Tag Archives: biohybrid robotics

Complex finger movements made possible with rolls of tendonlike human muscle tissue (a biohybrid hand)

This February 12, 2025 news item on ScienceDaily describes work where lab-grown ‘living’ tissue is integrated with nonliving material,

A biohybrid hand which can move objects and do a scissor gesture has been built by a team at the University of Tokyo and Waseda University in Japan. The researchers used thin strings of lab-grown muscle tissue bundled into sushilike rolls to give the fingers enough strength to contract. These multiple muscle tissue actuators (MuMuTAs), created by the researchers, are a major development towards building larger biohybrid limbs. While currently limited to the lab environment, MuMuTAs have the potential to advance future biohybrid prosthetics, aid drug testing on muscle tissue and broaden the potential of biohybrid robotics to mimic real-life forms.

“Rock, paper, scissors” is a classic schoolyard game or quick-fire way to make decisions for the indecisive. But choose paper and you are going to lose to this robot hand, which has mastered the art of the scissor gesture. And while it might seem like a simple motion, in the realm of biohybrids and prosthetic limbs, this is a leap forward towards new levels of realism and usability.

Rock, paper, scissors. The complex combination of movements required for this simple scissor gesture is a big step up from the capabilities of previous biohybrid robots. © X. Ren, Y. Morimoto and S. Takeuchi, 2025/ Science Robotics

A February 13, 2025 University of Tokyo press release (also on EurekAlert but published February 12, 2025) provides more detail about the work,

The hand is made of a 3D-printed plastic base, with tendons of human muscle tissue which move the fingers. Until now, biohybrid devices have typically been on a much smaller scale (about 1-centimeter long) or limited to simpler or single-joint movements. By contrast, the biohybrid hand is 18 cm in length and has multijointed fingers, which can be moved individually to make gestures or in combination to manipulate objects. 

“Our key achievement was developing the MuMuTAs. These are thin strands of muscle tissue grown in a culture medium and then rolled up into a bundle like a sushi roll to make each tendon,” explained Professor Shoji Takeuchi from the University of Tokyo. “Creating the MuMuTAs enabled us to overcome our biggest challenge, which was to ensure enough contractile force and length in the muscles to drive the hand’s large structure.”

Thick muscle tissue which is needed to move larger limbs is difficult to grow in the lab, as it suffers from necrosis. This is when insufficient nutrients reach the center of the muscle, resulting in tissue loss. However, by using multiple thin muscle tissues bundled together to act as one larger muscle, the team was able to create tendons with enough strength.

The MuMuTAs are stimulated using electrical currents, delivered through waterproof cables. To test the abilities of the hand, the team manipulated the fingers to form a scissor gesture by contracting the little finger, ring finger and thumb. They also used the fingers to grasp and move the tip of a pipette. This demonstrated the hand’s ability to mimic a range of actions, as the multijointed fingers can be flexed either separately or at the same time, an impressive feat.

Using real muscle tissue does however come with some downsides, as anyone who has been to the gym may know. “While not entirely surprising, it was interesting that the contractile force of the tissues decreased and showed signs of fatigue after 10 minutes of electrical stimulation, yet recovered within just one hour of rest. Observing such a recovery response, similar to that of living tissues, in engineered muscle tissues was a remarkable and fascinating outcome,” said Takeuchi. 

Currently the hand must be suspended in liquid so that the “anchors,” or ties, which connect the muscles to the hand can float without friction, allowing the fingers to move smoothly. However, the team believes that with further development, it will be possible to build a free-moving hand.

Another further challenge with the current design is that the fingers cannot be intentionally returned to their straight starting position but do so by floating into place. Adding an elastic material to snap them back into position, or more MuMuTAs on the back of the fingers which contract in the opposite direction, would enable more control over finger movement.

“A major goal of biohybrid robotics is to mimic biological systems, which necessitates scaling up their size.  Our development of the MuMuTAs is an important milestone for achieving this,” said Takeuchi. “The field of biohybrid robotics is still in its infancy, with many foundational challenges to overcome. Once these basic hurdles are addressed, this technology could be used in advanced prosthetics, and could also serve as a tool for understanding how muscle tissues function in biological systems, to test surgical procedures or drugs targeting muscle tissues.” 

Here’s a link to and a citation for the paper,

Biohybrid hand actuated by multiple human muscle tissues by Xinzhu Ren, Yuya Morimoto, and Shoji Takeuchi. Science Robotics 12 Feb 2025 Vol 10, Issue 99 DOI: 10.1126/scirobotics.adr5512

This paper is behind a paywall.

Moving past xenobots (living robots based on frog stem cells)

Laura Tran’s June 14, 2024 article for The Scientist gives both a brief history of Michael Levin’s and his team’s work on developing living robots using stem cells from an African clawed frog (known as Xenopus laevis) and offers an update on the team’s work into synthetic lifeforms. First, the xenobots, Note 1: This could be difficult for people with issues regarding animal experimentation Note 1: Links have been removed,

Ibegan with little pieces of embryos scooting around in a dish. In 1998, these unassuming cells caught the attention of Michael Levin, then a postdoctoral researcher studying cell biology at Harvard University. He recalled simply recording a video before tucking the memory away. Nearly two decades later, Levin, now a developmental and synthetic biologist at Tufts University, experienced a sense of déjà vu. He observed that as a student transplanted tissues from one embryo to another, some loose cells swam free in the dish. 

Levin had a keen interest in the collective intelligence of cells, tissues, organs, and artificial constructs within regenerative medicine, and he wondered if he could explore the plasticity and harness the untapped capabilities of these swirling embryonic stem cells. “At that point, I started thinking that this is probably an amazing biorobotics platform,” recalled Levin. He rushed to describe this idea to Douglas Blackiston, a developmental and synthetic biologist at Tufts University who worked alongside Levin. 

At the time, Blackiston was conducting plasticity research to restore vision in blind African clawed frog tadpoles, Xenopus laevis, a model organism used to understand development. Blackiston transplanted the eyes to unusual places, such as the back of the head or even the tail, to test the integration of transplanted sensory organs.1 The eye axons extended to either the gut or spinal cord. In a display of dynamic plasticity, transplanted eyes on the tail that extended an optic nerve into the spinal cord restored the tadpoles’ vision.2 

In a similar vein, Josh Bongard, an evolutionary roboticist at the University of Vermont and Levin’s longtime colleague, pondered how robots could evolve like animals. He wanted to apply biological evolution to a machine by tinkering with the brains and bodies of robots and explored this idea with Sam Kriegman, then a graduate student in Bongard’s group and now an assistant professor at Northwestern University. Kriegman used evolutionary algorithms and artificial intelligence (AI) to simulate biological evolution in a virtual creature before teaming up with engineers to construct a physical version. 

i have two stories about the Xenobots. I was a little late to the party, so, the June 21, 2021 posting is about xenobots 2.0 and their ability to move and the June 8, 2022 posting is about their ability to reproduce.

Tran’s June 14, 2024 article provides the latest update, Note: Links have been removed,

Evolving Beyond the Xenobot

“People thought this was a one-off froggy-specific result, but this is a very profound thing,” emphasized Levin. To demonstrate its translatability in a non-frog model, he wondered, “What’s the furthest from an embryonic frog? Well, that would be an adult human.”

He enlisted the help of Gizem Gumuskaya, a synthetic biologist with an architectural background in Levin’s group, to tackle this challenge of creating biological robots using human cells to create anthrobots.8 While Gumuskaya was not involved with the development of xenobots, she drew inspiration from their design. By using adult human tracheal cells, she found that adult cells still displayed morphologic plasticity.

There are several key differences between xenobots and anthrobots: species, cell source (embryonic or adult), and the anthrobots’ ability to self-assemble without manipulation. “When considering applications, as a rule of thumb, xenobots are better suited to the environment. They exhibit higher durability, require less maintenance, and can coexist within the environment,” said Gumuskaya.

Meanwhile, there is greater potential for the use of mammalian-derived biobots in biomedical applications. This could include localized drug delivery, deposition into the arteries to break up plaque buildup, or deploying anthrobots into tissue to act as biosensors. “[Anthrobots] are poised as a personalized agent with the same DNA but new functionality,” remarked Gumuskaya.

Here’s a link to and a citation for the team’s latest paper,

Motile Living Biobots Self-Construct from Adult Human Somatic Progenitor Seed Cells by Gizem Gumuskaya, Pranjal Srivastava, Ben G. Cooper, Hannah Lesser, Ben Semegran, Simon Garnier, Michael Levin. Advanced Science Volume 11, Issue 4 January 26, 2024 2303575 DOI: https://doi.org/10.1002/advs.202303575 First published: 30 November 2023

This paper is open access.

Bio-hybrid robotics (living robots) needs public debate and regulation

A July 23, 2024 University of Southampton (UK) press release (also on EurekAlert but published July 22, 2024) describes the emerging science/technology of bio-hybrid robotics and a recent study about the ethical issues raised, Note 1: bio-hybrid may also be written as biohybrid; Note 2: Links have been removed,

Development of ‘living robots’ needs regulation and public debate

Researchers are calling for regulation to guide the responsible and ethical development of bio-hybrid robotics – a ground-breaking science which fuses artificial components with living tissue and cells.

In a paper published in Proceedings of the National Academy of Sciences [PNAS] a multidisciplinary team from the University of Southampton and universities in the US and Spain set out the unique ethical issues this technology presents and the need for proper governance.

Combining living materials and organisms with synthetic robotic components might sound like something out of science fiction, but this emerging field is advancing rapidly. Bio-hybrid robots using living muscles can crawl, swim, grip, pump, and sense their surroundings. Sensors made from sensory cells or insect antennae have improved chemical sensing. Living neurons have even been used to control mobile robots.

Dr Rafael Mestre from the University of Southampton, who specialises in emergent technologies and is co-lead author of the paper, said: “The challenges in overseeing bio-hybrid robotics are not dissimilar to those encountered in the regulation of biomedical devices, stem cells and other disruptive technologies. But unlike purely mechanical or digital technologies, bio-hybrid robots blend biological and synthetic components in unprecedented ways. This presents unique possible benefits but also potential dangers.”

Research publications relating to bio-hybrid robotics have increased continuously over the last decade. But the authors found that of the more than 1,500 publications on the subject at the time, only five considered its ethical implications in depth.

The paper’s authors identified three areas where bio-hybrid robotics present unique ethical issues: Interactivity – how bio-robots interact with humans and the environment, Integrability – how and whether humans might assimilate bio-robots (such as bio-robotic organs or limbs), and Moral status.

In a series of thought experiments, they describe how a bio-robot for cleaning our oceans could disrupt the food chain, how a bio-hybrid robotic arm might exacerbate inequalities [emphasis mine], and how increasing sophisticated bio-hybrid assistants could raise questions about sentience and moral value.

“Bio-hybrid robots create unique ethical dilemmas,” says Aníbal M. Astobiza, an ethicist from the University of the Basque Country in Spain and co-lead author of the paper. “The living tissue used in their fabrication, potential for sentience, distinct environmental impact, unusual moral status, and capacity for biological evolution or adaptation create unique ethical dilemmas that extend beyond those of wholly artificial or biological technologies.”

The paper is the first from the Biohybrid Futures project led by Dr Rafael Mestre, in collaboration with the Rebooting Democracy project. Biohybrid Futures is setting out to develop a framework for the responsible research, application, and governance of bio-hybrid robotics.

The paper proposes several requirements for such a framework, including risk assessments, consideration of social implications, and increasing public awareness and understanding.

Dr Matt Ryan, a political scientist from the University of Southampton and a co-author on the paper, said: “If debates around embryonic stem cells, human cloning or artificial intelligence have taught us something, it is that humans rarely agree on the correct resolution of the moral dilemmas of emergent technologies.

“Compared to related technologies such as embryonic stem cells or artificial intelligence, bio-hybrid robotics has developed relatively unattended by the media, the public and policymakers, but it is no less significant. We want the public to be included in this conversation to ensure a democratic approach to the development and ethical evaluation of this technology.”

In addition to the need for a governance framework, the authors set out actions that the research community can take now to guide their research.

“Taking these steps should not be seen as prescriptive in any way, but as an opportunity to share responsibility, taking a heavy weight away from the researcher’s shoulders,” says Dr Victoria Webster-Wood, a biomechanical engineer from Carnegie Mellon University in the US and co-author on the paper.

“Research in bio-hybrid robotics has evolved in various directions. We need to align our efforts to fully unlock its potential.”

Here’s a link to and a citation for the paper,

Ethics and responsibility in biohybrid robotics research by Rafael Mestre, Aníbal M. Astobiza, Victoria A. Webster-Wood, Matt Ryan, and M. Taher A. Saif. PNAS 121 (31) e2310458121 July 23, 2024 DOI: https://doi.org/10.1073/pnas.2310458121

This paper is open access.

Cyborg or biohybrid robot?

Earlier, I highlighted “… how a bio-hybrid robotic arm might exacerbate inequalities …” because it suggests cyborgs, which are not mentioned in the press release or in the paper, This seems like an odd omission but, over the years, terminology does change although it’s not clear that’s the situation here.

I have two ‘definitions’, the first is from an October 21, 2019 article by Javier Yanes for OpenMind BBVA, Note: More about BBVA later,

The fusion between living organisms and artificial devices has become familiar to us through the concept of the cyborg (cybernetic organism). This approach consists of restoring or improving the capacities of the organic being, usually a human being, by means of technological devices. On the other hand, biohybrid robots are in some ways the opposite idea: using living tissues or cells to provide the machine with functions that would be difficult to achieve otherwise. The idea is that if soft robots seek to achieve this through synthetic materials, why not do so directly with living materials?

In contrast, there’s this from “Biohybrid robots: recent progress, challenges, and perspectives,” Note 1: Full citation for paper follows excerpt; Note 2: Links have been removed,

2.3. Cyborgs

Another approach to building biohybrid robots is the artificial enhancement of animals or using an entire animal body as a scaffold to manipulate robotically. The locomotion of these augmented animals can then be externally controlled, spanning three modes of locomotion: walking/running, flying, and swimming. Notably, these capabilities have been demonstrated in jellyfish (figure 4(A)) [139, 140], clams (figure 4(B)) [141], turtles (figure 4(C)) [142, 143], and insects, including locusts (figure 4(D)) [27, 144], beetles (figure 4(E)) [28, 145–158], cockroaches (figure 4(F)) [159–165], and moths [166–170].

….

The advantages of using entire animals as cyborgs are multifold. For robotics, augmented animals possess inherent features that address some of the long-standing challenges within the field, including power consumption and damage tolerance, by taking advantage of animal metabolism [172], tissue healing, and other adaptive behaviors. In particular, biohybrid robotic jellyfish, composed of a self-contained microelectronic swim controller embedded into live Aurelia aurita moon jellyfish, consumed one to three orders of magnitude less power per mass than existing swimming robots [172], and cyborg insects can make use of the insect’s hemolymph directly as a fuel source [173].

So, sometimes there’s a distinction and sometimes there’s not. I take this to mean that the field is still emerging and that’s reflected in evolving terminology.

Here’s a link to and a citation for the paper,

Biohybrid robots: recent progress, challenges, and perspectives by Victoria A Webster-Wood, Maria Guix, Nicole W Xu, Bahareh Behkam, Hirotaka Sato, Deblina Sarkar, Samuel Sanchez, Masahiro Shimizu and Kevin Kit Parker. Bioinspiration & Biomimetics, Volume 18, Number 1 015001 DOI 10.1088/1748-3190/ac9c3b Published 8 November 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd

This paper is open access.

A few notes about BBVA and other items

BBVA is Banco Bilbao Vizcaya Argentaria according to its Wikipedia entry, Note: Links have been removed,

Banco Bilbao Vizcaya Argentaria, S.A. (Spanish pronunciation: [ˈbaŋko βilˈβao βiθˈkaʝa aɾxenˈtaɾja]), better known by its initialism BBVA, is a Spanish multinational financial services company based in Madrid and Bilbao, Spain. It is one of the largest financial institutions in the world, and is present mainly in Spain, Portugal, Mexico, South America, Turkey, Italy and Romania.[2]

BBVA’s OpenMind is, from their About us page,

OpenMind: BBVA’s knowledge community

OpenMind is a non-profit project run by BBVA that aims to contribute to the generation and dissemination of knowledge about fundamental issues of our time, in an open and free way. The project is materialized in an online dissemination community.

Sharing knowledge for a better future.

At OpenMind we want to help people understand the main phenomena affecting our lives; the opportunities and challenges that we face in areas such as science, technology, humanities or economics. Analyzing the impact of scientific and technological advances on the future of the economy, society and our daily lives is the project’s main objective, which always starts on the premise that a broader and greater quality knowledge will help us to make better individual and collective decisions.

As for other items, you can find my latest (biorobotic, cyborg, or bionic depending what terminology you what to use) jellyfish story in this June 6, 2024 posting, the Biohybrid Futures project mentioned in the press release here, and also mentioned in the Rebooting Democracy project (unexpected in the context of an emerging science/technology) can be found here on this University of Southampton website.

Finally, you can find more on these stories (science/technology announcements and/or ethics research/issues) here by searching for ‘robots’ (tag and category), ‘cyborgs’ (tag), ‘machine/flesh’ (tag), ‘neuroprosthetic’ (tag), and human enhancement (category).