Tag Archives: Brianna Deane

Nanodiamond contact lenses in attempt to improve glaucoma treatment

A School of Dentistry, at the University of California at Los Angeles (UCLA) or elsewhere, is not my first thought as a likely source for work on improving glaucoma treatment—it turns out that I’m a bit shortsighted (pun intended).  A Feb. 14, 2014 news item on Azonano describes the issue with glaucoma treatment and a new delivery system for it developed by a research team at UCLA,

By 2020, nearly 80 million people are expected to have glaucoma, a disorder of the eye that, if left untreated, can damage the optic nerve and eventually lead to blindness.

The disease often causes pressure in the eye due to a buildup of fluid and a breakdown of the tissue that is responsible for regulating fluid drainage. Doctors commonly treat glaucoma using eye drops that can help the eye drain or decrease fluid production.

Unfortunately, patients frequently have a hard time sticking to the dosing schedules prescribed by their doctors, and the medication — when administered through drops — can cause side effects in the eye and other parts of the body.

In what could be a significant step toward improving the management of glaucoma, researchers from the UCLA School of Dentistry have created a drug delivery system that may have less severe side effects than traditional glaucoma medication and improve patients’ ability to comply with their prescribed treatments. The scientists bound together glaucoma-fighting drugs with nanodiamonds and embedded them onto contact lenses. The drugs are released into the eye when they interact with the patient’s tears.

The new technology showed great promise for sustained glaucoma treatment and, as a side benefit, the nanodiamond-drug compound even improved the contact lenses’ durability.

The Feb. 13, 2014 UCLA news release by Brianna Deane, which originated the news item, describes the nanodiamonds and how they were employed in this project,

Nanodiamonds, which are byproducts of conventional mining and refining processes, are approximately five nanometers in diameter and are shaped like tiny soccer balls. They can be used to bind a wide spectrum of drug compounds and enable drugs to be released into the body over a long period of time.

To deliver a steady release of medication into the eye, the UCLA researchers combined nanodiamonds with timolol maleate, which is commonly used in eye drops to manage glaucoma. When applied to the nanodiamond-embedded lenses, timolol is released when it comes into contact with lysozyme, an enzyme that is abundant in tears.

“Delivering timolol through exposure to tears may prevent premature drug release when the contact lenses are in storage and may serve as a smarter route toward drug delivery from a contact lens.” said Kangyi Zhang, co-first author of the study and a graduate student in Ho’s lab.

One of the drawbacks of traditional timolol maleate drops is that as little as 5 percent of the drug actually reaches the intended site. Another disadvantage is burst release, where a majority of the drug is delivered too quickly, which can cause significant amounts of the drug to “leak” or spill out of the eye and, in the most serious cases, can cause complications such as an irregular heartbeat. Drops also can be uncomfortable to administer, which leads many patients to stop using their medication.

But the contact lenses developed by the UCLA team successfully avoided the burst release effect. The activity of the released timolol was verified by a primary human-cell study.

“In addition to nanodiamonds’ promise as triggered drug-delivery agents for eye diseases, they can also make the contact lenses more durable during the course of insertion, use and removal, and more comfortable to wear,” said Ho, who is also a professor of bioengineering and a member of the Jonsson Comprehensive Cancer Center and the California NanoSystems Institute.

Even with the nanodiamonds embedded, the lenses still possessed favorable levels of optical clarity. And, although mechanical testing verified that they were stronger than normal lenses, there were no apparent changes to water content, meaning that the contact lenses’ comfort and permeability to oxygen would likely be preserved.

By this time, I was madly curious as to what these contact lenses might look like and so I found this image, accompanying the researchers’ paper,  showing what looks like a standard contact lens with an illustration of how the artist imagines the diamonds and medications are functioning at the nanoscale,

nanodiamonds

[downloaded from http://pubs.acs.org/doi/abs/10.1021/nn5002968]

Here’s a link to and a citation for the paper,

Diamond Nanogel-Embedded Contact Lenses Mediate Lysozyme-Dependent Therapeutic Release by Ho-Joong Kim, Kangyi Zhang, Laura Moore, and Dean Ho. ACS Nano, Article ASAP DOI: 10.1021/nn5002968 Publication Date (Web): February 8, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

Diamonds in your teeth—for health reasons

Scientists at the University of California at Los Angeles (UCLA) in collaboration with their colleagues at the NanoCarbon Research Institute (Japan) are investigating the possibility of using nanodiamonds to promote bone growth that supports dental implants. From the Sept.18, 2013 news item on ScienceDaily,

UCLA researchers have discovered that diamonds on a much, much smaller scale than those used in jewelry could be used to promote bone growth and the durability of dental implants.

Nanodiamonds, which are created as byproducts of conventional mining and refining operations, are approximately four to five nanometers in diameter and are shaped like tiny soccer balls. Scientists from the UCLA School of Dentistry, the UCLA Department of Bioengineering and Northwestern University, along with collaborators at the NanoCarbon Research Institute in Japan, may have found a way to use them to improve bone growth and combat osteonecrosis, a potentially debilitating disease in which bones break down due to reduced blood flow.

The Sept. 17,2013 UCLA news release by Brianna Deane (also on EurekAlert), which originated the news item, describes how osteonecrosis affects bones and the impact that this new technique using nanodiamonds could have on applications for regenerative medicine (Note: A link has been removed),

When osteonecrosis affects the jaw, it can prevent people from eating and speaking; when it occurs near joints, it can restrict or preclude movement. Bone loss also occurs next to implants such as prosthetic joints or teeth, which leads to the implants becoming loose — or failing.
Implant failures necessitate additional procedures, which can be painful and expensive, and can jeopardize the function the patient had gained with an implant. These challenges are exacerbated when the disease occurs in the mouth, where there is a limited supply of local bone that can be used to secure the prosthetic tooth, a key consideration for both functional and aesthetic reasons.
….
During bone repair operations, which are typically costly and time-consuming, doctors insert a sponge through invasive surgery to locally administer proteins that promote bone growth, such as bone morphogenic protein.
Ho’s team discovered that using nanodiamonds to deliver these proteins has the potential to be more effective than the conventional approaches. The study found that nanodiamonds, which are invisible to the human eye, bind rapidly to both bone morphogenetic protein  and fibroblast growth factor, demonstrating that the proteins can be simultaneously delivered using one vehicle. The unique surface of the diamonds allows the proteins to be delivered more slowly, which may allow the affected area to be treated for a longer period of time. Furthermore, the nanodiamonds can be administered non-invasively, such as by an injection or an oral rinse.
“We’ve conducted several comprehensive studies, in both cells and animal models, looking at the safety of the nanodiamond particles,” said Laura Moore, the first author of the study and an M.D.-Ph.D. student at Northwestern University under the mentorship of Dr. Ho. “Initial studies indicate that they are well tolerated, which further increases their potential in dental and bone repair applications.”
“Nanodiamonds are versatile platforms,” said Ho, who is also professor of bioengineering and a member of the Jonsson Comprehensive Cancer Center and the California NanoSystems Institute. “Because they are useful for delivering such a broad range of therapies, nanodiamonds have the potential to impact several other facets of oral, maxillofacial and orthopedic surgery, as well as regenerative medicine.”
Ho’s team previously showed that nanodiamonds in preclinical models were effective at treating multiple forms of cancer. Because osteonecrosis can be a side effect of chemotherapy, the group decided to examine whether nanodiamonds might help treat the bone loss as well. Results from the new study could open the door for this versatile material to be used to address multiple challenges in drug delivery, regenerative medicine and other fields.

Here’s a citation for and a link to the researchers’ published paper,

Multi-protein Delivery by Nanodiamonds Promotes Bone Formation by L. Moore, M. Gatica, H. Kim, E. Osawa, & D. Ho. Published online before print September 17, 2013, doi: 10.1177/0022034513504952 JDR September 17, 2013 0022034513504952

This paper is behind a paywall.