Tag Archives: Brian Taba

IBM to build brain-inspired AI supercomputing system equal to 64 million neurons for US Air Force

This is the second IBM computer announcement I’ve stumbled onto within the last 4 weeks or so,  which seems like a veritable deluge given the last time I wrote about IBM’s computing efforts was in an Oct. 8, 2015 posting about carbon nanotubes,. I believe that up until now that was my  most recent posting about IBM and computers.

Moving onto the news, here’s more from a June 23, 3017 news item on Nanotechnology Now,

IBM (NYSE: IBM) and the U.S. Air Force Research Laboratory (AFRL) today [June 23, 2017] announced they are collaborating on a first-of-a-kind brain-inspired supercomputing system powered by a 64-chip array of the IBM TrueNorth Neurosynaptic System. The scalable platform IBM is building for AFRL will feature an end-to-end software ecosystem designed to enable deep neural-network learning and information discovery. The system’s advanced pattern recognition and sensory processing power will be the equivalent of 64 million neurons and 16 billion synapses, while the processor component will consume the energy equivalent of a dim light bulb – a mere 10 watts to power.

A June 23, 2017 IBM news release, which originated the news item, describes the proposed collaboration, which is based on IBM’s TrueNorth brain-inspired chip architecture (see my Aug. 8, 2014 posting for more about TrueNorth),

IBM researchers believe the brain-inspired, neural network design of TrueNorth will be far more efficient for pattern recognition and integrated sensory processing than systems powered by conventional chips. AFRL is investigating applications of the system in embedded, mobile, autonomous settings where, today, size, weight and power (SWaP) are key limiting factors.

The IBM TrueNorth Neurosynaptic System can efficiently convert data (such as images, video, audio and text) from multiple, distributed sensors into symbols in real time. AFRL will combine this “right-brain” perception capability of the system with the “left-brain” symbol processing capabilities of conventional computer systems. The large scale of the system will enable both “data parallelism” where multiple data sources can be run in parallel against the same neural network and “model parallelism” where independent neural networks form an ensemble that can be run in parallel on the same data.

“AFRL was the earliest adopter of TrueNorth for converting data into decisions,” said Daniel S. Goddard, director, information directorate, U.S. Air Force Research Lab. “The new neurosynaptic system will be used to enable new computing capabilities important to AFRL’s mission to explore, prototype and demonstrate high-impact, game-changing technologies that enable the Air Force and the nation to maintain its superior technical advantage.”

“The evolution of the IBM TrueNorth Neurosynaptic System is a solid proof point in our quest to lead the industry in AI hardware innovation,” said Dharmendra S. Modha, IBM Fellow, chief scientist, brain-inspired computing, IBM Research – Almaden. “Over the last six years, IBM has expanded the number of neurons per system from 256 to more than 64 million – an 800 percent annual increase over six years.’’

The system fits in a 4U-high (7”) space in a standard server rack and eight such systems will enable the unprecedented scale of 512 million neurons per rack. A single processor in the system consists of 5.4 billion transistors organized into 4,096 neural cores creating an array of 1 million digital neurons that communicate with one another via 256 million electrical synapses.    For CIFAR-100 dataset, TrueNorth achieves near state-of-the-art accuracy, while running at >1,500 frames/s and using 200 mW (effectively >7,000 frames/s per Watt) – orders of magnitude lower speed and energy than a conventional computer running inference on the same neural network.

The IBM TrueNorth Neurosynaptic System was originally developed under the auspices of Defense Advanced Research Projects Agency’s (DARPA) Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program in collaboration with Cornell University. In 2016, the TrueNorth Team received the inaugural Misha Mahowald Prize for Neuromorphic Engineering and TrueNorth was accepted into the Computer History Museum.  Research with TrueNorth is currently being performed by more than 40 universities, government labs, and industrial partners on five continents.

There is an IBM video accompanying this news release, which seems more promotional than informational,

The IBM scientist featured in the video has a Dec. 19, 2016 posting on an IBM research blog which provides context for this collaboration with AFRL,

2016 was a big year for brain-inspired computing. My team and I proved in our paper “Convolutional networks for fast, energy-efficient neuromorphic computing” that the value of this breakthrough is that it can perform neural network inference at unprecedented ultra-low energy consumption. Simply stated, our TrueNorth chip’s non-von Neumann architecture mimics the brain’s neural architecture — giving it unprecedented efficiency and scalability over today’s computers.

The brain-inspired TrueNorth processor [is] a 70mW reconfigurable silicon chip with 1 million neurons, 256 million synapses, and 4096 parallel and distributed neural cores. For systems, we present a scale-out system loosely coupling 16 single-chip boards and a scale-up system tightly integrating 16 chips in a 4´4 configuration by exploiting TrueNorth’s native tiling.

For the scale-up systems we summarize our approach to physical placement of neural network, to reduce intra- and inter-chip network traffic. The ecosystem is in use at over 30 universities and government / corporate labs. Our platform is a substrate for a spectrum of applications from mobile and embedded computing to cloud and supercomputers.
TrueNorth Ecosystem for Brain-Inspired Computing: Scalable Systems, Software, and Applications

TrueNorth, once loaded with a neural network model, can be used in real-time as a sensory streaming inference engine, performing rapid and accurate classifications while using minimal energy. TrueNorth’s 1 million neurons consume only 70 mW, which is like having a neurosynaptic supercomputer the size of a postage stamp that can run on a smartphone battery for a week.

Recently, in collaboration with Lawrence Livermore National Laboratory, U.S. Air Force Research Laboratory, and U.S. Army Research Laboratory, we published our fifth paper at IEEE’s prestigious Supercomputing 2016 conference that summarizes the results of the team’s 12.5-year journey (see the associated graphic) to unlock this value proposition. [keep scrolling for the graphic]

Applying the mind of a chip

Three of our partners, U.S. Army Research Lab, U.S. Air Force Research Lab and Lawrence Livermore National Lab, contributed sections to the Supercomputing paper each showcasing a different TrueNorth system, as summarized by my colleagues Jun Sawada, Brian Taba, Pallab Datta, and Ben Shaw:

U.S. Army Research Lab (ARL) prototyped a computational offloading scheme to illustrate how TrueNorth’s low power profile enables computation at the point of data collection. Using the single-chip NS1e board and an Android tablet, ARL researchers created a demonstration system that allows visitors to their lab to hand write arithmetic expressions on the tablet, with handwriting streamed to the NS1e for character recognition, and recognized characters sent back to the tablet for arithmetic calculation.

Of course, the point here is not to make a handwriting calculator, it is to show how TrueNorth’s low power and real time pattern recognition might be deployed at the point of data collection to reduce latency, complexity and transmission bandwidth, as well as back-end data storage requirements in distributed systems.

U.S. Air Force Research Lab (AFRL) contributed another prototype application utilizing a TrueNorth scale-out system to perform a data-parallel text extraction and recognition task. In this application, an image of a document is segmented into individual characters that are streamed to AFRL’s NS1e16 TrueNorth system for parallel character recognition. Classification results are then sent to an inference-based natural language model to reconstruct words and sentences. This system can process 16,000 characters per second! AFRL plans to implement the word and sentence inference algorithms on TrueNorth, as well.

Lawrence Livermore National Lab (LLNL) has a 16-chip NS16e scale-up system to explore the potential of post-von Neumann computation through larger neural models and more complex algorithms, enabled by the native tiling characteristics of the TrueNorth chip. For the Supercomputing paper, they contributed a single-chip application performing in-situ process monitoring in an additive manufacturing process. LLNL trained a TrueNorth network to recognize seven classes related to track weld quality in welds produced by a selective laser melting machine. Real-time weld quality determination allows for closed-loop process improvement and immediate rejection of defective parts. This is one of several applications LLNL is developing to showcase TrueNorth as a scalable platform for low-power, real-time inference.

[downloaded from https://www.ibm.com/blogs/research/2016/12/the-brains-architecture-efficiency-on-a-chip/] Courtesy: IBM

I gather this 2017 announcement is the latest milestone on the TrueNorth journey.

TrueNorth, a brain-inspired chip architecture from IBM and Cornell University

As a Canadian, “true north” is invariably followed by “strong and free” while singing our national anthem. For many Canadians it is almost the only phrase that is remembered without hesitation.  Consequently, some of the buzz surrounding the publication of a paper celebrating ‘TrueNorth’, a brain-inspired chip, is a bit disconcerting. Nonetheless, here is the latest IBM (in collaboration with Cornell University) news from an Aug. 8, 2014 news item on Nanowerk,

Scientists from IBM unveiled the first neurosynaptic computer chip to achieve an unprecedented scale of one million programmable neurons, 256 million programmable synapses and 46 billion synaptic operations per second per watt. At 5.4 billion transistors, this fully functional and production-scale chip is currently one of the largest CMOS chips ever built, yet, while running at biological real time, it consumes a minuscule 70mW—orders of magnitude less power than a modern microprocessor. A neurosynaptic supercomputer the size of a postage stamp that runs on the energy equivalent of a hearing-aid battery, this technology could transform science, technology, business, government, and society by enabling vision, audition, and multi-sensory applications.

An Aug. 7, 2014 IBM news release, which originated the news item, provides an overview of the multi-year process this breakthrough represents (Note: Links have been removed),

There is a huge disparity between the human brain’s cognitive capability and ultra-low power consumption when compared to today’s computers. To bridge the divide, IBM scientists created something that didn’t previously exist—an entirely new neuroscience-inspired scalable and efficient computer architecture that breaks path with the prevailing von Neumann architecture used almost universally since 1946.

This second generation chip is the culmination of almost a decade of research and development, including the initial single core hardware prototype in 2011 and software ecosystem with a new programming language and chip simulator in 2013.

The new cognitive chip architecture has an on-chip two-dimensional mesh network of 4096 digital, distributed neurosynaptic cores, where each core module integrates memory, computation, and communication, and operates in an event-driven, parallel, and fault-tolerant fashion. To enable system scaling beyond single-chip boundaries, adjacent chips, when tiled, can seamlessly connect to each other—building a foundation for future neurosynaptic supercomputers. To demonstrate scalability, IBM also revealed a 16-chip system with sixteen million programmable neurons and four billion programmable synapses.

“IBM has broken new ground in the field of brain-inspired computers, in terms of a radically new architecture, unprecedented scale, unparalleled power/area/speed efficiency, boundless scalability, and innovative design techniques. We foresee new generations of information technology systems – that complement today’s von Neumann machines – powered by an evolving ecosystem of systems, software, and services,” said Dr. Dharmendra S. Modha, IBM Fellow and IBM Chief Scientist, Brain-Inspired Computing, IBM Research. “These brain-inspired chips could transform mobility, via sensory and intelligent applications that can fit in the palm of your hand but without the need for Wi-Fi. This achievement underscores IBM’s leadership role at pivotal transformational moments in the history of computing via long-term investment in organic innovation.”

The Defense Advanced Research Projects Agency (DARPA) has funded the project since 2008 with approximately $53M via Phase 0, Phase 1, Phase 2, and Phase 3 of the Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program. Current collaborators include Cornell Tech and iniLabs, Ltd.

Building the Chip

The chip was fabricated using Samsung’s 28nm process technology that has a dense on-chip memory and low-leakage transistors.

“It is an astonishing achievement to leverage a process traditionally used for commercially available, low-power mobile devices to deliver a chip that emulates the human brain by processing extreme amounts of sensory information with very little power,” said Shawn Han, vice president of Foundry Marketing, Samsung Electronics. “This is a huge architectural breakthrough that is essential as the industry moves toward the next-generation cloud and big-data processing. It’s a pleasure to be part of technical progress for next-generation through Samsung’s 28nm technology.”

The event-driven circuit elements of the chip used the asynchronous design methodology developed at Cornell Tech [aka Cornell University] and refined with IBM since 2008.

“After years of collaboration with IBM, we are now a step closer to building a computer similar to our brain,” said Professor Rajit Manohar, Cornell Tech.

The combination of cutting-edge process technology, hybrid asynchronous-synchronous design methodology, and new architecture has led to a power density of 20mW/cm2 which is nearly four orders of magnitude less than today’s microprocessors.

Advancing the SyNAPSE Ecosystem

The new chip is a component of a complete end-to-end vertically integrated ecosystem spanning a chip simulator, neuroscience data, supercomputing, neuron specification, programming paradigm, algorithms and applications, and prototype design models. The ecosystem supports all aspects of the programming cycle from design through development, debugging, and deployment.

To bring forth this fundamentally different technological capability to society, IBM has designed a novel teaching curriculum for universities, customers, partners, and IBM employees.

Applications and Vision

This ecosystem signals a shift in moving computation closer to the data, taking in vastly varied kinds of sensory data, analyzing and integrating real-time information in a context-dependent way, and dealing with the ambiguity found in complex, real-world environments.

Looking to the future, IBM is working on integrating multi-sensory neurosynaptic processing into mobile devices constrained by power, volume and speed; integrating novel event-driven sensors with the chip; real-time multimedia cloud services accelerated by neurosynaptic systems; and neurosynaptic supercomputers by tiling multiple chips on a board, creating systems that would eventually scale to one hundred trillion synapses and beyond.

Building on previously demonstrated neurosynaptic cores with on-chip, online learning, IBM envisions building learning systems that adapt in real world settings. While today’s hardware is fabricated using a modern CMOS process, the underlying architecture is poised to exploit advances in future memory, 3D integration, logic, and sensor technologies to deliver even lower power, denser package, and faster speed.

I have two articles that may prove of interest, Peter Stratton’s Aug. 7, 2014 article for The Conversation provides an easy-to-read introduction to both brains, human and computer, (as they apply to this research) and TrueNorth (h/t phys.org also hosts Stratton’s article). There’s also an Aug. 7, 2014 article by Rob Farber for techenablement.com which includes information from a range of text and video sources about TrueNorth and cognitive computing as it’s also known (well worth checking out).

Here’s a link to and a citation for the paper,

A million spiking-neuron integrated circuit with a scalable communication network and interface by Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar, and Dharmendra S. Modha. Science 8 August 2014: Vol. 345 no. 6197 pp. 668-673 DOI: 10.1126/science.1254642

This paper is behind a paywall.