Tag Archives: biohybrid robotic jellyfish

Bio-hybrid robotics (living robots) needs public debate and regulation

A July 23, 2024 University of Southampton (UK) press release (also on EurekAlert but published July 22, 2024) describes the emerging science/technology of bio-hybrid robotics and a recent study about the ethical issues raised, Note 1: bio-hybrid may also be written as biohybrid; Note 2: Links have been removed,

Development of ‘living robots’ needs regulation and public debate

Researchers are calling for regulation to guide the responsible and ethical development of bio-hybrid robotics – a ground-breaking science which fuses artificial components with living tissue and cells.

In a paper published in Proceedings of the National Academy of Sciences [PNAS] a multidisciplinary team from the University of Southampton and universities in the US and Spain set out the unique ethical issues this technology presents and the need for proper governance.

Combining living materials and organisms with synthetic robotic components might sound like something out of science fiction, but this emerging field is advancing rapidly. Bio-hybrid robots using living muscles can crawl, swim, grip, pump, and sense their surroundings. Sensors made from sensory cells or insect antennae have improved chemical sensing. Living neurons have even been used to control mobile robots.

Dr Rafael Mestre from the University of Southampton, who specialises in emergent technologies and is co-lead author of the paper, said: “The challenges in overseeing bio-hybrid robotics are not dissimilar to those encountered in the regulation of biomedical devices, stem cells and other disruptive technologies. But unlike purely mechanical or digital technologies, bio-hybrid robots blend biological and synthetic components in unprecedented ways. This presents unique possible benefits but also potential dangers.”

Research publications relating to bio-hybrid robotics have increased continuously over the last decade. But the authors found that of the more than 1,500 publications on the subject at the time, only five considered its ethical implications in depth.

The paper’s authors identified three areas where bio-hybrid robotics present unique ethical issues: Interactivity – how bio-robots interact with humans and the environment, Integrability – how and whether humans might assimilate bio-robots (such as bio-robotic organs or limbs), and Moral status.

In a series of thought experiments, they describe how a bio-robot for cleaning our oceans could disrupt the food chain, how a bio-hybrid robotic arm might exacerbate inequalities [emphasis mine], and how increasing sophisticated bio-hybrid assistants could raise questions about sentience and moral value.

“Bio-hybrid robots create unique ethical dilemmas,” says Aníbal M. Astobiza, an ethicist from the University of the Basque Country in Spain and co-lead author of the paper. “The living tissue used in their fabrication, potential for sentience, distinct environmental impact, unusual moral status, and capacity for biological evolution or adaptation create unique ethical dilemmas that extend beyond those of wholly artificial or biological technologies.”

The paper is the first from the Biohybrid Futures project led by Dr Rafael Mestre, in collaboration with the Rebooting Democracy project. Biohybrid Futures is setting out to develop a framework for the responsible research, application, and governance of bio-hybrid robotics.

The paper proposes several requirements for such a framework, including risk assessments, consideration of social implications, and increasing public awareness and understanding.

Dr Matt Ryan, a political scientist from the University of Southampton and a co-author on the paper, said: “If debates around embryonic stem cells, human cloning or artificial intelligence have taught us something, it is that humans rarely agree on the correct resolution of the moral dilemmas of emergent technologies.

“Compared to related technologies such as embryonic stem cells or artificial intelligence, bio-hybrid robotics has developed relatively unattended by the media, the public and policymakers, but it is no less significant. We want the public to be included in this conversation to ensure a democratic approach to the development and ethical evaluation of this technology.”

In addition to the need for a governance framework, the authors set out actions that the research community can take now to guide their research.

“Taking these steps should not be seen as prescriptive in any way, but as an opportunity to share responsibility, taking a heavy weight away from the researcher’s shoulders,” says Dr Victoria Webster-Wood, a biomechanical engineer from Carnegie Mellon University in the US and co-author on the paper.

“Research in bio-hybrid robotics has evolved in various directions. We need to align our efforts to fully unlock its potential.”

Here’s a link to and a citation for the paper,

Ethics and responsibility in biohybrid robotics research by Rafael Mestre, Aníbal M. Astobiza, Victoria A. Webster-Wood, Matt Ryan, and M. Taher A. Saif. PNAS 121 (31) e2310458121 July 23, 2024 DOI: https://doi.org/10.1073/pnas.2310458121

This paper is open access.

Cyborg or biohybrid robot?

Earlier, I highlighted “… how a bio-hybrid robotic arm might exacerbate inequalities …” because it suggests cyborgs, which are not mentioned in the press release or in the paper, This seems like an odd omission but, over the years, terminology does change although it’s not clear that’s the situation here.

I have two ‘definitions’, the first is from an October 21, 2019 article by Javier Yanes for OpenMind BBVA, Note: More about BBVA later,

The fusion between living organisms and artificial devices has become familiar to us through the concept of the cyborg (cybernetic organism). This approach consists of restoring or improving the capacities of the organic being, usually a human being, by means of technological devices. On the other hand, biohybrid robots are in some ways the opposite idea: using living tissues or cells to provide the machine with functions that would be difficult to achieve otherwise. The idea is that if soft robots seek to achieve this through synthetic materials, why not do so directly with living materials?

In contrast, there’s this from “Biohybrid robots: recent progress, challenges, and perspectives,” Note 1: Full citation for paper follows excerpt; Note 2: Links have been removed,

2.3. Cyborgs

Another approach to building biohybrid robots is the artificial enhancement of animals or using an entire animal body as a scaffold to manipulate robotically. The locomotion of these augmented animals can then be externally controlled, spanning three modes of locomotion: walking/running, flying, and swimming. Notably, these capabilities have been demonstrated in jellyfish (figure 4(A)) [139, 140], clams (figure 4(B)) [141], turtles (figure 4(C)) [142, 143], and insects, including locusts (figure 4(D)) [27, 144], beetles (figure 4(E)) [28, 145–158], cockroaches (figure 4(F)) [159–165], and moths [166–170].

….

The advantages of using entire animals as cyborgs are multifold. For robotics, augmented animals possess inherent features that address some of the long-standing challenges within the field, including power consumption and damage tolerance, by taking advantage of animal metabolism [172], tissue healing, and other adaptive behaviors. In particular, biohybrid robotic jellyfish, composed of a self-contained microelectronic swim controller embedded into live Aurelia aurita moon jellyfish, consumed one to three orders of magnitude less power per mass than existing swimming robots [172], and cyborg insects can make use of the insect’s hemolymph directly as a fuel source [173].

So, sometimes there’s a distinction and sometimes there’s not. I take this to mean that the field is still emerging and that’s reflected in evolving terminology.

Here’s a link to and a citation for the paper,

Biohybrid robots: recent progress, challenges, and perspectives by Victoria A Webster-Wood, Maria Guix, Nicole W Xu, Bahareh Behkam, Hirotaka Sato, Deblina Sarkar, Samuel Sanchez, Masahiro Shimizu and Kevin Kit Parker. Bioinspiration & Biomimetics, Volume 18, Number 1 015001 DOI 10.1088/1748-3190/ac9c3b Published 8 November 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd

This paper is open access.

A few notes about BBVA and other items

BBVA is Banco Bilbao Vizcaya Argentaria according to its Wikipedia entry, Note: Links have been removed,

Banco Bilbao Vizcaya Argentaria, S.A. (Spanish pronunciation: [ˈbaŋko βilˈβao βiθˈkaʝa aɾxenˈtaɾja]), better known by its initialism BBVA, is a Spanish multinational financial services company based in Madrid and Bilbao, Spain. It is one of the largest financial institutions in the world, and is present mainly in Spain, Portugal, Mexico, South America, Turkey, Italy and Romania.[2]

BBVA’s OpenMind is, from their About us page,

OpenMind: BBVA’s knowledge community

OpenMind is a non-profit project run by BBVA that aims to contribute to the generation and dissemination of knowledge about fundamental issues of our time, in an open and free way. The project is materialized in an online dissemination community.

Sharing knowledge for a better future.

At OpenMind we want to help people understand the main phenomena affecting our lives; the opportunities and challenges that we face in areas such as science, technology, humanities or economics. Analyzing the impact of scientific and technological advances on the future of the economy, society and our daily lives is the project’s main objective, which always starts on the premise that a broader and greater quality knowledge will help us to make better individual and collective decisions.

As for other items, you can find my latest (biorobotic, cyborg, or bionic depending what terminology you what to use) jellyfish story in this June 6, 2024 posting, the Biohybrid Futures project mentioned in the press release here, and also mentioned in the Rebooting Democracy project (unexpected in the context of an emerging science/technology) can be found here on this University of Southampton website.

Finally, you can find more on these stories (science/technology announcements and/or ethics research/issues) here by searching for ‘robots’ (tag and category), ‘cyborgs’ (tag), ‘machine/flesh’ (tag), ‘neuroprosthetic’ (tag), and human enhancement (category).

Bionic jellyfish for deep ocean exploration

This research may be a little disturbing for animal lovers as it involves conjoining a jellyfish (or sea jelly) and a robotic device. That said, a February 29, 2024 news item on ScienceDaily highlights new research into the oceanic depths,

Jellyfish can’t do much besides swim, sting, eat, and breed. They don’t even have brains. Yet, these simple creatures can easily journey to the depths of the oceans in a way that humans, despite all our sophistication, cannot.

But what if humans could have jellyfish explore the oceans on our behalf, reporting back what they find? New research conducted at Caltech [California Institute of Technology] aims to make that a reality through the creation of what researchers call biohybrid robotic jellyfish. These creatures, which can be thought of as ocean-going cyborgs, augment jellyfish with electronics that enhance their swimming and a prosthetic “hat” that can carry a small payload while also making the jellyfish swim in a more streamlined manner.

The researchers describe their work and provide recordings of the jellyfish,

A February 28, 2024 California Institute of Technology (Caltech) news release (also on EurekAlert) by Emily Velasco, which originated the news item, provides more detail,

The work, published in the journal Bioinspiration & Biomimetics, was conducted in the lab of John Dabiri (MS ’03, PhD ’05), the Centennial Professor of Aeronautics and Mechanical Engineering, and builds on his previous work augmenting jellyfish. Dabiri’s goal with this research is to use jellyfish as robotic data-gatherers, sending them into the oceans to collect information about temperature, salinity, and oxygen levels, all of which are affected by Earth’s changing climate.

“It’s well known that the ocean is critical for determining our present and future climate on land, and yet, we still know surprisingly little about the ocean, especially away from the surface,” Dabiri says. “Our goal is to finally move that needle by taking an unconventional approach inspired by one of the few animals that already successfully explores the entire ocean.”

Throughout his career, Dabiri has looked to the natural world, jellyfish included, for inspiration in solving engineering challenges. This work began with early attempts by Dabiri’s lab to develop a mechanical robot that swam like jellyfish, which have the most efficient method for traveling through water of any living creature. Though his research team succeeded in creating such a robot, that robot was never able to swim as efficiently as a real jellyfish. At that point, Dabiri asked himself, why not just work with jellyfish themselves?

“Jellyfish are the original ocean explorers, reaching its deepest corners and thriving just as well in tropical or polar waters,” Dabiri says. “Since they don’t have a brain or the ability to sense pain, we’ve been able to collaborate with bioethicists to develop this biohybrid robotic application in a way that’s ethically principled.”

Previously, Dabiri’s lab implanted jellyfish with a kind of electronic pacemaker that controls the speed at which they swim. In doing so, they found that if they made jellyfish swim faster than the leisurely pace they normally keep, the animals became even more efficient. A jellyfish swimming three times faster than it normally would uses only twice as much energy.

This time, the research team went a step further, adding what they call a forebody to the jellies. These forebodies are like hats that sit atop the jellyfish’s bell (the mushroom-shaped part of the animal). The devices were designed by graduate student and lead author Simon Anuszczyk (MS ’22), who aimed to make the jellyfish more streamlined while also providing a place where sensors and other electronics can be carried.

“Much like the pointed end of an arrow, we designed 3D-printed forebodies to streamline the bell of the jellyfish robot, reduce drag, and increase swimming performance,” Anuszczyk says. “At the same time, we experimented with 3D printing until we were able to carefully balance the buoyancy and keep the jellyfish swimming vertically.”

To test the augmented jellies’ swimming abilities, Dabiri’s lab undertook the construction of a massive vertical aquarium inside Caltech’s Guggenheim Laboratory. Dabiri explains that the three-story tank is tall, rather than wide, because researchers want to gather data on oceanic conditions far below the surface.

“In the ocean, the round trip from the surface down to several thousand meters will take a few days for the jellyfish, so we wanted to develop a facility to study that process in the lab,” Dabiri says. “Our vertical tank lets the animals swim against a flowing vertical current, like a treadmill for swimmers. We expect the unique scale of the facility—probably the first vertical water treadmill of its kind—to be useful for a variety of other basic and applied research questions.”

Swim tests conducted in the tank show that a jellyfish equipped with a combination of the swimming pacemaker and forebody can swim up to 4.5 times faster than an all-natural jelly while carrying a payload. The total cost is about $20 per jellyfish, Dabiri says, which makes biohybrid jellies an attractive alternative to renting a research vessel that can cost more than $50,000 a day to run.

“By using the jellyfish’s natural capacity to withstand extreme pressures in the deep ocean and their ability to power themselves by feeding, our engineering challenge is a lot more manageable,” Dabiri adds. “We still need to design the sensor package to withstand the same crushing pressures, but that device is smaller than a softball, making it much easier to design than a full submarine vehicle operating at those depths.

“I’m really excited to see what we can learn by simply observing these parts of the ocean for the very first time,” he adds.

Dabiri says future work may focus on further enhancing the bionic jellies’ abilities. Right now, they can only be made to swim faster in a straight line, such as the vertical paths being designed for deep ocean measurement. But further research may also make them steerable, so they can be directed horizontally as well as vertically.

The paper describing the work, “Electromechanical enhancement of live jellyfish for ocean exploration,” appears in the XX issue of Bioinspiration & Biomimetics. Co-authors are Anuszczyk and Dabiri.

Funding for the research was provided by the National Science Foundation and the Charles Lee Powell Foundation.

Here’s a link to and a citation for the paper,

Electromechanical enhancement of live jellyfish for ocean exploration by Simon R Anuszczyk and John O Dabiri. Bioinspiration & Biomimetics, Volume 19, Number 2 DOI 10.1088/1748-3190/ad277f Published 28 February 2024

This paper is open access.