Tag Archives: Brittany R. Bitner

Nanoscale antioxidants

A Feb. 10, 2015 news item on Azonano features injectable nanoparticles that act as antioxidants useful in case of injury, in particular, brain injury,

Injectable nanoparticles that could protect an injured person from further damage due to oxidative stress have proven to be astoundingly effective in tests to study their mechanism.

Scientists at Rice University, Baylor College of Medicine and the University of Texas Health Science Center at Houston (UTHealth) Medical School designed methods to validate their 2012 discovery that combined polyethylene glycol-hydrophilic carbon clusters — known as PEG-HCCs — could quickly stem the process of overoxidation that can cause damage in the minutes and hours after an injury.

A Feb. 9, 2015 Rice University news release (also on EurekAlert), which originated the news item, describe the benefits in more detail,

The tests revealed a single nanoparticle can quickly catalyze the neutralization of thousands of damaging reactive oxygen species molecules that are overexpressed by the body’s cells in response to an injury and turn the molecules into oxygen. These reactive species can damage cells and cause mutations, but PEG-HCCs appear to have an enormous capacity to turn them into less-reactive substances.

The researchers hope an injection of PEG-HCCs as soon as possible after an injury, such as traumatic brain injury or stroke, can mitigate further brain damage by restoring normal oxygen levels to the brain’s sensitive circulatory system.

“Effectively, they bring the level of reactive oxygen species back to normal almost instantly,” said Rice chemist James Tour. “This could be a useful tool for emergency responders who need to quickly stabilize an accident or heart attack victim or to treat soldiers in the field of battle.” Tour led the new study with neurologist Thomas Kent of Baylor College of Medicine and biochemist Ah-Lim Tsai of UTHealth.

The news release goes on to describe the antioxidant particles and previous research,

PEG-HCCs are about 3 nanometers wide and 30 to 40 nanometers long and contain from 2,000 to 5,000 carbon atoms. In tests, an individual PEG-HCC nanoparticle can catalyze the conversion of 20,000 to a million reactive oxygen species molecules per second into molecular oxygen, which damaged tissues need, and hydrogen peroxide while quenching reactive intermediates.

Tour and Kent led the earlier research that determined an infusion of nontoxic PEG-HCCs may quickly stabilize blood flow in the brain and protect against reactive oxygen species molecules overexpressed by cells during a medical trauma, especially when accompanied by massive blood loss.

Their research targeted traumatic brain injuries, after which cells release an excessive amount of the reactive oxygen species known as a superoxide into the blood. These toxic free radicals are molecules with one unpaired electron that the immune system uses to kill invading microorganisms. In small concentrations, they contribute to a cell’s normal energy regulation. Generally, they are kept in check by superoxide dismutase, an enzyme that neutralizes superoxides.

But even mild traumas can release enough superoxides to overwhelm the brain’s natural defenses. In turn, superoxides can form such other reactive oxygen species as peroxynitrite that cause further damage.

“The current research shows PEG-HCCs work catalytically, extremely rapidly and with an enormous capacity to neutralize thousands upon thousands of the deleterious molecules, particularly superoxide and hydroxyl radicals that destroy normal tissue when left unregulated,” Tour said.

“This will be important not only in traumatic brain injury and stroke treatment, but for many acute injuries of any organ or tissue and in medical procedures such as organ transplantation,” he said. “Anytime tissue is stressed and thereby oxygen-starved, superoxide can form to further attack the surrounding good tissue.”

These details about the research are also noted in the news release,

The researchers used an electron paramagnetic resonance spectroscopy technique that gets direct structure and rate information for superoxide radicals by counting unpaired electrons in the presence or absence of PEG-HCC antioxidants. Another test with an oxygen-sensing electrode, peroxidase and a red dye confirmed the particles’ ability to catalyze superoxide conversion.

“In sharp contrast to the well-known superoxide dismutase, PEG-HCC is not a protein and does not have metal to serve the catalytic role,” Tsai said. “The efficient catalytic turnover could be due to its more ‘planar,’ highly conjugated carbon core.”

The tests showed the number of superoxides consumed far surpassed the number of possible PEG-HCC bonding sites. The researchers found the particles have no effect on important nitric oxides that keep blood vessels dilated and aid neurotransmission and cell protection, nor was the efficiency sensitive to pH changes.

“PEG-HCCs have enormous capacity to convert superoxide to oxygen and the ability to quench reactive intermediates while not affecting nitric oxide molecules that are beneficial in normal amounts,” Kent said. “So they hold a unique place in our potential armamentarium against a range of diseases that involve loss of oxygen and damaging levels of free radicals.”

The study also determined PEG-HCCs remain stable, as batches up to 3 months old performed as good as new.

Here’s a link to and a citation for the paper,

Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters by Errol L. G. Samuel, Daniela C. Marcano, Vladimir Berka, Brittany R. Bitner, Gang Wu, Austin Potter, Roderic H. Fabian, Robia G. Pautler, Thomas A. Kent, Ah-Lim Tsai, and James M. Tour. Published online before print February 9, 2015, doi: 10.1073/pnas.1417047112 PNAS February 9, 2015

This paper is behind a paywall.

Antioxidant-like carbon nanoparticles could help heal traumatic brain injuries

The research sounds exciting but all of the testing has taken place in laboratories on animal models (rats). The Oct. 18, 2012 news item on Azonano describes why the research team wanted to test  antioxidant-like carbon nanotubes for use with traumatic brain injury (TBI) patients,

Thomas Kent, James Tour and colleagues explain that TBI disrupts the supply of oxygen-rich blood to the brain. With the brain so oxygen-needy — accounting for only 2 percent of a person’s weight, but claiming 20 percent of the body’s oxygen supply — even a mild injury, such as a concussion, can have serious consequences. Reduced blood flow and resuscitation result in a build-up of free-radicals, which can kill brain cells. Despite years of far-ranging efforts, no effective treatment has emerged for TBI. That’s why the scientists tried a new approach, based on nanoparticles so small that 1000 would fit across the width of a human hair.

The American Chemical Society (ACS) Oct. 17, 2912 news release, which originated the news item, provides a few details about the research,

They [the research team]  describe development and successful laboratory tests of nanoparticles, called PEG-HCCs. In laboratory rats, the nanoparticles acted like antioxidants, rapidly restoring blood flow to the brain following resuscitation after TBI. “This finding is of major importance for improving patient health under clinically relevant conditions during resuscitative care, and it has direct implications for the current [TBI] war-fighter victims in the Afghanistan and Middle East theaters,” they say.

The abstract for the paper gives more insight,

Injury to the neurovasculature is a feature of brain injury and must be addressed to maximize opportunity for improvement. Cerebrovascular dysfunction, manifested by reduction in cerebral blood flow (CBF), is a key factor that worsens outcome after traumatic brain injury (TBI), most notably under conditions of hypotension. We report here that a new class of antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), which are nontoxic carbon particles, rapidly restore CBF in a mild TBI/hypotension/resuscitation rat model when administered during resuscitation—a clinically relevant time point. Along with restoration of CBF, there is a concomitant normalization of superoxide and nitric oxide levels. Given the role of poor CBF in determining outcome, this finding is of major importance for improving patient health under clinically relevant conditions during resuscitative care, and it has direct implications for the current TBI/hypotension war-fighter victims in the Afghanistan and Middle East theaters. The results also have relevancy in other related acute circumstances such as stroke and organ transplantation.

I notice this treatment has shown some success for mildTBI/hypotension if applied in the resuscitation phase and the testing, as I mentioned earlier, has been done on rats. For anyone who wants more information about this promising treatment,

Antioxidant Carbon Particles Improve Cerebrovascular Dysfunction Following Traumatic Brain Injury by Brittany R. Bitner, Daniela C. Marcano, Jacob M. Berlin, Roderic H. Fabian, Leela Cherian, James C. Culver, Mary E. Dickinson, Claudia S. Robertson, Robia G. Pautler, Thomas A. Kent, and James M. Tour. ACS Nano, 2012, 6 (9), pp 8007–8014 DOI: 10.1021/nn302615f

The article is behind a paywall and I notice it was published online Aug. 6, 2012. It looks like the ACS may may have tried to publicize this at the time of publication and decided to try again now in the hope of getting more publicity for this work.