Tag Archives: Banff

Banff, mathematics, networks, and live streaming

The Banff International Research Station for Mathematical Innovation and Discovery (BIRS) is opening its virtual doors to the scientific community. I think Nassif Ghoussoub in his April 3, 2012 posting on his Piece of Mind blog says it better,

The Banff International Research Station (BIRS) has announced that its new physical meeting space at the beautiful TransCanada Pipelines Pavilion in Banff Canada,  is now accessible to the scientific community in virtual space, via live video streaming and high quality video recordings, produced by a state-of-the-art automated video production system. This is a first step in our collaborative effort with the Mprime network and the other mathematical sciences institutes, towards building and coordinating a national Internet infrastructure supporting mathematical research and education, including a unified video capture, video streaming, video archiving, and video storage service for the world’s mathematical science community.

I last mentioned  BIRS in my Jan. 9, 2012 posting (scroll down about 1/2 way) in the context of a mathematics workshop held there for poets.

Here’s more from Nassif about the virtual network,

Further into the future, we would like to add some interactive features that allow remote parties to participate in workshops. Sophisticated video conferencing integration has been part of the plan from the beginning, and remains a priority.…

BIRS alone will be broadcasting 25-30 lectures per week for 49 weeks of every year. Each lecture has the potential to open up new threads for research. Future authors working with these ideas will be empowered to provide precise citations to video archives of lectures inspiring their research. The citations to video lectures that appear in subsequent publications will contribute to a biblio-metric metadata stream demonstrating research impact. BIRS will be collaborating with the other institutes to define a unified video capture, video streaming, video archiving, and video storage service for all interested mathematical institutions.

In the meantime, you can find the latest lectures and notices about upcoming events here. Not all of these lectures will be livestreamed and/or recorded as the speaker must make the choice of pressing the ‘webcast’ button.

From the About BIRS Live Stream webpage (note: some links have been removed),

In January of 2012, BIRS installed a system of cameras, microphones, and automation technology in it’s main lecture room in order to fully automate the production, recording, broadcasting, and distribution of high-quality lecture videos. An overview of how it works is posted here. Since then, we have been busy writing software, adding features, and tweaking the behaviour of the system. As a work in progress, you should expect the occasional hiccup. We would love to hear your feedback or suggestions, since we are building this for the benefit of the community and consider it a collaborative effort.

I would like to extend a huge thank-you to all of the participants at BIRS who, in choosing to record — and now broadcast — their lectures online, provide a valuable resource, contributing to educational and scientific progress.

Brent Kearney
Technology Manager for BIRS

System Requirements

The live stream should work on any modern computer or mobile device that supports Flash or HTML5 streaming video. It has been casually tested and works with Microsoft Windows IE 8 and 9, Chrome, Firefox, Safari, iPhones, iPads, Playbooks, and some Android phones. Please let us know if it does not work on your device.

The live video uses dynamic streaming to automatically scale the video quality up or down based on your connection speed. Switching to fullscreen mode, or attempting to advance the play position, will force a re-evaluation of your bandwidth constraints. In it’s highest mode, the stream displays 1920×720 resolution HD video at 1800kbps and 30fps. In its lowest mode, it plays in most mobile devices at 320×180 resolution at 400kbps and 24fps. There are two modes in between.

Very exciting stuff. I think it would be wonderful if those plans to include interactivity happened to coincide with the next Canadian Science Policy Conference. BTW, despite what I wrote in my Feb. 20, 2012 posting (scroll down 2/3 of the way) about an imminent announcement, the location for the 2012 conference has not yet been divulged.

AAAS 2012, the Sunday, Feb. 19, 2012 experience: art/sci, HUBzero, and a news scoop from the exhibition floor

“New Concepts in Integrating Arts and Science Research for a Global Knowledge Society” at the AAAS 2012 annual meeting provided some thought provoking moments courtesy of Gunalan Nadarajan, Vice Provost at the Maryland Institute College of Art. It’s always good to be reminded that art schools are only about 300 years old and the notion of studying science as a separate discipline is only about 200 years old. We tend talk about the arts and the sciences as if they’ve always been separate pursuits when, as Nadarajan pointed out, they were part of a larger pursuit, which included philosophy and religion as well. That pursuit was knowledge.

Nadarajan mentioned a new network (a pilot project) in the US called the Network for Science Engineering Art and Design where they hope to bring scientists and artists together for collaborative work. These relationships are not always successful and Nadarajan noted that the problems tend to boil down to relationship issues (sometimes people don’t get along very well even with the best of intentions). He did say that he wanted to encourage people to get to know each other first in nonstressful environments such as sharing a meal or coffee. It sounded a little bit like dating but rather than a romantic encounter (or that might be a possibility too), the emphasis is on your work compatibility.

According to a blog posting by one of the organizers of the Network for Science Engineering Art and Design, Roger Malina, it is searching for a new name (search engine issues). You can get more information about the new network in Malina’s Feb. 19, 2012 posting.

“HUBzero: Building Collaboratories for Research on a Global Scale” was a session I anticipated with much interest and I’m glad to say it was very good with all the speakers being articulate and excited about their topics. I did not realize that there are a number of hubs in the US; I’m familiar only with the nanoHUB based at Purdue University in Indiana. (My most recent posting about this was the Dec. 5, 2011 posting about their NanoHUB-U initiative.)

nanoHUB and the others all run on an open source software designed for scientific collaboration. What I found most fascinating was the differences between the various hubs. Michael McLennan spoke about both the HUBzero software (which can be downloaded for free from the HUBzero website) and the nanoHUB, which services the nanotechnology community and has approximately 200,000 registered users at this time (they double their numbers every 12 – 18 months according to McLennan).

There are videos, papers, courses, social networking opportunities and more can be made available through the HUBzero software but uniquely configured to each group’s needs. Ellen M. Rathje (University of Texas, Austin) spoke at length about some of the challenges the earthquake engineers (NEES.org) addressed when developing their hub with regard to sharing data and some of the analytical difficulties associated with earthquake data.

Each group that uses the software to create a hub has its own culture and customs and the software has to be tweaked such that the advantages to adopting new work strategies outweigh the disadvantages of making changes. William K. Barnett whose portfolio includes encouraging the use of collaborative technologies for the Indiana Clinical and Translational Sciences Institute (CSTI) had to adopt an approach for doctors who typically have very little time to adopt new technologies and who have requirements regarding confidentiality that are far different than that of nanoscientists or earthquake engineers.

I got my ‘scooplet’ when I visited the exhibition floor. The 2012 Canadian Science Policy Conference (2012 CSPC) will be held in Alberta as you can see in this Feb. 19, 2012 posting on the Government of Canada science site.

Apparently, there are two cities under consideration and, for anyone  who’s been hoping for a meeting in Wetaskawin, I must grind your dreams into dust. As most Canadians would expect, the choice is between Edmonton and Calgary. I understand the scales are tipped towards Calgary (that’s the scooplet) but these things can change in a heartbeat (no, don’t get your hopes up about Wetaskawin). I understand we should be learning the decision soon (I wonder if Banff might emerge as a dark horse contender).

Nanocrystalline cellulose interview with Dr. Richard Berry of FPInnovations

Nanocrystalline cellulose (NCC) is one of the most searched items on this blog so it seemed like a good idea to send some questions about it to a Canadian company, FPInnovations, that has been a leader in  its development.  [Edited for typo, July 7, 2011] Dr. Richard Berry, program manager for FPInnovations very kindly answered. First a little biographical information,

Dr. Richard Berry is the manager of the FPInnovations Chemical Pulping Program and he has been the leader of the nanotechnology initiative at FPInnovations for the last several years. Dr. Berry is a key contributor to ArboraNano. His scientific accomplishments include work on the elimination of chlorinated dioxins and the development of a variety of bleaching technologies. Dr. Berry has overseen the industrial application of his numerous inventions. He is the author of more than eighty peer-reviewed publications and patents. The prestigious 2009 Nano-industry award from NanoQuébec was given to him for his exceptional contribution to the development of Nanocrystalline Cellulose. The initiatives Dr. Berry has spearheaded in recent years have allowed Canada to position itself as a world leader in the development of this new nanotechnology industry.

Now for the  interview:

Q: In light of the new Domtar-FPInnovations plant [mentioned here in my July 16, 2010 posting] which is going to be built in Windsor, Québec, could you tell me a little about nanocrystalline cellulose (NCC). I have looked at your information sheet which notes that cellulose is: milled then hydrolyzed with the NCC separated and concentrated so it can be treated chemically for new uses.  In layperson’s terms, what’s cellulose?

A:         Cellulose is the most abundant polymer on earth and is the major constituent of all plants; cotton is 100% cellulose. Cellulose is made of chains of glucose molecules and these arrange into amorphous (soft) and crystalline (hard) regions. These structures provide flexibility and strength respectively to the fibres that are made of cellulose.

The hard crystalline regions are separated from the soft amorphous regions in the process that we are using which also causes the separation of the crystallites in the crystalline regions. These crystallites are nanocrystalline cellulose and have a needle shape approximately 200nm in length and 10 nm in diameter

Q: What does hydrolyze mean, in simple terms?

A:         Hydrolyze in this process means that we break the bonds between the glucose molecules. This reaction occurs far more rapidly in the soft amorphous regions of the cellulose structure leaving the hard crystalline regions largely intact

Q: After [Edited for grammar, July 7, 2011] all this processing, do you have nanocrystalline cellulose and how would you describe what nanocrystalline cellulose is?

A:         The process is to produce nanocrystalline cellulose but many of the processing steps are to ensure that the process is closed cycle and that the acid used is recovered and that the dissolved glucose can be separated to make energy, ethanol or higher value chemical products.

Nanocrystalline cellulose is the basic physical building block of plants which therefore have used nanotechnology for eons. The crystallites are the reinforcement elements providing strength in wood, paper and fibres.

Q: Does the process use up the entire log or are parts of it left over? What happens to any leftover bits?

A:         We are starting from the bleached chemical pulp which is, to a large extent, cellulose. The left over bits have actually been processed as part of the chemical pulp mill processes. The acid used is recovered and reused and the sugars are converted into other products; in the demonstration plant they will be converted into biogas.

Q: I understand you won’t want to give away any competitive advantages but could you describe at least partially the sort of chemical processing involved for these new applications?

A:         In some applications, there is no processing needed at all. In other applications, the formulation used allows the NCC to be effective. In further applications, surface modification is required to maximize the properties.

Q: Is the new plant (Domtar-FPInnovations) meant to be used for producing nanocrystalline cellulose particles for shipment elsewhere? Or will there be work on applications using the nanoparticles? If so, on which application(s) are you concentrating your efforts?

A:         The plant presently is for producing various grades of nanocrystalline cellulose for shipment elsewhere. The applications are being developed with partners in the new industry sectors that we are targeting. Amongst others, we have partners for applications in coatings, films and textiles.

Q: Is FPInnovations involved with the ArboraNano Centre of Excellence programme and its efforts to encourage NCC use in industries not usually associated with forest products? What might involvement entail?

A:         FPInnovations is one of the founding members and had a significant role in setting up ArboraNano.  Our involvement presently is as a supplier of NCC through our pilot plant in Pointe Claire and as members of both the Scientific Committee and Board of Arboranano.

Q: Assuming FPInnovations is attending the 2010 TAPPI [International Conference on Nanotechnology for the Forest Product Industry] in Finland, can you give me a preview of the company’s proposed presentation(s) at the conference?

A:         Representatives of FPInnovations will be at the conference but our involvement will be limited because much of the material we have developed is proprietary to ourselves and to the partners that we have. Our focus at this stage is commercial development.

Q: What kind of research is being done on possible health, safety and environment issues with regard to NCC?

A:         From the very beginning of our project, 20% of our funding has been spent on these issues. We are glad to say that the research has shown that NCC is in the category of “practically non toxic”, and mammalian studies done to assess inhalation, ingestion and dermal risk have all shown the material to be in the lowest category of risk. These results show that the size of a particle is not a determinant of its risk but as with chemicals it is the specific material that is critical in determining toxicity.

Q: Are there plans, at some point in the future, to list NCC on Charles McGovern’s Integrated Nano-Science Commodities Exchange or will your product be listed on some other commodities exchange?

A:         We do not view NCC at the moment as a commodity; it is a very specialized group of materials. We hope it will take a long time before it becomes a commodity.

Thank you very much Dr. Berry.

On a related matter, I was fortunate enough to receive a copy of the documentation that the Canadian federal government provided in response to Member of Parliament, Peter Julian’s (NDP), question about nanotechnology funding from 2005/6 – 2008/9. The response from Natural Resources Canada highlighted funding provided to FPInnovations in fiscal year 2007/8 of $2,308,000 and in fiscal year 2008/9,  a further, $3,2570,000 for a total of $5,565,000. Natural Resources Canada did not fund any nanotechnology research in 2005/6 or 2006/7.

One final note, former president and chief executive officer of FPInnovations, Ian de la Roche, PhD, will be the keynote speaker at the 10th Pacific Rim Bio-Based Composites Symposium Oct. 5-8, 2010 in Banff, Alberta. (Thanks to Joel Burford at Alberta Innovates Technology Futures for the information.)