Tag Archives: bioenergy harvesting

Move your body and charge your phone

These researchers are working to bring a device than can harvest bioenergy to market, from a November 20, 2024 University of Waterloo (Ontario, Canada) news release (also on EurekAlert),

A new technology that can generate electricity from vibrations or even small body movements means you could charge your laptop by typing or power your smartphone’s battery on your morning run. 

Researchers at the University of Waterloo have developed a tiny, wearable generator in response to the urgent need for sustainable, clean energy. It is also scalable for larger machines. 

“This is a real game changer,” said Dr. Asif Khan, the project’s lead researcher and a postdoctoral fellow in the Department of Electrical and Computer Engineering at Waterloo. “We have made the first device of its kind that can power electronics at low cost and with unprecedented efficiency.” 

The device uses the piezoelectric effect, which generates electrical energy by applying pressure to materials like crystal and certain ceramics. Piezoelectric materials are currently used in various sensing technologies including sonar, ultrasonic imaging and microwave devices.  

“Those older materials are brittle, expensive and have a limited ability to generate electricity,” said Dr. Dayan Ban, professor and researcher at the Waterloo Institute for Nanotechnology. “The materials we’ve created for the new generator are flexible, more energy-efficient and cost less.” 

In addition to Khan and Ban, the research team includes two other Waterloo professors, one professor from the University of Toronto, and their research groups.  

The researchers have filed a patent and are working with a Canadian company to commercialize their generator for use in aviation, specifically to power the systems on planes that monitor the status of safety equipment.  

Caption: The new generator contains materials that are flexible, energy-efficient and relatively less expensive. Credit: University of Waterloo

Here’s a link to and a citation for the paper,

Breaking dielectric dilemma via polymer functionalized perovskite piezocomposite with large current density output by Asif Abdullah Khan, Avi Mathur, Lu Yin, Mahmoud Almadhoun, Jian Yin, Majid Haji Bagheri, Md Fahim Al Fattah, Araz Rajabi-Abhari, Ning Yan, Boxin Zhao, Vivek Maheshwari & Dayan Ban. Nature Communications volume 15, Article number: 9511 (2024) DOI: https://doi.org/10.1038/s41467-024-53846-6 Published: 04 November 2024

This paper is open access.

Early morning run could power your electrical wearables

I don’t think this is going to be happening tomorrow but here’s a relatively recent news item on ScienceDaily from August 22, 2024 about bioenergy harvesting and wearable technology,

Your early morning run could soon help harvest enough electricity to power your wearable devices, thanks to new nanotechnology developed at the University of Surrey [UK].

Surrey’s Advanced Technology Institute (ATI) has developed highly energy-efficient, flexible nanogenerators, which demonstrate a 140-fold increase in power density when compared to conventional nanogenerators. ATI researchers believe that this development could pave the way for nano-devices that are as efficient as today’s solar cells.

An August 21, 2024 University of Surrey press release (also on EurekAlert but published August 22, 2024), which originated the news item, provides more information about the research,

Surrey’s devices can convert small amounts of everyday mechanical energy, like motion, into a significantly higher amount of electrical power, similar to how an amplifier boosts sound in an electronic system. For instance, if a traditional nanogenerator produces 10 milliwatts of power, this new technology could increase that output to over 1,000 milliwatts, making it suitable for energy harvesting in various everyday applications. 

ATI’s nanogenerator works like a relay team – instead of one electrode (the runner) passing energy (charge) by itself. Each runner collects a baton (charge), adds more and then passes all batons to the next runner, boosting the overall energy that is collected in a process called the charge regeneration effect. 

Lead author of the study from the University of Surrey, Md Delowar Hussain, said: 

“The dream of nanogenerators is to capture and use energy from everyday movements, like your morning run, mechanical vibrations, ocean waves or opening a door. The key innovation with our nanogenerator is that we’ve fine-tuned the technology with 34 tiny energy collectors using a laser technique that can be scaled up for manufacture to increase energy efficiency further. 

“What’s really exciting is that our little device with high energy harvesting density could one day rival the power of solar panels and could be used to run anything from self-powered sensors to smart home systems that run without ever needing a battery change.” 

The device is a triboelectric nanogenerator (TENG) – a device that can capture and turn the energy from simple, everyday movements into electricity. They work by using materials that become electrically charged when they come into contact and then separate – similar to when you rub a balloon on your hair, and it sticks due to static electricity.  

Dr Bhaskar Dudem, co-author of the study from the University of Surrey, said:  

“We are soon going to launch a company focused on self-powered, non-invasive healthcare sensors using triboelectric technology. Innovations like these will enable us to drive new spin-out activities in sustainable health tech, improve sensitivity, and emphasize industrial scalability.” 

Professor Ravi Silva, co-author of the study and Director of the Advanced Technology Institute at the University of Surrey, said: 

“With the ever-increasing technology around us, it is predicted that we will have over 50 billion Internet of Things (IoT) devices in the next few years that will need energy to be powered. Local green energy solutions are needed, and this could be a convenient wireless technology that harnesses energy from any mechanical movements to power small devices. It offers an opportunity for the scientific and engineering community to find innovative and sustainable solutions to global challenges.” 

“We are incredibly excited about the potential of these nanogenerators to transform how we think about energy. You could also imagine these devices being used in IoT-based self-powered smart systems like autonomous wireless operations, security monitoring, and smart home systems, or even for supporting dementia patients, an area in which the University of Surrey has great expertise.” 

Here’s a link to and a citation for the paper,

Exploring charge regeneration effect in interdigitated array electrodes-based TENGs for a more than 100-fold enhanced power density by Md Delowar Hussain, Bhaskar Dudem, Dimitar I. Kutsarov, S. Ravi P. Silva. Nano Energy Volume 130, November 2024, 110112 DOI: https://doi.org/10.1016/j.nanoen.2024.110112 Available online 13 August 2024, Version of Record 21 August 2024

This paper is open access under a Creative Commons license.

Converting body heat into electricity with smart fabric

This bioenergy harvesting story is from the University of Waterloo (Ontario, Canada), where its researchers were part of an international collaboration. From an August 14, 2023 news item on ScienceDaily,

Imagine a coat that captures solar energy to keep you cozy on a chilly winter walk, or a shirt that can monitor your heart rate and temperature.Picture clothing athletes can wear to track their performance without the need for bulky battery packs.

University of Waterloo researchers have developed a smart fabric with these remarkable capabilities.

The fabric has the potential for energy harvesting, health monitoring, and movement tracking applications.

An August 14, 2024 University of Waterloo news release (also on EurekAlert), which originated the news item, provides more information about the new fabric and the research team, Note: A link has been removed,

The new fabric developed by a Waterloo research team can convert body heat and solar energy into electricity, potentially enabling continuous operation with no need for an external power source. Different sensors monitoring temperature, stress, and more can be integrated into the material.

It can detect temperature changes and a range of other sensors to monitor pressure, chemical composition, and more. One promising application is smart face masks that can track breath temperature and rate and detect chemicals in breath to help identify viruses, lung cancer, and other conditions.

“We have developed a fabric material with multifunctional sensing capabilities and self-powering potential,” said Yuning Li, a professor in the Department of Chemical Engineering. “This innovation brings us closer to practical applications for smart fabrics.”

Unlike current wearable devices that often depend on external power sources or frequent recharging, this breakthrough research has created a novel fabric which is more stable, durable, and cost-effective than other fabrics on the market. 

This research, conducted in collaboration with Professor Chaoxia Wang and PhD student Jun Peng from the College of Textile Science and Engineering at Jiangnan University, showcases the potential of integrating advanced materials such as MXene and conductive polymers with cutting-edge textile technologies to advance smart fabrics for wearable technology.

Li, director of Waterloo’s Printable Electronic Materials Lab, highlighted the significance of this advancement, which is the latest in the university’s suite of technologies disrupting health boundaries.

“AI technology is evolving rapidly, offering sophisticated signal analysis for health monitoring, food and pharmaceutical storage, environmental monitoring, and more. However, this progress relies on extensive data collection, which conventional sensors, often bulky, heavy, and costly, cannot meet,” Li said. “Printed sensors, including those embedded in smart fabrics, are ideal for continuous data collection and monitoring. This new smart fabric is a step forward in making these applications practical.”

The next phase of research will focus on further enhancing the fabric’s performance and integrating it with electronic components in collaboration with electrical and computer engineers. Future developments may include a smartphone app to track and transmit data from the fabric to healthcare professionals, enabling real-time, non-invasive health monitoring and everyday use.

Here’s a link to and a citation for the paper,

MXene-based thermoelectric fabric integrated with temperature and strain sensing for health monitoring by Jun Peng, Fangqing Ge, Weiyi Han, Tao Wu, Jinglei Tang, Yuning Li, Chaoxia Wang. Journal of Materials Science & Technology Volume 212, 20 March 2025, Pages 272-280

This paper is behind a paywall but you will be able to read snippets in a preview.

Proof-of-concept for implantable batteries that run on body’s own oxygen

Bioenergy harvesting may be here. Well maybe not yet but we are one step closer according to a March 27, 2024 news item on ScienceDaily,

From pacemakers to neurostimulators, implantable medical devices rely on batteries to keep the heart on beat and dampen pain. But batteries eventually run low and require invasive surgeries to replace. To address these challenges, researchers have devised an implantable battery that runs on oxygen in the body. The study shows in rats that the proof-of-concept design can deliver stable power and is compatible with the biological system.

This is a dynamic image illustrating the device in action,

Caption: Implantable and bio-compatible Na-O2 battery. Credit: Chem/Lv et al.

A March 27, 2024 Cell Press news release on EurekAlert, which originated the news item, provides more detail about the -proof-of-concept device,

“When you think about it, oxygen is the source of our life,” says corresponding author Xizheng Liu, who specializes in energy materials and devices at Tianjin University of Technology. “If we can leverage the continuous supply of oxygen in the body, battery life won’t be limited by the finite materials within conventional batteries.”

To build a safe and efficient battery, the researchers made its electrodes out of a sodium-based alloy and nanoporous gold, a material with pores thousands of times smaller than a hair’s width. Gold has been known for its compatibility with living systems, and sodium is an essential and ubiquitous element in the human body. The electrodes undergo chemical reactions with oxygen in the body to produce electricity. To protect the battery, the researchers encased it within a porous polymer film that is soft and flexible.

The researchers then implanted the battery under the skin on the backs of rats and measured its electricity output. Two weeks later, they found that the battery can produce stable voltages between 1.3 V and 1.4 V, with a maximum power density of 2.6 µW/cm2. Although the output is insufficient to power medical devices, the design shows that harnessing oxygen in the body for energy is possible.

The team also evaluated inflammatory reactions, metabolic changes, and tissue regeneration around the battery. The rats showed no apparent inflammation. Byproducts from the battery’s chemical reactions, including sodium ions, hydroxide ions, and low levels of hydrogen peroxide, were easily metabolized by the body and did not affect the kidneys and liver. The rats healed well after implantation, with the hair on their back completely regrown after four weeks. To the researchers’ surprise, blood vessels also regenerated around the battery.

“We were puzzled by the unstable electricity output right after implantation,” says Liu. “It turned out we had to give the wound time to heal, for blood vessels to regenerate around the battery and supply oxygen, before the battery could provide stable electricity. This is a surprising and interesting finding because it means that the battery can help monitor wound healing.”

Next, the team plans to up the battery’s energy delivery by exploring more efficient materials for the electrodes and optimizing the battery structure and design. Liu also noted that the battery is easy to scale up in production and choosing cost-effective materials can further lower the price. The team’s battery may also find other purposes beyond powering medical devices.

“Because tumor cells are sensitive to oxygen levels, implanting this oxygen-consuming battery around it may help starve cancers. It’s also possible to convert the battery energy to heat to kill cancer cells,” says Liu. “From a new energy source to potential biotherapies, the prospects for this battery are exciting.”

Here’s a link to and a citation for the paper,

Implantable and bio-compatible Na-O2 battery by Yang Lv, Xizheng Liu, Jiucong Liu, Pingli Wu, Yonggang Wang, Yi Ding. Chem DOI: https://doi.org/10.1016/j.chempr.2024.02.012 In press, corrected proof Published online: March 27, 2024 Copyright © 2024 Elsevier Inc.

The paper appears to be open access.

400 nm thick glucose fuel cell uses body’s own sugar

This May 12, 2022 news item on Nanowerk reminds me of bioenergy harvesting (using the body’s own processes rather than batteries to power implants),

Glucose is the sugar we absorb from the foods we eat. It is the fuel that powers every cell in our bodies. Could glucose also power tomorrow’s medical implants?

Engineers at MIT [Massachusetts Institute of Technology] and the Technical University of Munich think so. They have designed a new kind of glucose fuel cell that converts glucose directly into electricity. The device is smaller than other proposed glucose fuel cells, measuring just 400 nanometers thick. The sugary power source generates about 43 microwatts per square centimeter of electricity, achieving the highest power density of any glucose fuel cell to date under ambient conditions.

Caption: Silicon chip with 30 individual glucose micro fuel cells, seen as small silver squares inside each gray rectangle. Credit Image: Kent Dayton

A May 12, 2022 MIT news release (also on EuekAlert) by Jennifer Chu, which originated the news item, describes the technology in more detail, Note: A link has been removed,

The new device is also resilient, able to withstand temperatures up to 600 degrees Celsius. If incorporated into a medical implant, the fuel cell could remain stable through the high-temperature sterilization process required for all implantable devices.

The heart of the new device is made from ceramic, a material that retains its electrochemical properties even at high temperatures and miniature scales. The researchers envision the new design could be made into ultrathin films or coatings and wrapped around implants to passively power electronics, using the body’s abundant glucose supply.

“Glucose is everywhere in the body, and the idea is to harvest this readily available energy and use it to power implantable devices,” says Philipp Simons, who developed the design as part of his PhD thesis in MIT’s Department of Materials Science and Engineering (DMSE). “In our work we show a new glucose fuel cell electrochemistry.”

“Instead of using a battery, which can take up 90 percent of an implant’s volume, you could make a device with a thin film, and you’d have a power source with no volumetric footprint,” says Jennifer L.M. Rupp, Simons’ thesis supervisor and a DMSE visiting professor, who is also an associate professor of solid-state electrolyte chemistry at Technical University Munich in Germany.

Simons and his colleagues detail their design today in the journal Advanced Materials. Co-authors of the study include Rupp, Steven Schenk, Marco Gysel, and Lorenz Olbrich.

A “hard” separation

The inspiration for the new fuel cell came in 2016, when Rupp, who specializes in ceramics and electrochemical devices, went to take a routine glucose test toward the end of her pregnancy.

“In the doctor’s office, I was a very bored electrochemist, thinking what you could do with sugar and electrochemistry,” Rupp recalls. “Then I realized, it would be good to have a glucose-powered solid state device. And Philipp and I met over coffee and wrote out on a napkin the first drawings.”

The team is not the first to conceive of a glucose fuel cell, which was initially introduced in the 1960s and showed potential for converting glucose’s chemical energy into electrical energy. But glucose fuel cells at the time were based on soft polymers and were quickly eclipsed by lithium-iodide batteries, which would become the standard power source for medical implants, most notably the cardiac pacemaker.

However, batteries have a limit to how small they can be made, as their design requires the physical capacity to store energy.

“Fuel cells directly convert energy rather than storing it in a device, so you don’t need all that volume that’s required to store energy in a battery,” Rupp says.

In recent years, scientists have taken another look at glucose fuel cells as potentially smaller power sources, fueled directly by the body’s abundant glucose.

A glucose fuel cell’s basic design consists of three layers: a top anode, a middle electrolyte, and a bottom cathode. The anode reacts with glucose in bodily fluids, transforming the sugar into gluconic acid. This electrochemical conversion releases a pair of protons and a pair of electrons. The middle electrolyte acts to separate the protons from the electrons, conducting the protons through the fuel cell, where they combine with air to form molecules of water — a harmless byproduct that flows away with the body’s fluid. Meanwhile, the isolated electrons flow to an external circuit, where they can be used to power an electronic device.

The team looked to improve on existing materials and designs by modifying the electrolyte layer, which is often made from polymers. But polymer properties, along with their ability to conduct protons, easily degrade at high temperatures, are difficult to retain when scaled down to the dimension of nanometers, and are hard to sterilize. The researchers wondered if a ceramic — a heat-resistant material which can naturally conduct protons — could be made into an electrolyte for glucose fuel cells.

“When you think of ceramics for such a glucose fuel cell, they have the advantage of long-term stability, small scalability, and silicon chip integration,” Rupp notes. “They’re hard and robust.”

Peak power

The researchers designed a glucose fuel cell with an electrolyte made from ceria, a ceramic material that possesses high ion conductivity, is mechanically robust, and as such, is widely used as an electrolyte in hydrogen fuel cells. It has also been shown to be biocompatible.

“Ceria is actively studied in the cancer research community,” Simons notes. “It’s also similar to zirconia, which is used in tooth implants, and is biocompatible and safe.”

The team sandwiched the electrolyte with an anode and cathode made of platinum, a stable material that readily reacts with glucose. They fabricated 150 individual glucose fuel cells on a chip, each about 400 nanometers thin, and about 300 micrometers wide (about the width of 30 human hairs). They patterned the cells onto silicon wafers, showing that the devices can be paired with a common semiconductor material. They then measured the current produced by each cell as they flowed a solution of glucose over each wafer in a custom-fabricated test station.

They found many cells produced a peak voltage of about 80 millivolts. Given the tiny size of each cell, this output is the highest power density of any existing glucose fuel cell design.

“Excitingly, we are able to draw power and current that’s sufficient to power implantable devices,” Simons says.

“It is the first time that proton conduction in electroceramic materials can be used for glucose-to-power conversion, defining a new type of electrochemstry,” Rupp says. “It extends the material use-cases from hydrogen fuel cells to new, exciting glucose-conversion modes.”

Here’s a link to and a citation for the paper,

A Ceramic-Electrolyte Glucose Fuel Cell for Implantable Electronics by Philipp Simons, Steven A. Schenk, Marco A. Gysel, Lorenz F. Olbrich, Jennifer L. M. Rupp. Advanced Materials https://doi.org/10.1002/adma.202109075 First published: 05 April 2022

This paper is open access.

Smart dental implant resists bacterial growth and generates own electricity

A “smart” dental implant could improve upon current devices by employing biofilm-resisting nanoparticles and a light powered by biomechanical forces to promote health of the surrounding gum tissue. (Image: Courtesy of Albert Kim)

A September 9, 2021 news item on ScienceDaily announces research into ‘smart’ dental implants,

More than 3 million people in America have dental implants, used to replace a tooth lost to decay, gum disease, or injury. Implants represent a leap of progress over dentures or bridges, fitting much more securely and designed to last 20 years or more.

But often implants fall short of that expectation, instead needing replacement in five to 10 years due to local inflammation or gum disease, necessitating a repeat of a costly and invasive procedure for patients.

“We wanted to address this issue, and so we came up with an innovative new implant,” says Geelsu Hwang, an assistant professor in the University of Pennsylvania School of Dental Medicine, who has a background in engineering that he brings to his research on oral health issues.

The novel implant would implement two key technologies, Hwang says. One is a nanoparticle-infused material that resists bacterial colonization. And the second is an embedded light source to conduct phototherapy, powered by the natural motions of the mouth, such as chewing or toothbrushing. In a paper in the journal ACS Applied Materials & Interfaces and a 2020 paper in the journal Advanced Healthcare Materials, Hwang and colleagues lay out their platform, which could one day be integrated not only into dental implants but other technologies, such as joint replacements, as well.

A September 9, 2021 University of Pennsylvania news release (also on EurekAlert), which originated the news item, provides more technical details about the proposed technology,

“Phototherapy can address a diverse set of health issues,” says Hwang. “But once a biomaterial is implanted, it’s not practical to replace or recharge a battery. We are using a piezoelectric material, which can generate electrical power from natural oral motions to supply a light that can conduct phototherapy, and we find that it can successfully protect gingival tissue from bacterial challenge.”

In the paper, the material the researchers explored was barium titanate (BTO), which has piezoelectric properties that are leveraged in applications such as capacitators and transistors, but has not yet been explored as a foundation for anti-infectious implantable biomaterials. To test its potential as the foundation for a dental implant, the team first used discs embedded with nanoparticles of BTO and exposed them to Streptococcus mutans, a primary component of the bacterial biofilm responsible for tooth decay commonly known as dental plaque. They found that the discs resisted biofilm formation in a dose-dependent manner. Discs with higher concentrations of BTO were better at preventing biofilms from binding.

While earlier studies had suggested that BTO might kill bacteria outright using reactive oxygen species generated by light-catalyzed or electric polarization reactions, Hwang and colleagues did not find this to be the case due to the short-lived efficacy and off-target effects of these approaches. Instead, the material generates enhanced negative surface charge that repels the negatively charged cell walls of bacteria. It’s likely that this repulsion effect would be long-lasting, the researchers say.

“We wanted an implant material that could resist bacterial growth for a long time because bacterial challenges are not a one-time threat,” Hwang says.

The power-generating property of the material was sustained and in tests over time the material did not leach. It also demonstrated a level of mechanical strength comparable to other materials used in dental applications.

Finally, the material did not harm normal gingival tissue in the researchers’ experiments, supporting the idea that this could be used without ill effect in the mouth.

The technology is a finalist in the Science Center’s research accelerator program, the QED Proof-of-Concept program. As one of 12 finalists, Hwang and colleagues will receive guidance from experts in commercialization. If the project advances to be one of three finalists, the group has the potential to receive up to $200,000 in funding.

In future work, the team hopes to continue to refine the “smart” dental implant system, testing new material types and perhaps even using assymetric properties on each side of the implant components, one that encourages tissue integration on the side facing the gums and one that resists bacterial formation on the side facing the rest of the mouth.

“We hope to further develop the implant system and eventually see it commercialized so it can be used in the dental field,” Hwang says.

Here’s a link to and a citation for the paper,

Bimodal Nanocomposite Platform with Antibiofilm and Self-Powering Functionalities for Biomedical Applications by Atul Dhall, Sayemul Islam, Moonchul Park, Yu Zhang, Albert Kim, and Geelsu Hwang. ACS Appl. Mater. Interfaces 2021, 13, 34, 40379–40391 DOI: https://doi.org/10.1021/acsami.1c11791 Publication Date:August 18, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

The work from 2020, mentioned in the news release, laid groundwork for the latest paper.

Human Oral Motion-Powered Smart Dental Implant (SDI) for In Situ Ambulatory Photo-biomodulation Therapy by Moonchul Park, Sayemul Islam, Hye-Eun Kim, Jonathan Korosto, Markus B. Blatz, Geelsu Hwang, and Albert Kim. Adv. Healthcare Mater. 2020, 9, 2000658 DOI: 10.1002/adhm.202000658 First published: 01 July 2020 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimHuman

This paper is behind a paywall.

Artificial nose for intelligent olfactory substitution

The signal transmitted into mouse brain can participate in mouse perception and act as the brain stimulator. (Image credit: Prof. ZHAN Yang)

I’m fascinated by the image. Are they suggesting putting implants into people’s brains that can sense dangerous gaseous molecules and convert that into data which can be read on a smartphone? And, are they harvesting bioenergy to supply energy to the implant?

A July 29, 2019 news item on Azonano was not as helpful in answering my questions as I’d hoped (Note: A link has been removed),

An artificial olfactory system based on a self-powered nano-generator has been built by Prof. ZHAN Yang’s team at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences [CAS], together with colleagues at the University of Electronic Science and Technology of China.

The device, which can detect a variety of odor molecules and identify different odors, has been demonstrated in vivo in animal models. The research titled “An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution” has been reported in Nano Energy.

A July 25, 2019 CAS press release, which originated the news item, provides a little more information,

Odor processing is important to many species. Specific olfactory receptors located on the neurons are involved in odor recognition. These different olfactory receptors form patterned distribution.

Inspired by the biological receptors, the teams collaborated on formulating an artificial olfactory system. Through nano-fabrication on the soft materials and special alignment of material structures, the teams built a self-power device that can code and differentiate different odorant molecules.

This device has been connected to the mouse brain to demonstrate that the olfactory signals can produce appropriate neural stimulation. When the self-powered device generated the electric currents, the mouse displayed behavioral motion changes.

This study, inspired by the biological olfactory system, provides insights on novel design of neural stimulation and brain-machine interface. 

Here’s a link to and a citation for the paper,

An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution by Tianyan Zhong, Mengyang Zhang, Yongming Fu, Yechao Han, Hongye Guan, Haoxuan He, Tianming Zhao, Lili Xing, Xinyu Xue, Yan Zhang, Yang Zhan.Nano Energy Volume 63, September 2019, 103884 DOI: https://doi.org/10.1016/j.nanoen.2019.103884

This paper is behind a paywall.

Harvesting bioenergy to cure wounds and control weight

I’m always a sucker for bioenergy harvesting stories but this is the first time I’ve seen research on the topic which combines weight control with wound healing. From a January 17, 2019 news item on Nanowerk,


Although electrical stimulation has therapeutic potential for various disorders and conditions, ungainly power sources have hampered practical applications. Now bioengineers have developed implantable and wearable nanogenerators from special materials that create electrical pulses when compressed by body motions. The pulses controlled weight gain and enhanced healing of skin wounds in rat models.

The work was performed by a research team led by Xudong Wang, Ph.D., Professor of Material Sciences and Engineering, College of Engineering, University of Wisconsin-Madison, and supported by the [US Dept. of Health, National Institutes of Health] National Institute of Biomedical Imaging and Bioengineering (NIBIB).

A January 17, 2019 NIBIB news release, which originated the news item, provides more technical information (Note: Links have been removed),

The researchers used what are known as piezoelectric and dielectric materials, including ceramics and crystals, which have a special property of creating an electrical charge in response to mechanical stress.

“Wang and colleagues have engineered solutions to a number of technical hurdles to create piezoelectric and dielectric materials that are compatible with body tissues and can generate a reliable, self-sufficient power supply. Their meticulous work has enabled a simple and elegant technology that offers the possibility of developing electrical stimulation therapies for a number of major diseases that currently lack adequate treatments,” explained David Rampulla, Ph.D., director of the Program in Biomaterials and Biomolecular Constructs at NIBIB

Shedding weight by curbing appetite

Worldwide, more than 700 million people — over 100 million of them children — are obese, causing health problems such as cardiovascular disease, diabetes, kidney disease, and certain cancers. In 2015 approximately four million people died of obesity-related causes1.

To address this crisis, Wang and his colleagues developed a vagal nerve stimulator (VNS) that dramatically improves appetite suppression through electrical stimulation of the vagus nerve. The approach is a promising one that has previously not proven practical because patients must carry bulky battery packs that require proper programming, and frequent recharging

The VNS consists of a small patch, about the size of a fingernail, which carries tiny devices called nanogenerators. Minimally invasive surgery was used to attach the VNS to the stomachs of rats. The rat’s stomach movements resulted in the delivery of gentle electrical pulses to the vagus nerve, which links the brain to the stomach. With the VNS, when the stomach moved in response to eating, the electric signal told the brain that the stomach was full, even if only a small amount of food was consumed.

The device curbed the rat’s appetite and reduced body weight by a remarkable 40 percent. “The stimulation is a natural response to regulate food intake, so there are no unwanted side effects,” explained Wang. When the device was removed the rats resumed their normal eating patterns and their weight returned to pre-treatment levels.

“Given the simplicity and effectiveness of the system, coupled with the fact that the effect is reversible and carries no side-effects, we are now planning testing in larger animals with the hope of eventually moving into human trials,” said Wang.

Accelerating wound healing

In another NIBIB-funded study in a rat experimental model, the researchers used their nanogenerator technology to determine whether electrical stimulation would accelerate healing of wounds on the skin surface.

For this experiment, a band of nanogenerators was placed around the rat’s chest, where the expansion from breathing created a mild electric field. Small electrodes in a bandage-like device were placed over skin wounds on the rat’s back, where they directed the electric field to cover the wound area.

The technique reduced healing times to just three days compared with nearly two weeks for the normal healing process.

Similar to the case with appetite suppression, it was known that electricity could enhance wound healing, but the devices that had been developed were large and impractical. The nanogenerator-powered bandage is completely non-invasive and produced a mild electric field that is similar to electrical activity detected in the normal wound-healing process.

The researchers observed electrical activation of normal cellular healing processes that included the movement of healthy skin fibroblasts into the wound, accompanied by the release of biochemical factors that promote the growth of the fibroblasts and other cell types that expand to repair the wound space.

“The dramatic decrease in healing time was surprising,” said Wang, “We now plan to test the device on pigs because their skin is very similar to humans.” 

The team believes the simplicity of the electric bandage will help move the technology to human trials quickly. In addition, Wang explained that the fabrication of the device is very inexpensive and a product for human use would cost about the same as a normal bandage.

The experiments on appetite suppression were reported in the December issue of Nature Communications2. The wound-healing studies were reported in the December issue of ACS Nano3. Both studies were supported by grant EB021336 from the National Institute of Biomedical Imaging and Bioengineering, and grant CA014520 from the National Cancer Institute.

Here are links to and citations for the papers,

Effective weight control via an implanted self-powered vagus nerve stimulation device by Guang Yao, Lei Kang, Jun Li, Yin Long, Hao Wei, Carolina A. Ferreira, Justin J. Jeffery, Yuan Lin, Weibo Cai & Xudong Wang. Nature Communications volume 9, Article number: 5349 (2018) DOI: https://doi.org/10.1038/s41467-018-07764-z Published 17 December 2018

Effective Wound Healing Enabled by Discrete Alternative Electric Fields from Wearable Nanogenerators by Yin Long, Hao Wei, Jun Li, Guang Yao, Bo Yu, Dalong Ni, Angela LF Gibson, Xiaoli Lan, Yadong Jiang, Weibo Cai, and Xudong Wang. ACS Nano, 2018, 12 (12), pp 12533–12540 DOI: 10.1021/acsnano.8b07038 Publication Date (Web): November 29, 2018

Copyright © 2018 American Chemical Society

Both papers are open access.