Tag Archives: bioinspired

The inside scoop on beetle exoskeletons

In the past I’ve covered work on the Namib beetle and its bumps which allow it to access condensation from the air in one of the hottest places on earth and work on jewel beetles and how their structural colo(u)r is derived. Now, there’s research into a beetle’s body armor from the University of Nebraska-Lincoln according to a Feb. 22, 2017 news item on ScienceDaily,

Beetles wear a body armor that should weigh them down — think medieval knights and turtles. In fact, those hard shells protecting delicate wings are surprisingly light, allowing even flight.

Better understanding the structure and properties of beetle exoskeletons could help scientists engineer lighter, stronger materials. Such materials could, for example, reduce gas-guzzling drag in vehicles and airplanes and reduce the weight of armor, lightening the load for the 21st-century knight.

But revealing exoskeleton architecture at the nanoscale has proven difficult. Nebraska’s Ruiguo Yang, assistant professor of mechanical and materials engineering, and his colleagues found a way to analyze the fibrous nanostructure. …

A Feb. 22, 2017 University of Nebraska-Lincoln news release by Gillian Klucas (also on EurekAlert), which originated the news item, describes skeletons and the work in more detail,

The lightweight exoskeleton is composed of chitin fibers just around 20 nanometers in diameter (a human hair measures approximately 75,000 nanometers in diameter) and packed and piled into layers that twist in a spiral, like a spiral staircase. The small diameter and helical twisting, known as Bouligand, make the structure difficult to analyze.

Yang and his team developed a method of slicing down the spiral to reveal a surface of cross-sections of fibers at different orientations. From that viewpoint, the researchers were able to analyze the fibers’ mechanical properties with the aid of an atomic force microscope. This type of microscope applies a tiny force to a test sample, deforms the sample and monitors the sample’s response. Combining the experimental procedure and theoretical analysis, the researchers were able to reveal the nanoscale architecture of the exoskeleton and the material properties of the nanofibers.

Yang holds a piece of the atomic force microscope used to measure the beetle's surface. A small wire can barely be seen in the middle of the piece. Unseen is a two-nano-size probe attached to the wire, which does the actual measuring.

Craig Chandler | University Communication

Yang holds a piece of the atomic force microscope used to measure the beetle’s surface. A small wire can barely be seen in the middle of the piece. Unseen is a two-nano-size probe attached to the wire, which does the actual measuring.

They made their discoveries in the common figeater beetle, Cotinis mutabilis, a metallic green native of the western United States. But the technique can be used on other beetles and hard-shelled creatures and might also extend to artificial materials with fibrous structures, Yang said.

Comparing beetles with differing demands on their exoskeletons, such as defending against predators or environmental damage, could lead to evolutionary insights as well as a better understanding of the relationship between structural features and their properties.

Yang’s co-authors are Alireza Zaheri and Horacio Espinosa of Northwestern University; Wei Gao of the University of Texas at San Antonio; and Cheryl Hayashi of the University of California, Riverside.

Here’s a link to and a citation for the paper,

Exoskeletons: AFM Identification of Beetle Exocuticle: Bouligand Structure and Nanofiber Anisotropic Elastic Properties by Ruiguo Yang, Alireza Zaheri,Wei Gao, Charely Hayashi, Horacio D. Espinosa. Adv. Funct. Mater. vol. 27 (6) 2017 DOI: 10.1002/adfm.201770031 First published: 8 February 2017

This paper is behind a paywall.

Brown recluse spider, one of the world’s most venomous spiders, shows off unique spinning technique

Caption: American Brown Recluse Spider is pictured. Credit: Oxford University

According to scientists from Oxford University this deadly spider could teach us a thing or two about strength. From a Feb. 15, 2017 news item on ScienceDaily,

Brown recluse spiders use a unique micro looping technique to make their threads stronger than that of any other spider, a newly published UK-US collaboration has discovered.

One of the most feared and venomous arachnids in the world, the American brown recluse spider has long been known for its signature necro-toxic venom, as well as its unusual silk. Now, new research offers an explanation for how the spider is able to make its silk uncommonly strong.

Researchers suggest that if applied to synthetic materials, the technique could inspire scientific developments and improve impact absorbing structures used in space travel.

The study, published in the journal Material Horizons, was produced by scientists from Oxford University’s Department of Zoology, together with a team from the Applied Science Department at Virginia’s College of William & Mary. Their surveillance of the brown recluse spider’s spinning behaviour shows how, and to what extent, the spider manages to strengthen the silk it makes.

A Feb. 15, 2017 University of Oxford press release, which originated the news item,  provides more detail about the research,

From observing the arachnid, the team discovered that unlike other spiders, who produce round ribbons of thread, recluse silk is thin and flat. This structural difference is key to the thread’s strength, providing the flexibility needed to prevent premature breakage and withstand the knots created during spinning which give each strand additional strength.

Professor Hannes Schniepp from William & Mary explains: “The theory of knots adding strength is well proven. But adding loops to synthetic filaments always seems to lead to premature fibre failure. Observation of the recluse spider provided the breakthrough solution; unlike all spiders its silk is not round, but a thin, nano-scale flat ribbon. The ribbon shape adds the flexibility needed to prevent premature failure, so that all the microloops can provide additional strength to the strand.”

By using computer simulations to apply this technique to synthetic fibres, the team were able to test and prove that adding even a single loop significantly enhances the strength of the material.

William & Mary PhD student Sean Koebley adds: “We were able to prove that adding even a single loop significantly enhances the toughness of a simple synthetic sticky tape. Our observations open the door to new fibre technology inspired by the brown recluse.”

Speaking on how the recluse’s technique could be applied more broadly in the future, Professor Fritz Vollrath, of the Department of Zoology at Oxford University, expands: “Computer simulations demonstrate that fibres with many loops would be much, much tougher than those without loops. This right away suggests possible applications. For example carbon filaments could be looped to make them less brittle, and thus allow their use in novel impact absorbing structures. One example would be spider-like webs of carbon-filaments floating in outer space, to capture the drifting space debris that endangers astronaut lives’ and satellite integrity.”

Here’s a link to and a citation for the paper,

Toughness-enhancing metastructure in the recluse spider’s looped ribbon silk by
S. R. Koebley, F. Vollrath, and H. C. Schniepp. Mater. Horiz., 2017, Advance Article DOI: 10.1039/C6MH00473C First published online 15 Feb 2017

This paper is open access although you may need to register with the Royal Society of Chemistry’s publishing site to get access.

Effective sunscreens from nature

The dream is to find sunscreens that don’t endanger humans or pollute the environment and it seems that Spanish scientists may have taken a step closer to making that dream a reality (from a Jan. 30, 2017 Wiley Publications press release (also on EurekAlert),

The ideal sunscreen should block UVB and UVA radiation while being safe and stable. In the journal Angewandte Chemie, Spanish scientists have introduced a new family of UVA and UVB filters based on natural sunscreen substances found in algae and cyanobacteria. They are highly stable and enhance the effectivity [sic] of commercial sunscreens.

Good news for sunseekers. Commercial [sic] available sunscreen lotions can very effectively protect from dangerous radiation in the ultraviolet [spectrum], but they need to be applied regularly and in high amounts to develop their full potential. One of the most critical issues is the limited stability of the UV filter molecules. Inspired by nature, Diego Sampedro and his colleagues from La Rioja University in Logrono and collaborators from Malaga University and Alcala University, Madrid, Spain, have screened a natural class of UV-protecting [blocking?] molecules for their possible use in skin protection. They adjusted the nature-given motif [sic] to the requirements of chemical synthesis and found that the molecules could indeed boost the sun protection factor of common formulations.

The natural sunscreen molecules are called microsporine-like amino acids (MAAs) and are widespread in the microbial world, most prominently in marine algae and cyanobacteria. MAAs are small molecules derived from amino acids, thermally stable, and they absorb light in the ultraviolet region, protecting the microbial DNA from radiation damage. Thus they are natural sunscreens, which inspired Sampedro and his colleagues to create [a] new class of organic sunscreen compounds.

Theoretical calculations revealed what is chemically needed for a successful design. “We performed a computer calculation of several basic scaffolds [..] to identify the simplest compound that fulfills the requisites for efficient sunscreens”, the authors write. The result of their search was a set of molecules which were readily synthesized, “avoiding the decorating substituents that come from the biosynthetic route.” Thus the small basic molecules can be tuned to give them more favorable properties.

The authors found that the synthesized compounds are characterized by excellent filter capacities in the relevant UV range. In addition they are photostable, much more than, for example, oxybenzene [sic] which is a widely used sunscreen in commercial formulations. They do not react chemically and dissipate radiation as heat (but not to such an extent that the skin temperature would rise as well). And, most importantly, when tested in real formulations, the sun protection factor (SPF) rose by a factor of more than two. Thus they could be promising targets for more stable, more efficient sunscreen lotions. Good news for your next summer vacation.

There’s some unusual phrasing so, I’m guessing that the writer it not accustomed to writing press releases in English. One other comment, it’s oxybenzone that’s often used as an ingredient in commercial sunscreens.

Here’s a link to and a citation for the paper,

Rational Design and Synthesis of Efficient Sunscreens To Boost the Solar Protection Factor by Raúl Losantos, Ignacio Funes-Ardoiz, Dr. José Aguilera, Prof. Enrique Herrera-Ceballos, Dr. Cristina García-Iriepa, Prof. Pedro J. Campos, and Diego Sampedro. Angewandte Chemie International Edition Volume 56, Issue 10, pages 2632–2635, March 1, 2017 DOI: 10.1002/anie.201611627 Version of Record online: 27 JAN 2017

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

I have previously featured work on another natural sunscreen. In that case it was to be derived from English ivy (July 22, 2010 posting); there was an update on the English ivy work in a May 30, 2016 posting but the researcher has moved in a different direction looking at wound healing and armour as possible applications for the research.

Sea sponges don’t buckle under pressure

You wouldn’t think a sponge (the sea creature) was particularly tough but it is according to a Jan. 4, 2017 news item on Nanowerk,

Judging by their name alone, orange puffball sea sponges might seem unlikely paragons of structural strength. But maintaining their shape at the bottom of the churning ocean is critical to the creatures’ survival, and new research shows that tiny structural rods in their bodies have evolved the optimal shape to avoid buckling under pressure.

The rods, called strongyloxea spicules, measure about 2 millimeters long and are thinner than a human hair. Hundreds of them are bundled together, forming stiff rib-like structures inside the orange puffball’s spongy body. It was the odd and remarkably consistent shape of each spicule that caught the eye of Brown University engineers Haneesh Kesari and Michael Monn. Each one is symmetrically tapered along its length — going gradually from fatter in the middle to thinner at the ends.

Caption: Tiny rods found inside the bodies of orange puffball sea sponges have an interesting tapered shape. That shape, new research shows, turns out to be a match for the Clausen profile, a column shape shown to be optimal for resistance to buckling failure. Credit: Michael Monn, Haneesh Kesari / Brown University

A Jan. 4, 2017 Brown University news release on EurekAlert, which originated the news item, describes the research in more detail,

Using structural mechanics models and a bit of digging in obscure mathematics journals, Monn and Kesari showed the peculiar shape of the spicules to be optimal for resistance to buckling, the primary mode of failure for slender structures. This natural shape could provide a blueprint for increasing the buckling resistance in all kinds of slender human-made structures, from building columns to bicycle spokes to arterial stents, the researchers say.

“This is one of the rare examples that we’re aware of where a natural structure is not just well-suited for a given function, but actually approaches a theoretical optimum,” said Kesari, an assistant professor of engineering at Brown. “There’s no engineering analog for this shape — we don’t see any columns or other slender structures that are tapered in this way. So in this case, nature has shown us something quite new that we think could be useful in engineering.”

The findings are published in the journal Scientific Reports.

Function and form

Orange puffball sponges (Tethya aurantia) are native to the Mediterranean Sea. They live mainly in rocky coastal environments, where they’re subject to the constant stress of underwater waves and tidal forces. Sponges are filter feeders — they pump water through their bodies to extract nutrients and oxygen. To do this, their bodies need to be porous and compliant, but they also need enough stiffness to avoid being deformed too much.

“If you compress them too much, you’re essentially choking them,” Kesari said. “So maintaining their stiffness is critical to their survival.”

And that means the spicules, which make up the rib-like structures that give sponges their stiffness, are critical components. When Monn and Kesari saw the shapes of the spicules under a microscope, the consistency of the tapered shape from spicule to spicule was hard to miss.

“We saw the shape and wondered if there might be an engineering principle at work here,” Kesari said.

To figure that out, the researchers first needed to understand what forces were acting on each individual spicule. So Monn and Kesari developed a structural mechanics model of spicules bundled within a sponge’s ribs. The model showed that the mismatch in stiffness between the bulk of the sponge’s soft body and the more rigid spicules causes each spicule to experience primarily one type of mechanical loading — a compression load on each of its ends.

“You can imagine taking a toothpick and trying to squeeze it longways between your fingers,” Monn said. “That’s how these spicules see the world.”

The primary mode of failure for a structure with this mechanical load is through buckling. At a certain critical load, the structure starts to bend somewhere along its length. Once the bending starts, the force transferred by the load is amplified at the bending point, which causes the structure to break or collapse.

Once Kesari and Monn knew what forces were acting on the spicules and how they would fail, the next step was looking to see if there was anything special about them that helped them resist buckling. Scanning electron microscope images of the inside of a spicule and other tests showed that they were monolithic silica — essentially glass.

“We could see that there was no funny business going on with the material properties,” Monn said. “If there was anything contributing to its mechanical performance, it would have to be the shape.”

Optimal shape

Kesari and Monn combed the literature to see if they could find anything on tapering in slender structures. They came up empty in the modern engineering literature. But they found something interesting published more than 150 years ago by a German scientist named Thomas Clausen.

In 1851, Clausen proposed that columns that are tapered toward their ends should have more buckling resistance than plain cylinders, which had been and still are the primary design for architectural columns. In the 1960s, mathematician Joseph Keller published an ironclad mathematical proof that the Clausen column was indeed optimal for resistance to buckling — having 33 percent better resistance than a cylinder. Even compared to a very similar shape — an ellipse, which is slightly fatter in the middle and pointier at the ends — the Clausen column had 18 percent better buckling resistance.

Knowing what the optimal column shape is, Monn and Kesari started making precise dimensional measurements of dozens of spicules. They showed that their shapes were remarkably consistent and nearly identical to that of the Clausen column.

“The spicules were a match for the best shape of all possible column shapes,” Monn said.

It seems in this case, natural selection figured out something that engineers have not. Despite the fact that it’s been mathematically shown to be the optimal column shape, the Clausen profile isn’t widely known in the engineering community. Kesari and Monn hope this work might bring it out of the shadows.

“We see this as an addition to our library of structural designs,” Monn said. “We’re not just talking about an improvement of a few percent. This shape is 33 percent better than the cylinder, which is quite an improvement.”

In particular, the shape would be particularly useful in a new generation of materials made from nanoscale truss structures. “It would be easy to 3-D print the Clausen profile into these materials, and you’d get a tremendous increase in buckling resistance, which is often how these materials fail.”

Lessons from nature

The field of bio-inspired engineering began at a time when many people viewed adaptive evolution as an unceasing march toward perfection. If that were true, scientists should find untold numbers of optimal structures in nature.

But the modern understanding of evolution is a bit different. It’s now understood that in order for a trait to be conserved by natural selection, it doesn’t need to be optimal. It just needs to be good enough to work. That has put a bit of a damper on the enthusiasm for bio-inspired engineering, Kesari and Monn say.

However, they say, this work shows that nearly optimal structures are out there if researchers look in the right places. In this case, they looked at creatures from a very old phylum — sea sponges are among the very first animals on Earth — with plenty of time to evolve under consistent selection pressures.

Sponges are also fairly simple creatures, so understanding the function of a given trait is relatively straightforward. In this case, the spicule appears to have one and only one job to do — provide stiffness. Compare that to, for example, human bone, which not only provides support but must also accommodate arteries, provide attachment points for muscles and house bone marrow. Those other functions may cause tradeoffs in adaptations for strength or stiffness.

“With the sponges, you have lots of evolutionary pressure, lots of time and opportunity to respond to that pressure, and functional elements that can be easily identified,” Kesari said.

With those as guiding principles, there may well be more ideal structures out there waiting to be found.

“This work shows that nature can hit an optimum,” Kesari said, “and the biological world can still be hiding completely new designs of considerable technological significance in plain sight.”

Here’s a link to and a citation for the paper,

A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability by Michael A. Monn & Haneesh Kesari. Scientific Reports 7, Article number: 39547 (2017) doi:10.1038/srep39547 Published online: 04 January 2017

This paper is open access.

Kesari and Monn have researched sea sponges previously as can be seen in my April 7, 2015 posting, which highlights their work on strength and Venus’ flower basket sea sponge.

Steering a synthetic nanorobot using light

This news comes from the University of Hong Kong. A Nov. 8, 2016 news item on Nanowerk throws some light on the matter (Note: A link has been removed),

A team of researchers led by Dr Jinyao Tang of the Department of Chemistry, the University of Hong Kong, has developed the world’s first light-seeking synthetic Nano robot. With size comparable to a blood cell, those tiny robots have the potential to be injected into patients’ bodies, helping surgeons to remove tumors and enabling more precise engineering of targeted medications. The findings have been published in October [2016] earlier in leading scientific journal Nature Nanotechnology (“Programmable artificial phototactic microswimmer”).

An Oct. 24, 2016 University of Hong Kong press release (also on EurekAlert), which originated the news item, expands on the theme,

It has been a dream in science fiction for decades that tiny robots can fundamentally change our daily life. The famous science fiction  movie “Fantastic  Voyage” is a very good example, with a group of scientists driving their miniaturized nano-submarine inside human body to repair a damaged brain. In the film “Terminator  2,” billions of nanorobots were assembled into the amazing shapeshifting body: the T-1000. In the real world, it is quite challenging to make and design a sophisticated nanorobot with advanced functions.

The Nobel Prize in Chemistry 2016 was awarded to three scientists for “the design and synthesis of molecular machines.” They developed a set of mechanical components at molecular scale which may be  assembled into  more complicated nanomachines  to  manipulate single  molecule such as DNA or proteins in the future. The development of tiny nanoscale machines for biomedical applications has been a major trend of scientific research in recent years. Any breakthroughs will potentially open the door to new knowledge and treatments of diseases and development of new drugs.

One difficulty in nanorobot design is to make these nanostructures sense and respond to the environment. Given each nanorobot is only a few micrometer in size which is ~50 times smaller than the diameter of a human hair, it  is very difficult  to  squeeze  normal electronic sensors and circuits into  nanorobots with reasonable price. Currently, the only method to remotely control nanorobots is to  incorporate tiny magnetic inside the nanorobot and guide the motion via external magnetic field.

The  nanorobot developed by Dr Tang’s team use light as the propelling  force, and is the first research team globally to explore the light-guided nanorobots and demonstrated its feasibility and effectiveness. In their paper published in Nature  Nanotechnology, Dr Tang’s team  demonstrated  the  unprecedented ability of these light-controlled nanorobots as they are “dancing”  or even spell a word under light control. With a novel  nanotree structure, the nanorobots can respond to the light shining on it like  moths  being drawn to flames. Dr Tang described the motions as if “they can “see” the light and drive itself towards it”.

The team gained inspiration from natural green algae
for the nanorobot design. In nature, some green algae have evolved  with  the  ability  of  sensing  light  around  it.  Even just a single cell, these green  algae can sense the intensity of light and swim  towards the light source for photosynthesis. Dr  Jinyao  Tang’s team successfully developed the nanorobots after over three years’ efforts. With a novel nanotree structure, they are composed of two  common and low-price semiconductor materials: silicon  and titanium oxide. During  the  synthesis, silicon  and titanium oxide are shaped into nanowire and then further arranged into a tiny nanotree heterostructure.

Dr Tang said: “Although the current nanorobot cannot be used for disease treatment yet, we are working on the next generation nanorobotic system which is more efficient and biocompatible.”

“Light is a more effective option to communicate between microscopic world and macroscopic world. We can conceive that more complicated instructions can be sent to nanorobots which provide scientists with a new tool to further develop more functions into nanorobot and get us one step closer to daily life applications,” he added.

Here’s a link to and a citation for the paper,

Programmable artificial phototactic microswimmer by Baohu Dai, Jizhuang Wang, Ze Xiong, Xiaojun Zhan, Wei Dai, Chien-Cheng Li, Shien-Ping Feng, & Jinyao Tang.  Nature Nanotechnology (2016)  doi:10.1038/nnano.2016.187 Published online 17 October 2016

So, this ‘bot’ seems to be a microbot or microrobot with some nanoscale features. In any event, the paper is behind a paywall.

Slip sliding away—making surfaces bacteria can’t grasp onto

Here’s another biomimicry story with a connection to Harvard University. From a Nov. 1, 2016 Beth Israel Deaconess Medical Center (Harvard Medical School Teaching Hospital) news release (also on EurekAlert),

Implanted medical devices like catheters, surgical mesh and dialysis systems are ideal surfaces on which bacteria can colonize and form hard-to-kill sheets called biofilms. Known as biofouling, this contamination of devices is responsible for more than half of the 1.7 million hospital-acquired infections in the United States each year.

In a report published in Biomaterials today, a team of scientists at Beth Israel Deaconess Medical Center (BIDMC), the Wyss Institute for Biologically Inspired Engineering and the John A. Paulson School of Engineering and Applied Sciences (SEAS) at Harvard University has demonstrated that an innovative, ultra-low adhesive coating prevented bacteria from attaching to surfaces treated with it, reducing bacterial adhesion by more than 98 percent in laboratory tests.

“Device related infections remain a significant problem in medicine, burdening society with millions of dollars in health care costs,” said Elliot Chaikof, MD, PhD, chair of the Roberta and Stephen R. Weiner Department of Surgery and Surgeon-in-Chief at BIDMC and an associate faculty member at the Wyss Institute. “Antibiotics alone will not solve this problem. We need to use new approaches to minimize the risk of infection, and this strategy is a very important step in that direction.”

The self-healing slippery surface coatings – known as ‘slippery liquid-infused porous surfaces’ (SLIPS) – were developed by Joanna Aizenberg, PhD, a Wyss Institute core faculty member, Professor of Chemistry and Chemical Biology and the Amy Smith Berylson Professor of Materials Science at SEAS at Harvard University. Inspired by the carnivorous Nepenthes pitcher plant that uses the slippery surface of its leaves to trap insects, Aizenberg engineered surface coatings that work to repel a variety of substances across a broad range of temperature, pressure and other environmental conditions. They are stable when exposed to UV light, and are low-cost and simple to manufacture. The current study is the first to demonstrate that SLIPS not only limit the ability of bacteria to adhere to surfaces, but also impede infection in an animal model.

SLIPS has been mentioned here before, most recently in a March 2, 2016 posting and before that in an Oct. 14, 2014 posting which appears to be precursor work for this latest research.

Getting back to the Nov. 1, 2016 news release, here’s more about plans for SLIPS and about recent trials,

“We are developing SLIPS recipes for a variety of medical applications by working with different medical-grade materials, ensuring the stability of the coating, and carefully pairing the non-fouling properties of the SLIPS materials to specific contaminates, environments and performance requirements,” said Aizenberg. “Here we have extended our repertoire and applied the SLIPS concept very convincingly to medical-grade lubricants, demonstrating its enormous potential in implanted devices prone to bacterial fouling and infection.”

In a series of trials, the researchers tested three SLIPS lubricants for their anti-adhesive qualities. First, they incubated disks of SLIPS-coated medical material ePTFE – a microporous form of Teflon – in a broth of Staphylococcus aureus (S. aureus), a generally harmless bacterium found in the nose and on skin, but one of the most common causes of hospital-acquired infections. After 48 hours, the three variations of SLIPS-treated disks demonstrated 98.3, 99.1 and 99.7 percent reductions in bacterial adhesion.

To test the material’s stability, the scientists performed the same experiment after soaking the SLIPS-coated samples for up to 21 days in a solution meant to simulate conditions inside a living mammal. After exposing these disks to S. aureus for 48 hours, the researchers found similar, nearly 100 percent reductions in bacterial adhesion.

Widely used clinically, medical mesh is particularly susceptible to bacterial infection. In another set of experiments to test the material’s biocompatibility, Chaikof and colleagues implanted small squares of SLIPS-treated mesh into murine models, injecting the site with S. aureus 24 hours later. Three days later, when the researchers removed the implanted mesh, they found little to no infection, compared with an infection rate of more than 90 percent among controls.

“Today, patients who receive implants often require antibiotics to keep the risk of bacterial infection at bay,” the authors wrote. “SLIPS coatings one day could obviate the widespread use of antibiotics and minimize the development of antibiotic resistant micro-organisms.”

“SLIPs have many promising medical applications that are in a very early stage of evaluation,” said Chaikof. “Clearly, there’s more work to be done before its introduction into the clinic, but this is one of a few studies that reinforces the exciting opportunities presented by this strategy to improve device performance and clinical outcomes.”

Here’s a link to and a citation for the paper,

An immobilized liquid interface prevents device associated bacterial infection in vivo by Jiaxuan Chen, Caitlin Howell, Carolyn A. Haller, Madhukar S. Patel, Perla Ayala, Katherine A. Moravec, Erbin Dai, Liying Liu, Irini Sotiri, Michael Aizenberg, Joanna Aizenberg, Elliot L. Chaikof. Biomaterials Volume 113, January 2017, Pages 80–92  http://dx.doi.org/10.1016/j.biomaterials.2016.09.028

This paper is behind a paywall.

Ocean-inspired coatings for organic electronics

An Oct. 19, 2016 news item on phys.org describes the advantages a new coating offers and the specific source of inspiration,

In a development beneficial for both industry and environment, UC Santa Barbara [University of California at Santa Barbara] researchers have created a high-quality coating for organic electronics that promises to decrease processing time as well as energy requirements.

“It’s faster, and it’s nontoxic,” said Kollbe Ahn, a research faculty member at UCSB’s Marine Science Institute and corresponding author of a paper published in Nano Letters.

In the manufacture of polymer (also known as “organic”) electronics—the technology behind flexible displays and solar cells—the material used to direct and move current is of supreme importance. Since defects reduce efficiency and functionality, special attention must be paid to quality, even down to the molecular level.

Often that can mean long processing times, or relatively inefficient processes. It can also mean the use of toxic substances. Alternatively, manufacturers can choose to speed up the process, which could cost energy or quality.

Fortunately, as it turns out, efficiency, performance and sustainability don’t always have to be traded against each other in the manufacture of these electronics. Looking no further than the campus beach, the UCSB researchers have found inspiration in the mollusks that live there. Mussels, which have perfected the art of clinging to virtually any surface in the intertidal zone, serve as the model for a molecularly smooth, self-assembled monolayer for high-mobility polymer field-effect transistors—in essence, a surface coating that can be used in the manufacture and processing of the conductive polymer that maintains its efficiency.

An Oct. 18, 2016 UCSB news release by Sonia Fernandez, which originated the news item, provides greater technical detail,

More specifically, according to Ahn, it was the mussel’s adhesion mechanism that stirred the researchers’ interest. “We’re inspired by the proteins at the interface between the plaque and substrate,” he said.

Before mussels attach themselves to the surfaces of rocks, pilings or other structures found in the inhospitable intertidal zone, they secrete proteins through the ventral grove of their feet, in an incremental fashion. In a step that enhances bonding performance, a thin priming layer of protein molecules is first generated as a bridge between the substrate and other adhesive proteins in the plaques that tip the byssus threads of their feet to overcome the barrier of water and other impurities.

That type of zwitterionic molecule — with both positive and negative charges — inspired by the mussel’s native proteins (polyampholytes), can self-assemble and form a sub-nano thin layer in water at ambient temperature in a few seconds. The defect-free monolayer provides a platform for conductive polymers in the appropriate direction on various dielectric surfaces.

Current methods to treat silicon surfaces (the most common dielectric surface), for the production of organic field-effect transistors, requires a batch processing method that is relatively impractical, said Ahn. Although heat can hasten this step, it involves the use of energy and increases the risk of defects.

With this bio-inspired coating mechanism, a continuous roll-to-roll dip coating method of producing organic electronic devices is possible, according to the researchers. It also avoids the use of toxic chemicals and their disposal, by replacing them with water.

“The environmental significance of this work is that these new bio-inspired primers allow for nanofabrication on silicone dioxide surfaces in the absence of organic solvents, high reaction temperatures and toxic reagents,” said co-author Roscoe Lindstadt, a graduate student researcher in UCSB chemistry professor Bruce Lipshutz’s lab. “In order for practitioners to switch to newer, more environmentally benign protocols, they need to be competitive with existing ones, and thankfully device performance is improved by using this ‘greener’ method.”

Here’s a link to and a citation for the research paper,

Molecularly Smooth Self-Assembled Monolayer for High-Mobility Organic Field-Effect Transistors by Saurabh Das, Byoung Hoon Lee, Roscoe T. H. Linstadt, Keila Cunha, Youli Li, Yair Kaufman, Zachary A. Levine, Bruce H. Lipshutz, Roberto D. Lins, Joan-Emma Shea, Alan J. Heeger, and B. Kollbe Ahn. Nano Lett., 2016, 16 (10), pp 6709–6715
DOI: 10.1021/acs.nanolett.6b03860 Publication Date (Web): September 27, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall but the scientists have made an illustration available,

An artist's concept of a zwitterionic molecule of the type secreted by mussels to prime surfaces for adhesion Photo Credit: Peter Allen

An artist’s concept of a zwitterionic molecule of the type secreted by mussels to prime surfaces for adhesion Photo Credit: Peter Allen

‘Robomussels’ for climate change

These ‘robomussels’ are not voting but they are being used to monitor mussel bed habitats according to an Oct. 17, 2016 news item on ScienceDaily,

Tiny robots have been helping researchers study how climate change affects biodiversity. Developed by Northeastern University scientist Brian Helmuth, the “robomussels” have the shape, size, and color of actual mussels, with miniature built-in sensors that track temperatures inside the mussel beds.

Caption: This is a robomussel, seen among living mussels and other sea creatures. Credit: Allison Matzelle

Caption: This is a robomussel, seen among living mussels and other sea creatures. Credit: Allison Matzelle

An Oct. 12, 2016 Northeastern University news release (also on EurekAlert), which originated the news item, describes a project some 20 years in the making,

For the past 18 years, every 10 to 15 minutes, Helmuth and a global research team of 48 scientists have used robomussels to track internal body temperature, which is determined by the temperature of the surrounding air or water, and the amount of solar radiation the devices absorb. They place the robots inside mussel beds in oceans around the globe and record temperatures. The researchers have built a database of nearly two decades worth of data enabling scientists to pinpoint areas of unusual warming, intervene to help curb damage to vital marine ecosystems, and develop strategies that could prevent extinction of certain species.

Housed at Northeastern’s Marine Science Center in Nahant, Massachusetts, this largest-ever database is not only a remarkable way to track the effects of climate change, the findings can also reveal emerging hotspots so policymakers and scientists can step in and relieve stressors such as erosion and water acidification before it’s too late.

“They look exactly like mussels but they have little green blinking lights in them,” says Helmuth. “You basically pluck out a mussel and then glue the device to the rock right inside the mussel bed. They enable us to link our field observations with the physiological impact of global climate change on these ecologically and economically important animals.”

For ecological forecasters such as Helmuth, mussels act as a barometer of climate change. That’s because they rely on external sources of heat such as air temperature and sun exposure for their body heat and thrive, or not, depending on those conditions. Using fieldwork along with mathematical and computational models, Helmuth forecasts the patterns of growth, reproduction, and survival of mussels in intertidal zones.

Over the years, he and his colleagues have found surprises: “Our expectations of where to look for the effects of climate change in nature are more complex than anticipated,” says Helmuth. For example, in an earlier paper in the journal Science, his team found that hotspots existed not only at the southern end of the species’ distribution, in this case, southern California; they also existed at sites up north, in Oregon and Washington state.

“These datasets tell us when and where to look for the effects of climate change,” he says. “Without them we could miss early warning signs of trouble.”

The robomussels’ near-continuous measurements serve as an early warning system. “If we start to see sites where the animals are regularly getting to temperatures that are right below what kills them, we know that any slight increase is likely to send them over the edge, and we can act,” says Helmuth.

It’s not only the mussels that may be pulled back from the brink. The advance notice could inform everything from maintaining the biodiversity of coastal systems to determining the best–and worst–places to locate mussel farms.

“Losing mussel beds is essentially like clearing a forest,” says Helmuth. “If they go, everything that’s living in them will go. They are a major food supply for many species, including lobsters and crabs. They also function as filters along near-shore waters, clearing huge amounts of particulates. So losing them can affect everything from the growth of species we care about because we want to eat them to water clarity to biodiversity of all the tiny animals that live on the insides of the beds.”

Here’s a link to and a citation for the paper,

Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors by Brian Helmuth, Francis Choi, Gerardo Zardi.  Scientific Data 3, Article number: 160087 (2016) doi:10.1038/sdata.2016.87 Published online: 11 October 2016

This paper is open access.

Cicada wings for anti-reflective surfaces

This bioinspired piece of research comes courtesy of China. From an Oct. 11, 2016 news item on Nanowerk,

A team of Shanghai Jiao Tong University researchers has used the shape of cicada wings as a template to create antireflective structures fabricated with one of the most intriguing semiconductor materials, titanium dioxide (TiO2). The antireflective structures they produced are capable of suppressing visible light — 450 to 750 nanometers — at different angles of incidence.

An Oct. 11,2016 American Institute of Physics news release, which originated the news item, explains why the researchers focused on cicada wings and how their observations led to a new anti-reflective material,

Why cicada wings? The surfaces of the insect’s wings are composed of highly ordered, tiny vertical “nano-nipple” arrays, according to the researchers. As they report this week in Applied Physics Letters, from AIP Publishing, the resulting biomorphic TiO2 surface they created with antireflective structures shows a significant decrease in reflectivity.

“This can be attributed to an optimally graded refractive index profile between air and the TiO2 via antireflective structures on the surface,” explained Wang Zhang, associate professor at State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University in China.

Small spaces between the ordered nano-antireflective structures “can be thought of as a light-transfer path that let incident light rays into the interior surface of the biomorphic TiO2 — allowing the incident light rays to completely enter the structure,” Zhang continued. “The multiple reflective and scattering effects of the antireflective structures prevented the incident light from returning to the outside atmosphere.”

Significantly, the team’s work relies on “a simple and low-cost sol-gel (wet chemical) method to fabricate biomorphic TiO2 with precise subwavelength antireflective surfaces,” Zhang pointed out. “The TiO2 was a purely anatase phase (a mineral form of TiO2), which has unique antireflective surfaces. This led to an optimally graded refractive index and, ultimately, to angle-dependent antireflective properties within the visible light range.”

In terms of applications, the team’s biomorphic TiO2 antireflective structures “show great potential for photovoltaic devices such as solar cells,” Zhang said. “We expect our work to inspire and motivate engineers to develop antireflective surfaces with unique structures for various practical applications.”

Even after high calcination at 500 C, the antireflective structures retain their morphology and high-performance antireflection properties. These qualities should enable the coatings to withstand harsh environments and make them suitable for long-term applications.

In the future, the team plans “to reduce the optical losses in solar cells by using materials with a higher refractive index such as tantalum pentoxide or any other semiconductor materials,” Zhang said.

I. Photograph and scanning electron microscope characterizations of a black cicada wing (Cryptympana atrata Fabricius). II. Synthesis process of biomorphic TiO2 with ordered nano-nipple array structures. III. Counter map angle-dependent antireflection of biomorphic TiO2 and non-templated TiO2, respectively. CREDIT: Shanghai Jiao Tong University

I. Photograph and scanning electron microscope characterizations of a black cicada wing (Cryptympana atrata Fabricius).
II. Synthesis process of biomorphic TiO2 with ordered nano-nipple array structures.
III. Counter map angle-dependent antireflection of biomorphic TiO2 and non-templated TiO2, respectively.
CREDIT: Shanghai Jiao Tong University

Here’s a link to and a citation for the paper,

Angle dependent antireflection property of TiO2 inspired by cicada wings by Imran Zada, Wang Zhang, Yao Li, Peng Sun, Nianjin Cai, Jiajun Gu, Qinglei Liu, Huilan Su, and Di Zhang.  Appl. Phys. Lett. 109, 153701 (2016); http://dx.doi.org/10.1063/1.4962903

This paper appears to be open access.

Noniridescent photonics inspired by tarantulas

Last year, I was quite taken with a structural colour story centering on tarantulas which was featured in my Dec. 7, 2015 posting.

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

On Oct. 17, 2016 I was delighted to receive an email with the latest work from the same team who this time around crowdfunded resources to complete their research. Before moving on to the paper, here’s more from the team’s crowdfunder on Experiment was titled “The Development of Non-iridescent Structurally Colored Material Inspired by Tarantula Hairs,”

Many vibrant colors in nature are produced by nanostructures rather than pigments. But their application is limited by iridescence – changing hue and brightness with viewing angles. This project aims to mimic the nanostructures that tarantulas use to produce bright, non-iridescent blue colors to inspire next-generation, energy efficient, wide-angle color displays. Moreover, one day non-iridescent structural colorants may replace costly and toxic pigments and dyes.

What is the context of this research?

We recently discovered that some tarantulas produce vivid blue colors using unique nanostructures not found in other blue organisms like birds and Morpho butterflies. We described a number of different nanostructures that help explain how blue color evolved at least eight times within tarantulas. These colors are also remarkably non-iridescent so that they stay bright blue even at wide viewing angles, unlike the “flashy” structural colors seen in many birds and butterflies. We hypothesize that although the hue is produced by multilayer nanostructure, it is the hierarchical morphology of the hairs controls iridescence. We would like to validate our results from preliminary optical simulations by making nano-3D printed physical prototypes with and without key features of the tarantula hairs.

What is the significance of this project?

While iridescence can make a flashy signal to a mating bird or butterfly, it isn’t so useful in optical technology. This limits the application of structural colors in human contexts, even though they can be more vibrant and resist fading better than traditional pigment-based colors. For example, despite being energy efficient and viewable in direct sunlight, this butterfly-inspired color display, that utilizes principles of structural colors, has never made it into the mainstream because iridescence limits its viewing angle. We believe this limitation could be overcome using tarantula-inspired nanostructures that could be mass-produced in an economically viable way through top-down approaches. Those nanostructures may even be used to replace pigments and dyes someday!

What are the goals of the project?

We have designed five models that vary in complexity, incorporating successively more details of real tarantula hairs. We would like to fabricate those five designs by 3D nano-printing, so that we can test our hypothesis experimentally and determine which features produce blue and which remove iridescence. We’ll start making those designs as soon as we reach our goal and the project is fully funded. Once these designs are made, we will compare the angle-dependency of the colors produced by each design through angle-resolved reflectance spectrometry. We’ll also compare them visually through photography by taking series of shots from different angles similar to Fig. S4. Through those steps, we’ll be able to identify how each feature of the complex nanostructure contributes to color.

Budget
Ultra-high resolution (nano-scale) 3D printing
$6,000
To fund nano 3D printing completely
$1,700

This project has been designed using Biomimicry Thinking, and is a follow-up to our published, well-received tarantula research. In order to test our hypothesis, we are planning to use Photonic Professional GT by nanoscribe to fabricate tarantula hair-inspired prototypes by 3D printing nanostructures within millimeter sized swatches. To be able to 3D print nanostructures across these relatively large-sized swatches is critical to the success of our project. Currently, there’s no widely-accessible technology out there that meets our needs other than Photonic Professional GT. However, the estimated cost just for 3D printing those nanostructures alone is $20,000. So far, we have successfully raised and allocated $13,000 of research funds through conventional means, but we are still $7,000 short. Initial trial of our most complex prototype was a success. Therefore, we’re here, seeking your help. Please help us make this nano fabrication happen, and make this project a success! Thank you!

The researchers managed to raise $7, 708.00 in total, making this paper possible,

Tarantula-Inspired Noniridescent Photonics with Long-Range Order by Bor-Kai Hsiung, Radwanul Hasan Siddique, Lijia Jiang, Ying Liu, Yongfeng Lu, Matthew D. Shawkey, and Todd A. Blackledge. Advanced Materials DOI: 10.1002/adom.201600599 Version of Record online: 11 OCT 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall but I did manage to get my hands on a copy. So here are a few highlights from the paper,

Pigment-based colorants are used for applications ranging from textiles to packaging to cosmetics.[1] However, structural-based alternatives can be more vibrant, durable, and eco-friendly relative to pigmentary colors.[2] Moreover, optical nanostructures are highly tunable, they can achieve a full color gamut by slight alterations to spacing.[3] However, light interference and/or diffraction from most photonic structures results in iridescence,[4] which limits their broader applications. Iridescent colors that change hue when viewed from different directions are useful for niche markets, such as security and anticounterfeiting, {emphasis mine} [5] but are not desirable for most applications, such as paints, coatings, electronic displays, and apparels. Hence, fabricating a photonic structure that minimizes iridescence is a key step to unlocking the potential applications of structural colors.

Noniridescent structural colors in nature are produced by coherent scattering of light by quasi-ordered, amorphous photonic structures (i.e., photonic glass),[6–10] or photonic polycrystals [9,11–14] that possess only short-range order. Iridescence is thought to be a fundamental component of photonic structures with long-range order, such as multilayers.[4] However, the complexity of short-range order photonic structures prohibits their design and fabrication using top-down approaches while bottom-up synthesis using colloidal suspension[15,16] or self-assembly[17–20] lack the tight controls over the spatial and temporal scales needed for industrial mass production. Photonic structures with long-range order are easier to model mathematically. Hence, long-range order photonic structures are intrinsically suitable for top-down fabrication, where precise feature placement and scalability can be guaranteed.

Recently, we found blue color produced by multilayer interference on specialized hairs from two species of blue tarantulas (Poecilotheria metallica (Figure 1a,b) and Lampropelma violaceopes) that was largely angle independent.[21] We hypothesize that the iridescent effects of the multilayer are reduced by hierarchical structuring of the hairs. Specifically, the hairs have: (1) high degrees of rotational symmetry, (2) hierarchy—with subcylindrical multilayers surrounding a larger, overarching multilayer cylinder, and (3) nanoscale surface grooves. Because all of these structures co-occur on the tarantulas, it is impossible to decouple them simply by observing nature. Here, we use optical simulation and nano-3D rapid prototyping to demonstrate that introducing design features seen in these tarantulas onto a multilayer photonic structure nearly eliminates iridescence. As far as we are aware, this is the first known example of a noniridescent structural color produced by a photonic structure with both short and long-range order. This opens up an array of new possibilities for photonic structure design and fabrication to produce noniridescent structural colors and is a key first step to achieving economically viable solutions for mass production of noniridescent structural color.  … (p. 1 PDF)

There is a Canadian security and anti-counterfeiting company (Nanotech Security Corp.), inspired by the Morpho butterfly and its iridescent blue, which got its start in Bozena Kaminska’s laboratory at Simon Fraser University (Vancouver, Canada).

Getting back to the paper, after a few twists and turns, they conclude with this,

This approach of producing noniridescent structural colors using photonic structures with long-range order (i.e., modified multilayer) has, to our knowledge, not been explored previously. Our findings reaffirm the value of using nature and the biomimetic process as a tool for innovation and our approach also may help to overcome the current inability of colloidal self-assembly to achieve pure noniridescent structural red due to single-particle scattering and/or multiple scattering.[25] As a result, our research provides a new and easy way for designing structural colorants with customizable hues (see Figure S6, Supporting Information, as one of the potential examples) and iridescent effects to satisfy the needs of different applications. While nano-3D printing of these nanostructures is not viable for mass production, it does identify the key features that are necessary for top-down fabrication. With promising nanofabrication techniques, such as preform drawing[26]—a generally scalable methodology that has been demonstrated for fabricating particles with complex internal architectures and continuously tunable diameters down to nanometer scale[27] – it is possible to mass produce these “designer structural colorants” in an economically viable manner. Our discovery of how to produce noniridescent structural colors using long-range order may therefore lead to a more sustainable future that does not rely upon toxic and wasteful synthetic pigments and dyes. (p. 5)

I’m glad to have gotten caught up with the work. Thank you, Bor-Kai Hsiung.