A new kind of nonfiction science book that can inspire more people to engage in their own conversations about science, and celebrate a spirit of plurality in everyday science participation.

I so enjoyed Johnson’s writing and appreciated how he introduced his book into the piece that I searched for more and found a three-part interview with Henry Jenkins on his Confessions of an Aca-Fan (Academic-Fan) blog. Before moving onto the interview, here’s some information about the interviewer, Henry Jenkins, (Note: Links have been removed),

Henry Jenkins is the Provost Professor of Communication, Journalism, Cinematic Arts and Education at the University of Southern California. He arrived at USC in Fall 2009 after spending more than a decade as the Director of the MIT Comparative Media Studies Program and the Peter de Florez Professor of Humanities. He is the author and/or editor of seventeen books on various aspects of media and popular culture, including Textual Poachers: Television Fans and Participatory Culture, Hop on Pop: The Politics and Pleasures of Popular Culture,  From Barbie to Mortal Kombat: Gender and Computer Games, Convergence Culture: Where Old and New Media Collide, Spreadable Media: Creating Meaning and Value in a Networked Culture, and By Any Media Necessary: The New Youth Activism. He is currently editing a handbook on the civic imagination and writing a book on “comics and stuff”. He has written for Technology Review, Computer Games, Salon, and The Huffington Post.

Jenkins is the principal investigator for The Civic Imagination Project, funded by the MacArthur Foundation, to explore ways to inspire creative collaborations within communities as they work together to identify shared values and visions for the future. This project grew out of the Media, Activism, and Participatory Politics research group, also funded by MacArthur, which did case studies of innovative organizations that have been effective at getting young people involved in the political process. He is also the Chief Advisor to the Annenberg Innovation Lab. Jenkins also serves on the jury that selects the Peabody Awards, which recognizes “stories that matter” from radio, television, and the web.

He has previously worked as the principal investigator for  Project New Media Literacies (NML), a group which originated as part of the MacArthur Digital Media and Learning Initiative. Jenkins wrote a white paper on learning in a participatory culture that has become the springboard for the group’s efforts to develop and test educational materials focused on preparing students for engagement with the new media landscape. He also was the founder for the Convergence Culture Consortium, a faculty network which seeks to build bridges between academic researchers and the media industry in order to help inform the rethinking of consumer relations in an age of participatory culture.  The Consortium lives on today via the Transforming Hollywood conference, run jointly between USC and UCLA, which recently hosted its 8th event.  

While at MIT, he was one of the principal investigators for The Education Arcade, a consortium of educators and business leaders working to promote the educational use of computer and video games. Jenkins also plays a significant role as a public advocate for fans, gamers and bloggers: testifying before the U.S. Senate Commerce Committee investigation into “Marketing Violence to Youth” following the Columbine shootings; advocating for media literacy education before the Federal Communications Commission; calling for a more consumer-oriented approach to intellectual property at a closed door meeting of the governing body of the World Economic Forum; signing amicus briefs in opposition to games censorship;  regularly speaking to the press and other media about aspects of media change and popular culture; and most recently, serving as an expert witness in the legal struggle over the fan-made film, Prelude to Axanar.  He also has served as a consultant on the Amazon children’s series Lost in Oz, where he provided insights on world-building and transmedia strategies as well as new media literacy issues.

Jenkins has a B.A. in Political Science and Journalism from Georgia State University, a M.A. in Communication Studies from the University of Iowa and a PhD in Communication Arts from the University of Wisconsin-Madison.

Well, that didn’t seem so simple after all. For a somewhat more personal account of who I am, read on.

About Me

The first thing you are going to discover about me, oh reader of this blog, is that I am prolific as hell. The second is that I am also long-winded as all get out. As someone famous once said, “I would have written it shorter, but I didn’t have enough time.”

My earliest work centered on television fans – particularly science fiction fans. Part of what drew me into graduate school in media studies was a fascination with popular culture. I grew up reading Mad magazine and Famous Monsters of Filmland – and, much as my parents feared, it warped me for life. Early on, I discovered the joys of comic books and science fiction, spent time playing around with monster makeup, started writing scripts for my own Super 8 movies (The big problem was that I didn’t have access to a camera until much later), and collecting television-themed toys. By the time I went to college, I was regularly attending science fiction conventions. Through the woman who would become my wife, I discovered fan fiction. And we spent a great deal of time debating our very different ways of reading our favorite television series.

When I got to graduate school, I was struck by how impoverished the academic framework for thinking about media spectatorship was – basically, though everyone framed it differently, consumers were assumed to be passive, brainless, inarticulate, and brainwashed. None of this jelled well with my own robust experience of being a fan of popular culture. I was lucky enough to get to study under John Fiske, first at Iowa and then at the University of Wisconsin-Madison, who introduced me to the cultural studies perspective. Fiske was a key advocate of ethnographic audience research, arguing that media consumers had more tricks up their sleeves than most academic theory acknowledged.

Out of this tension between academic theory and fan experience emerged first an essay, “Star Trek Reread, Rerun, Rewritten” and then a book, Textual Poachers: Television Fans and Participatory Culture. Textual Poachers emerged at a moment when fans were still largely marginal to the way mass media was produced and consumed, and still hidden from the view of most “average consumers.” As such, the book represented a radically different way of thinking about how one might live in relation to media texts. In the book, I describe fans as “rogue readers.” What most people took from that book was my concept of “poaching,” the idea that fans construct their own culture – fan fiction, artwork, costumes, music and videos – from content appropriated from mass media, reshaping it to serve their own needs and interests. There are two other key concepts in this early work which takes on greater significance in my work today – the idea of participatory culture (which runs throughout Convergence Culture) and the idea of a moral economy (that is, the presumed ethical norms which govern the relations between media producers and consumers).

As for the interview, here’s Jenkins’ introduction to the series and a portion of part one (from Comics and Popular Science: An Interview with Clifford V. Johnson (Part One) posted on November 15, 2017),

unnamed.jpg

Clifford V. Johnson is the first theoretical physicist who I have ever interviewed for my blog. Given the sharp divide that our society constructs between the sciences and the humanities, he may well be the last, but he would be the first to see this gap as tragic, a consequence of the current configuration of disciplines. Johnson, as I have discovered, is deeply committed to helping us recognize the role that science plays in everyday life, a project he pursues actively through his involvement as one of the leaders of the Los Angeles Institute for the Humanities (of which I am also a member), as a consultant on various film and television projects, and now, as the author of a graphic novel, The Dialogues, which is being released this week. We were both on a panel about contemporary graphic storytelling Tara McPherson organized for the USC Sydney Harmon Institute for Polymathic Study and we’ve continued to bat around ideas about the pedagogical potential of comics ever since.

Here’s what I wrote when I was asked to provide a blurb for his new book:

“Two superheroes walk into a natural history museum — what happens after that will have you thinking and talking for a long time to come. Clifford V. Johnson’s The Dialogues joins a select few examples of recent texts, such as Scott McCloud’s Understanding Comics, Larry Gonick’s Cartoon History of the Universe, Nick Sousanis’s Unflattening, Bryan Talbot’s Alice in Sunderland, or Joe Sacco’s Palestine, which use the affordances of graphic storytelling as pedagogical tools for changing the ways we think about the world around us. Johnson displays a solid grasp of the craft of comics, demonstrating how this medium can be used to represent different understandings of the relationship between time and space, questions central to his native field of physics. He takes advantage of the observational qualities of contemporary graphic novels to explore the place of scientific thinking in our everyday lives.”

To my many readers who care about sequential art, this is a book which should be added to your collection — Johnson makes good comics, smart comics, beautiful comics, and comics which are doing important work, all at the same time. What more do you want!

In the interviews that follows, we explore more fully what motivated this particular comics and how approaching comics as a theoretical physicist has helped him to discover some interesting formal aspects of this medium.

What do you want your readers to learn about science over the course of these exchanges? I am struck by the ways you seek to demystify aspects of the scientific process, including the role of theory, equations, and experimentation.

unnamed-2.jpg

 

That participatory aspect is core, for sure. Conversations about science by random people out there in the world really do happen – I hear them a lot on the subway, or in cafes, and so I wanted to highlight those and celebrate them. So the book becomes a bit of an invitation to everyone to join in. But then I can show so many other things that typically just get left out of books about science: The ordinariness of the settings in which such conversations can take place, the variety of types of people involved, and indeed the main tools, like equations and technical diagrams, that editors usually tell you to leave out for fear of scaring away the audience. …

I looked for book reviews and found two. This first one is from Starburst Magazine, which strangely does not have the date or author listed (from the review),

The Dialogues is a series of nine conversations about science told in graphic novel format; the conversationalists are men, women, children, and amateur science buffs who all have something to say about the nature of the universe. Their discussions range from multiverse and string theory to immortality, black holes, and how it’s possible to put just a cup of rice in the pan but end up with a ton more after Mom cooks it. Johnson (who also illustrated the book) believes the graphic form is especially suited for physics because “one drawing can show what it would take many words to explain” and it’s hard to argue with his noble intentions, but despite some undoubtedly thoughtful content The Dialogues doesn’t really work. Why not? Because, even with its plethora of brightly-coloured pictures, it’s still 200+ pages of talking heads. The individual conversations might give us plenty to think about, but the absence of any genuine action (or even a sense of humour) still makes The Dialogues read like very pretty homework.

Adelmar Bultheel’s December 8, 2017 review for the European Mathematical Society acknowledges issues with the book while noting its strong points,

So what is the point of producing such a graphic novel if the reader is not properly instructed about anything? In my opinion, the true message can be found in the one or two pages of notes that follow each of the eleven conversations. If you are not into the subject that you were eavesdropping, you probably have heard words, concepts, theories, etc. that you did not understand, or you might just be curious about what exactly the two were discussing. Then you should look that up on the web, or if you want to do it properly, you should consult some literature. This is what these notes are providing: they are pointing to the proper books to consult. …

This is a most unusual book for this subject and the way this is approached is most surprising. Not only the contents is heavy stuff, it is also physically heavy to read. Some 250 pages on thick glossy paper makes it a quite heavy book to hold. You probably do not want to read this in bed or take it on a train, unless you have a table in front of you to put it on. Many subjects are mentioned, but not all are explained in detail. The reader should definitely be prepared to do some extra reading to understand things better. Since most references concern other popularising books on the subject, it may require quite a lot of extra reading. But all this hard science is happening in conversations by young enthusiastic people in casual locations and it is all wrapped up in beautiful graphics showing marvellous realistic decors.

I am fascinated by this book which I have yet to read but I did find a trailer for it (from thedialoguesbook.com),

Enjoy!