Tag Archives: BrainGate demonstrates a high-bandwidth wireless brain-computer interface (BCI)

Brain-inspired (neuromorphic) wireless system for gathering data from sensors the size of a grain of salt

This is what a sensor the size of a grain of salt looks like,

Caption: The sensor network is designed so the chips can be implanted into the body or integrated into wearable devices. Each submillimeter-sized silicon sensor mimics how neurons in the brain communicate through spikes of electrical activity. Credit: Nick Dentamaro/Brown University

A March 19, 2024 news item on Nanowerk announces this research from Brown University (Rhode Island, US), Note: A link has been removed,

Tiny chips may equal a big breakthrough for a team of scientists led by Brown University engineers.

Writing in Nature Electronics (“An asynchronous wireless network for capturing event-driven data from large populations of autonomous sensors”), the research team describes a novel approach for a wireless communication network that can efficiently transmit, receive and decode data from thousands of microelectronic chips that are each no larger than a grain of salt.

One of the potential applications is for brain (neural) implants,

Caption: Writing in Nature Electronics, the research team describes a novel approach for a wireless communication network that can efficiently transmit, receive and decode data from thousands of microelectronic chips that are each no larger than a grain of salt. Credit: Nick Dentamaro/Brown University

A March 19, 2024 Brown University news release (also on EurekAlert), which originated the news item, provides more detail about the research, Note: Links have been removed,

The sensor network is designed so the chips can be implanted into the body or integrated into wearable devices. Each submillimeter-sized silicon sensor mimics how neurons in the brain communicate through spikes of electrical activity. The sensors detect specific events as spikes and then transmit that data wirelessly in real time using radio waves, saving both energy and bandwidth.

“Our brain works in a very sparse way,” said Jihun Lee, a postdoctoral researcher at Brown and study lead author. “Neurons do not fire all the time. They compress data and fire sparsely so that they are very efficient. We are mimicking that structure here in our wireless telecommunication approach. The sensors would not be sending out data all the time — they’d just be sending relevant data as needed as short bursts of electrical spikes, and they would be able to do so independently of the other sensors and without coordinating with a central receiver. By doing this, we would manage to save a lot of energy and avoid flooding our central receiver hub with less meaningful data.”

This radiofrequency [sic] transmission scheme also makes the system scalable and tackles a common problem with current sensor communication networks: they all need to be perfectly synced to work well.

The researchers say the work marks a significant step forward in large-scale wireless sensor technology and may one day help shape how scientists collect and interpret information from these little silicon devices, especially since electronic sensors have become ubiquitous as a result of modern technology.

“We live in a world of sensors,” said Arto Nurmikko, a professor in Brown’s School of Engineering and the study’s senior author. “They are all over the place. They’re certainly in our automobiles, they are in so many places of work and increasingly getting into our homes. The most demanding environment for these sensors will always be inside the human body.”

That’s why the researchers believe the system can help lay the foundation for the next generation of implantable and wearable biomedical sensors. There is a growing need in medicine for microdevices that are efficient, unobtrusive and unnoticeable but that also operate as part of a large ensembles to map physiological activity across an entire area of interest.

“This is a milestone in terms of actually developing this type of spike-based wireless microsensor,” Lee said. “If we continue to use conventional methods, we cannot collect the high channel data these applications will require in these kinds of next-generation systems.”

The events the sensors identify and transmit can be specific occurrences such as changes in the environment they are monitoring, including temperature fluctuations or the presence of certain substances.

The sensors are able to use as little energy as they do because external transceivers supply wireless power to the sensors as they transmit their data — meaning they just need to be within range of the energy waves sent out by the transceiver to get a charge. This ability to operate without needing to be plugged into a power source or battery make them convenient and versatile for use in many different situations.

The team designed and simulated the complex electronics on a computer and has worked through several fabrication iterations to create the sensors. The work builds on previous research from Nurmikko’s lab at Brown that introduced a new kind of neural interface system called “neurograins.” This system used a coordinated network of tiny wireless sensors to record and stimulate brain activity.

“These chips are pretty sophisticated as miniature microelectronic devices, and it took us a while to get here,” said Nurmikko, who is also affiliated with Brown’s Carney Institute for Brain Science. “The amount of work and effort that is required in customizing the several different functions in manipulating the electronic nature of these sensors — that being basically squeezed to a fraction of a millimeter space of silicon — is not trivial.”

The researchers demonstrated the efficiency of their system as well as just how much it could potentially be scaled up. They tested the system using 78 sensors in the lab and found they were able to collect and send data with few errors, even when the sensors were transmitting at different times. Through simulations, they were able to show how to decode data collected from the brains of primates using about 8,000 hypothetically implanted sensors.

The researchers say next steps include optimizing the system for reduced power consumption and exploring broader applications beyond neurotechnology.

“The current work provides a methodology we can further build on,” Lee said.

Here’s a link to and a citation for the study,

An asynchronous wireless network for capturing event-driven data from large populations of autonomous sensors by Jihun Lee, Ah-Hyoung Lee, Vincent Leung, Farah Laiwalla, Miguel Angel Lopez-Gordo, Lawrence Larson & Arto Nurmikko. Nature Electronics volume 7, pages 313–324 (2024) DOI: https://doi.org/10.1038/s41928-024-01134-y Published: 19 March 2024 Issue Date: April 2024

This paper is behind a paywall.

Prior to this, 2021 seems to have been a banner year for Nurmikko’s lab. There’s this August 12, 2021 Brown University news release touting publication of a then new study in Nature Electronics and I have an April 2, 2021 post, “BrainGate demonstrates a high-bandwidth wireless brain-computer interface (BCI),” touting an earlier 2021 published study from the lab.

Implantable brain-computer interface collaborative community (iBCI-CC) launched

That’s quite a mouthful, ‘implantable brain-computer interface collaborative community (iBCI-CC). I assume the organization will be popularly known by its abbreviation.`A March 11, 2024 Mass General Brigham news release (also on EurekAlert) announces the iBCI-CC’s launch, Note: Mass stands for Massachusetts,

Mass General Brigham is establishing the Implantable Brain-Computer Interface Collaborative Community (iBCI-CC). This is the first Collaborative Community in the clinical neurosciences that has participation from the U.S. Food and Drug Administration (FDA).

BCIs are devices that interface with the nervous system and use software to interpret neural activity. Commonly, they are designed for improved access to communication or other technologies for people with physical disability. Implantable BCIs are investigational devices that hold the promise of unlocking new frontiers in restorative neurotechnology, offering potential breakthroughs in neurorehabilitation and in restoring function for people living with neurologic disease or injury.

The iBCI-CC (https://www.ibci-cc.org/) is a groundbreaking initiative aimed at fostering collaboration among diverse stakeholders to accelerate the development, safety and accessibility of iBCI technologies. The iBCI-CC brings together researchers, clinicians, medical device manufacturers, patient advocacy groups and individuals with lived experience of neurological conditions. This collaborative effort aims to propel the field of iBCIs forward by employing harmonized approaches that drive continuous innovation and ensure equitable access to these transformative technologies.

One of the first milestones for the iBCI-CC was to engage the participation of the FDA. “Brain-computer interfaces have the potential to restore lost function for patients suffering from a variety of neurological conditions. However, there are clinical, regulatory, coverage and payment questions that remain, which may impede patient access to this novel technology,” said David McMullen, M.D., Director of the Office of Neurological and Physical Medicine Devices in the FDA’s Center for Devices and Radiological Health (CDRH), and FDA member of the iBCI-CC. “The IBCI-CC will serve as an open venue to identify, discuss and develop approaches for overcoming these hurdles.”

The iBCI-CC will hold regular meetings open both to its members and the public to ensure inclusivity and transparency. Mass General Brigham will serve as the convener of the iBCI-CC, providing administrative support and ensuring alignment with the community’s objectives.

Over the past year, the iBCI-CC was organized by the interdisciplinary collaboration of leaders including Leigh Hochberg, MD, PhD, an internationally respected leader in BCI development and clinical testing and director of the Center for Neurotechnology and Neurorecovery at Massachusetts General Hospital; Jennifer French, MBA, executive director of the Neurotech Network and a Paralympic silver medalist; and Joe Lennerz, MD, PhD, a regulatory science expert and director of the Pathology Innovation Collaborative Community. These three organizers lead a distinguished group of Charter Signatories representing a diverse range of expertise and organizations.

“As a neurointensive care physician, I know how many patients with neurologic disorders could benefit from these devices,” said Dr. Hochberg. “Increasing discoveries in academia and the launch of multiple iBCI and related neurotech companies means that the time is right to identify common goals and metrics so that iBCIs are not only safe and effective, but also have thoroughly considered the design and function preferences of the people who hope to use them”.

Jennifer French, said, “Bringing diverse perspectives together, including those with lived experience, is a critical component to help address complex issues facing this field.” French has decades of experience working in the neurotech and patient advocacy fields. Living with a spinal cord injury, she also uses an implanted neurotech device for daily functions. “This ecosystem of neuroscience is on the cusp to collectively move the field forward by addressing access to the latest groundbreaking technology, in an equitable and ethical way. We can’t wait to engage and recruit the broader BCI community.”

Joe Lennerz, MD, PhD, emphasized, “Engaging in pre-competitive initiatives offers an often-overlooked avenue to drive meaningful progress. The collaboration of numerous thought leaders plays a pivotal role, with a crucial emphasis on regulatory engagement to unlock benefits for patients.”

The iBCI-CC is supported by key stakeholders within the Mass General Brigham system. Merit Cudkowicz, MD, MSc, chair of the Neurology Department, director of the Sean M. Healey and AMG Center for ALS at Massachusetts General Hospital, and Julianne Dorn Professor of Neurology at Harvard Medical School, said, “There is tremendous excitement in the ALS [amyotrophic lateral sclerosis, or Lou Gehrig’s disease] community for new devices that could ease and improve the ability of people with advanced ALS to communicate with their family, friends, and care partners. This important collaborative community will help to speed the development of a new class of neurologic devices to help our patients.”

Bailey McGuire, program manager of strategy and operations at Mass General Brigham’s Data Science Office, said, “We are thrilled to convene the iBCI-CC at Mass General Brigham’s DSO. By providing an administrative infrastructure, we want to help the iBCI-CC advance regulatory science and accelerate the availability of iBCI solutions that incorporate novel hardware and software that can benefit individuals with neurological conditions. We’re excited to help in this incredible space.”

For more information about the iBCI-CC, please visit https://www.ibci-cc.org/.

About Mass General Brigham

Mass General Brigham is an integrated academic health care system, uniting great minds to solve the hardest problems in medicine for our communities and the world. Mass General Brigham connects a full continuum of care across a system of academic medical centers, community and specialty hospitals, a health insurance plan, physician networks, community health centers, home care, and long-term care services. Mass General Brigham is a nonprofit organization committed to patient care, research, teaching, and service to the community. In addition, Mass General Brigham is one of the nation’s leading biomedical research organizations with several Harvard Medical School teaching hospitals. For more information, please visit massgeneralbrigham.org.

About the iBCI-CC Organizers:

Leigh Hochberg, MD, PhD is a neurointensivist at Massachusetts General Hospital’s Department of Neurology, where he directs the MGH Center for Neurotechnology and Neurorecovery. He is also the IDE Sponsor-Investigator and Directorof the BrainGate clinical trials, conducted by a consortium of scientists and clinicians at Brown, Emory, MGH, VA Providence, Stanford, and UC-Davis; the L. Herbert Ballou University Professor of Engineering and Professor of Brain Science at Brown University; Senior Lecturer on Neurology at Harvard Medical School; and Associate Director, VA RR&D Center for Neurorestoration and Neurotechnology in Providence.

Jennifer French, MBA, is the Executive Director of Neurotech Network, a nonprofit organization that focuses on education and advocacy of neurotechnologies. She serves on several Boards including the IEEE Neuroethics Initiative, Institute of Neuroethics, OpenMind platform, BRAIN Initiative Multi-Council and Neuroethics Working Groups, and the American Brain Coalition. She is the author of On My Feet Again (Neurotech Press, 2013) and is co-author of Bionic Pioneers (Neurotech Press, 2014). French lives with tetraplegia due to a spinal cord injury. She is an early user of an experimental implanted neural prosthesis for paralysis and is the Past-President and Founding member of the North American SCI Consortium.

Joe Lennerz, MD PhD, serves as the Chief Scientific Officer at BostonGene, an AI analytics and genomics startup based in Boston. Dr. Lennerz obtained a PhD in neurosciences, specializing in electrophysiology. He works on biomarker development and migraine research. Additionally, he is the co-founder and leader of the Pathology Innovation Collaborative Community, a regulatory science initiative focusing on diagnostics and software as a medical device (SaMD), convened by the Medical Device Innovation Consortium. He also serves as the co-chair of the federal Clinical Laboratory Fee Schedule (CLFS) advisory panel to the Centers for Medicare & Medicaid Services (CMS).

it’s been a while since I’ve come across BrainGate (see Leigh Hochberg bio in the above news release), which was last mentioned here in an April 2, 2021 posting, “BrainGate demonstrates a high-bandwidth wireless brain-computer interface (BCI).”

Here are two of my more recent postings about brain-computer interfaces,

This next one is an older posting but perhaps the most relevant to the announcement of this collaborative community’s purpose,

There’s a lot more on brain-computer interfaces (BCI) here, just use the term in the blog search engine.