Tag Archives: business

Bioscience business incubator at Brock University

It looks like they have some big plans in Ontario’s Niagara region, excerpted from a joint BioLiink, Goodman School of Business (Brock University) and Innovate Niagara July 4, 2013 media release,

A new biosciences incubator operated by the Goodman School of Business [Brock University] as part of Innovate Niagara’s network of incubators, BioLinc is looking to fill the crucial gap that exists between scientific discovery and business opportunity.

“With a nod to the area we are in, I like to refer to this as the ‘terroir of innovation,’ ” says Dan Lynch, manager of BioLinc, referring to Brock’s location in Niagara’s wine country. “We are a true locavore story. If you think about bioprocessing, it is great to be in a place where we can grow stuff. We have the raw materials close by and accessible.”

Housed in a 4,000-square-foot space located on Brock’s main campus in the new $111.4-million Cairns Family Health and Bioscience Research Complex, BioLinc was launched with a startup investment of $843,500 from FedDev Ontario’s Prosperity Initiative. BioLinc has the capacity to accommodate an ever-changing mix at any time of student entrepreneurs, researchers and companies as residents, with move-ins underway throughout this summer.

The BioLinc facility is also the home of the Goodman School of Business student consulting. In combination with service learning opportunities for Goodman business students, the student consulting service provides business support services for the residents of BioLinc.

The relationship with Innovate Niagara allows BioLinc to leverage the Accelerator Program to help start-ups move to market faster, create jobs and stimulate economic activity.

“We are very excited to utilize this proven framework that helps start-ups to succeed using coaching and mentoring, connections to capital, R&D support, commercialization expertise and more,” says Jeff Chesebrough, Brock University’s Director of Innovation and Incubation who also acts as CEO of Innovate Niagara.

The buzzword at BioLinc is collaboration. Several spaces in the incubator have been designed to accommodate groups of people — be they students or researchers — working together. Furniture is more likely to be a table rather than individual desks. Three lab areas are described as “places for collisions,” where researchers can work together in a neutral space – bringing academia and the private sector together.

The facility also includes a “dry lab” for design and prototyping, computer sciences, web work, a design station and, soon, a 3D printer.

As an incubator, BioLinc offers entrepreneurs office space and equipment, networking to develop the contacts necessary to commercialize their ideas and support and counselling for matters like business plans, finances and business training. Being part of Brock University allows tenants at BioLinc to access facilities and state-of-the-art equipment as well as the most current research and teachings that guide the development of new businesses.

About BioLinc:

Operated by the Goodman School of Business as part of Innovate Niagara’s network of incubators, BioLinc is a bioscience, biotechnology and biomanufacturing facility housed within the Cairns Family Health and Bioscience Complex at Brock University. BioLinc helps transform today’s leading-edge research opportunities into tomorrow’s robust business opportunities by providing students, researchers and private sector companies with a forum to connect, collaborate and commercialize concepts.

About the Goodman School of Business:

Based at Brock University in St. Catharines, Ont., the Goodman School of Business is one of only six schools in Ontario that is accredited by the Association to Advance Collegiate Schools of Business international. The Goodman School of Business is home to more than 2,600 undergraduate students, 350 graduate students and has 7,000 alumni worldwide.

About Innovate Niagara:

Innovate Niagara helps entrepreneurs in high-growth industries to start, grow and succeed. Innovate Niagara is a Regional Innovation Centre (RIC) funded through the Ontario Network of Entrepreneurs (ONE). Formerly known as nGen – Niagara Interactive Media Generator, Innovate Niagara was renamed in 2013 to reflect their expanded mandate to serve emerging sectors and high-growth industries through business advisory services, tools and resources including a network of business incubators.

Good luck to BioLinc.

Over 2000 nanotechnology businesses?

Nanowerk has announced a new, free feature: their Nanotechnology Company Directory. From the July 1, 2010 news item,

At the latest count, over 2100 companies from 48 countries are involved in nanotechnology research, manufacturing or applications – a number that keeps growing at a considerable pace.

With more than 1100 companies, the U.S. is home to roughly half of all nanotechnology firms. 670 companies are in Europe, 230 in Asia and 210 elsewhere in the world. Within Europe, Germany is represented with 211 companies, followed by the U.K. with 146 companies.

Over 270 companies are involved in the manufacture of raw materials such as nanoparticles, nanofibers and -wires, carbon nanotubes, or quantum dots. More than 340 companies are active in life sciences and pharmaceutical fields. The vast majority with well over half of all companies are involved in manufacturing instruments, devices, or advanced materials and components.

The news item goes on to provide a definition for what constitutes a nanotechnology company which is timely in light of Dexter Johnson’s June 30, 2010 posting (What Is a Nanotechnology Company Anyway?) at Nanoclast,

I stopped for a moment after reading [in an investment notice he’d received] this term “nanotechnology company” to consider what might actually constitute such a thing. Is Toyota a nanotechnology company as some nanotechnology stock indices have claimed? Is IBM a nanotechnology company because they are doing research into using graphene and carbon nanotubes in electronics? How about all the instrumentation and microscopy companies that give us the tools to see and to work on the nanometer and angstrom scale, are they nanotechnology companies? What about the flood of nanomaterials companies that started making carbon nanotubes in their basements that were going to revolutionize industry?

Despite figures ranging from one to three trillion dollars being dangled in front of people’s faces for the last 10 years, it doesn’t seem to have attracted the level of investment that would really make a difference in advancing the commercial aspirations of nanotechnologies if the recent PCAST meeting is any indication.

So the definition has an impact since entrepreneurs need to attract investment and, as  more than one of the participants in the recent PCAST meeting noted, moving the discoveries from the laboratory to the market place is a labourious process where there is a significant dearth of investment interest for a phase described as the ‘valley of death’ or, as one participant termed it, the ‘lab gap’. (My post about that particular PCAST meeting ‘The Golden Triangle workshop’  is here.)

The same day Nanowerk announced its new nanotechnology company directory, Christine Peterson at the Foresight Institute posted an item about a venture capital group known for investing in nanotech and microsystems,

Small investors who want to invest in nanotech startups have for years turned to publicly-held venture group Harris & Harris Group, which has focused on private companies in nanotech and microsystems.

With the economy down, and initial public offerings (IPOs) more rare, this strategy is changing.

Peterson is commenting on a Wall Street Journal blog posting by Brian Gormley,

In a June 28 letter to shareholders, Chief Executive [of Harris & Harris Group] Douglas Jamison said many of its private holdings are maturely nicely. Even so, volatility and risk aversion in the public markets are making it difficult for these companies [nanotech and microsystems] to go public.

Although the firm plans to continue investing in private companies, “We currently do not plan to make an initial equity investment in a private company until we get increased visibility into the timing of liquidity for our privately held portfolio,” Jamison wrote in the letter.

The firm, which has 31 private investments in its portfolio, expects to gain such visibility later this year. Jamison was not available for comment Monday.

“With the lengthening time between investment and return on investment in private venture capital-backed companies, we need to find a way to generate returns with greater frequency,” Jamison said in the letter.

“As a public company, we should not count on investors to wait five years between liquidity events. We will seek to position our investments so that we can demonstrate positive returns on investments on an annual basis.”

The valley of death or lab gap seems to be getting wider while venture capitalists who do know the industry pull back. Meanwhile, a standard investor is likely to experience confusion about what the term nanotechnology company means and just how much that ‘market’ is liable to worth.

Interview with Dr. David T. Cramb; venture capital and nano and microsystems; NanoBusiness Alliance roundtable; science and artists

March 3, 2010, I posted about Dr. David Cramb, director of the Nanoscience Program and professor in the department of Chemistry at the University of Calgary, and his colleagues. They had just published a paper (Measuring properties of nanoparticles in embryonic blood vessels: Towards a physicochemical basis for nanotoxicity)  in Chemical Physics Letters about a new methodology they are developing to measure the impact of nanoparticles  on human health and the environment. Dr. Cramb very kindly answered some email questions about the study (abstract is here, article is behind a paywall).

  • Is this work on nanoparticles and blood vessels part of a larger project? i.e. Is this an OECD project; is there going to be an international report; is this part of a cross-Canada investigation into nanoparticles and their impact on health?

This is a collaborative project, but the reports that we generate will be available to Environment Canada and Health Canada. We have collaborators from both agencies.

  • In reading the abstract (for the article, which is behind a paywall and probably too technical for me), it seemed to me that this is a preliminary study which sets the stage for a nanoparticle study. In fact, you were studying quantum dots (CdSe/ZnS) and establishing that a particular kind of spectroscopy could be used to track the accumulation of nanoparticles in chicken embryos. Is this correct? And if so, why not study the nanoparticles directly?

A quantum dot is a type of nanoparticle.  So, in principle, we can apply our techniques to any other nanoparticle of interest.

  • What does CdSe/ZnS stand for?

cadmium selenide (in the centre of the nanoparticle) / zinc sulfide (coating on the outside)

  • What kind or kinds of nanoparticles are going to be used for the study moving forward from this one?

Similar but different sizes and surface chemistries. We want to understand what properties affect uptake into tissues and distribution in organs. That way we can predict risk.

  • From reading the abstract (and thanks to the person who wrote the explanation), I have a pretty good idea why chicken embryos are being used. [I’ll insert the description from the abstract here with attributions.] In another context, I have come across the notion that chickens in the US at least, I don’t know about Canada, have been so thoroughly compromised genetically that using their embryos for research is problematic. (brief note: I attended a lecture by Susan Squier, a noted academic, who had a respondent [a US scientist] claiming he moved to the UK because he didn’t feel confident experimenting with US chicken embryos.) What are your thoughts on this?

We aren’t doing genetic studies, so knowing the lineage of the embryos isn’t critical for us.

  • Is there anything else you’d like to add?

Nanoparticles are being used in many areas from cosmetics to pharmaceutical to energy. As yet, there is no evidence that the nanoscale formulation adds any risk to these applications. We in nanoscience believe that we must maintain due diligence to asess future risk and to make nanotechnology as green as possible.

Thank you Dr. Cramb for taking the time to explain your work.

On a completely other front, Harris & Harris Group a venture capital group that invests in nanotechnology and microsystems is holding a fourth quarter conference call on Friday, March 12, 2010.  From the Harris & Harris Group website,

With over 30 nanotechnology companies in our portfolio, Harris & Harris Group, Inc., is one of the most active nanotechnology investors in the world. We have funded companies developing nanoscale-enabled solutions in solid state lighting, emerging memory devices, printable electronics, photovoltaics, battery technologies, thermal and power management, next-generation semiconductor devices and equipment, quantum computing, as well as in various life-science applications of nano-structured materials.

We consider a company to fit our investment thesis if the company employs, intends to employ or enables technology that we consider to be at the microscale, nanoscale or smaller and if the employment of that technology is material to its business plan. We are interested in funding entrepreneurs with energy, vision and the desire to build great companies.

From the news release on CNN announcing the conference call,

The management of Harris & Harris Group, Inc. (Nasdaq:TINY) will hold a conference call to discuss the Company’s financial results for its fiscal fourth quarter and full year 2009, to update shareholders and analysts on our business and to answer questions, on Friday, March 19, 2010, at 10:00 a.m. Eastern Time.

For details about accessing the webcast, please follow the link to the news release.

Still on business-related nanotechnology news, the NanoBusiness Alliance will be holding its annual Washington, DC roundtable, March 15-17, 2010. From the news item on Nanowerk,

The NanoBusiness Alliance, the world’s leading nanotechnology trade association, today announced that it will convene numerous nanotechnology industry executives in Washington, D.C. from March 15 – 17 for its 9th annual “Washington DC Roundtable”. As in past years, NanoBusiness Alliance members will participate in three days of high-level meetings with Members of Congress, Administration officials, and key staff.

If you are interested in the NanoBusiness Alliance, their homepage is here.

For today’s almost final entry, I’m going back to science and its relationship to art, a topic alluded to just prior to my introduction of the Cheryl Geisler (dean of the Faculty of Communication, Art and Technology at Simon Fraser University, Canada) interview. At the time I noted that art, science and technology are interconnected to justify my inclusion of art topics in this blog and, specifically, my inclusion of the Geisler interview. I just read an entry by David Bruggeman (Pasco Phronesis blog) which describes the impact that art can have. From the post,

… McCall’s art is certainly an influence on why I’m involved with science and technology today. You may not know it, but it’s likely you’ve seen his work in connection with reports on space, or in works of science fiction for the page or the screen …

McCall is Robert McCall, an important space artist who recently died. His website is here and Bruggeman provides other links to McCall’s works.

This bit has nothing to do with anything other than I’ve always thought thought Emma Peel was Steed’s (The Avengers) best partner and found this tribute (clips of Diana Rigg as Peel set to The Kinks) on Raincoaster here. (Scroll down the page.)

Australia sees shrinkage in nanotechnology business sector?; Off the deep end: an interview with Cheryl Geisler (part 2 of 3)

There is a new report, Nanotechnology in Australia: Trends, Applications and Collaborative Opportunities, to be released Monday, February 22, 2010, which, apparently, claims that the number of Australian companies in the nanotechnology market has “plummeted.” Dexter Johnson, Nanoclast blog, on the IEEE website wrote the first item I read about this report which is being produced by the Australian Academy of Science and will be launched by the Innovation, Industry, Science and Research Minister, Kim Carr on Monday.

From Nanoclast,

The Australian Academy of Sciences in a soon-to-be-released report indicates that the number of nanotechnology companies in Australia is declining from an estimate of about 80 to around 55, and that the technology is simply not finding its way into commercial products.

According to the report, one of the key obstacles to this commercialization is “often dysfunctional” university intellectual property offices. I have covered this problem of poor tech transfer offices before when discussing a Cientifica report that came out late last year that recommended the following in order to start making money from nanotechnology: “Fire 90% of university tech transfer people and replace them with people who understand how small businesses and science based innovation actually works.”

Cientifica, mentioned in the excerpt from Nanoclast, is a company that’s been mentioned here before. Tim Harper, the principal, writes a blog (TNTlog) and has commented on the forthcoming report. From TNTlog,

My colleague Dexter Johnson (aka the Nanoclast) highlights a forthcoming report about the decline in the number of Australian nanotech companies, but it’s hardly surprising. Before anyone heralds the death of anything consider this:

* The global economy has resulted in a reduction of the number of companies in just about every sector of the economy. High streets where a third of the shops have closed are now common outside London, and everyone from estate agents to Starbucks have been rationalising, downsizing or going bust.

* As I mentioned back in 2001, most nanomaterials companies will go bust, some sooner, some later, but there is almost no way that anyone apart from large diversified chemical and materials companies can create a sustainable business in that sector. Of course if you told your VCs that nanotubes were the new gold you probably got closed down five years ago.

* Nanotech has been subject to a large amount of M&A [mergers and acquisitions] activity, Singular ID being snapped up by Bilicare for example, thereby disappearing from the Singapore register of nanotech companies and joining the Indian pharmaceutical industry.

* Most nanotech companies were start ups, and most start ups don’t survive too long, whatever the sector.

* I can think of plenty of companies making use of nanotechnologies that no one would consider being nanotech companies, so how a nanotech company is defined is also part of the problem.

I can’t believe I’m doing this but I agree with Harper on each and every point he makes in this excerpt. (For contrast, you can read my critique of one of Harper’s reports here in my July 24, 2008 post.) As for the rest of his post, I bow to his superior knowledge of the market reports and hype.

The original story was written by Cheryl Jones for The Australian. I’ve not been able to find a reference to the forthcoming report on  the Australian Academy of Science website.

As Harper points out the economy is global and affects everyone including Simon Fraser University (Vancouver, Burnaby & Surrey, Canada) where I interviewed Cheryl Geisler, Dean of the Faculty of Communication, Art and Technology.

Off the deep end: an interview with Cheryl Geisler (part 2)

Arriving at SFU on the heels of one of the largest economic meltdowns in decades and presiding over a new faculty during what is still considered a shaky economic recovery. Geisler is dealing with budgetary cuts and restraints. “Oh yeah, there were budgetary cuts this year across SFU, it was about 3%. [At the point] I think we’re pretty much flat in terms of the budget over the next three years but since salaries will not be flat that means other non-salary items have to suffer some re-organization.”

When pressed for more information, Geisler noted, “In the first instances you look for things that people are doing that they don’t really care about any more. Obviously, those can go [and that’s what we] more or less did this year. I always think it’s a bad idea to [say] we’ve got to cut, that’s a very demoralizing kind of goal. I’d rather think—ok—what can we create that’s new within the kinds of incentives, resources, and interests that we have. We might not be able to do everything we want but we can make sure that what we’re doing is what we really want to do.”

In looking at what any component of FCAT may want to achieve, it might be useful to cast an eye backward at each component’s history. The School for the Contemporary Arts started as a non credit cluster of courses in 1965 at SFU’s founding. By 1975 the programme had become an academic unit in the Faculty of Interdisciplinary Studies. In 1989 the centre was renamed a school, a name it retains to this day. No mention is made as to membership in any faculty other than interdisciplinary studies. (More details can be found here on their web page or here in the faculty’s wikipedia entry although there doesn’t seem to have been an update noting the school’s new home faculty). NOTE: I received the wikipedia information (never occurred to me to look there) after I posted part 1. Thanks Livleen! The entry also gives information that I’ll use to update contextual details about this interview that I posted on Feb.16.10)

Memory (mine) will have to serve for an abbreviated history of FCAT’s other components.

  • The School of Communication was an outgrowth from the Sociology/Anthropology Dept. It seems to have achieved departmental status by sometime in the late 1970s, presumably in the Faculty of Arts and Social Sciences. At some point in the 1980s, the department of communication became a member of the Faculty of Applied Sciences.
  • The School of Interactive Arts and Technology (SIAT) got its start in the late 1990s as part of the Technical University in Surrey, BC. The university was absorbed by SFU sometime in the early 2000s where it resided in the Faculty of Applied Sciences.
  • The Master’s of Publishing Programme was instituted in the late 1980s and was an outgrowth of the Canadian Centre for Studies in Publishing which, itself, was at one time affiliated with or housed in the Department of Communication and, presumably, in the Faculty of Applied Sciences.
  • The Masters of Digital Media came about as an initiative from the consortium (University of British Columbia, British Columbia Institute of Technology, Emily Carr University of Art + Design) which manages the Great Northern Way Campus facility in Vancouver. The programme was instituted in 2007 and has not been anchored in a faculty.

(If you have more accurate historical or other information, please do let me know.)

The discussion about faculties is not purely academic (pun intended) as there has been an impact for SIAT, at least. “Yes, both schools (Interactive Arts & Technology and Communication) were in the Faculty of Applied Sciences but if you look at the research programmes for most of the [faculty members in Communication] there’s a strong critical analysis of media component which is more in line with the Humanities. Really, the move from Applied Sciences is affecting SIAT more. One of the consequences is that the students who are applying are not as technically literate. SIAT has a mix of Humanities and Art Practice and Science so they need to make sure they maintain and nurture that kind of mix even though there’s always a potential for drift towards design and they’re not [associated as closely] with the Computer Science Department [through their membership] in Applied Sciences anymore.”

I’m moving fast today so may have to make some changes when I review this post later. Tomorrow: part 3 where we discuss access to research, public outreach, and Cheryl Geisler’s ‘dreams’.

Off the deep end: an interview with Cheryl Geisler Introduction, Part 1, Part 3

Vancouver political pundits puzzled by small business question; evolving theory about science, innovation, and business in Canada

They gave me ‘Bambi eyes’ in response to my question about Vancouver city council’s performance vis a vis supporting small business. It happened on Saturday, Nov. 14, 2009, when I attended Michael Geller’s “That Was the Year That Was”  1st anniversary review of Vancouver’s city council performance since its election. (I will link this to my evolving theory about science, innovation, and business but first I have to tell the story.)

It was a very interesting and very civil discussion. I was particularly thankful for the civility since I have been to political meetings where people rant and scream at each other. It was also very much an insider’s meeting. Most people knew each other and the majority were from the NPA. As you’d expect with people who know each other a nicety or two was forgotten. The first speaker did not identify himself and he introduced the 1st panel’s moderator so quickly that I missed the name although I did remark that the moderator is an architect.

The first panel offered a good review of the projects and problems that have been addressed since the election and panel members (Michael Geller, Gordon Price, and Jim Green) provided contrasting insights into various situations. The presentation could have done with a little editing.  Too long and a bit repetitive.

The second panel was on Vancouver’s economic development and the green economy. The moderator was Peter Ladner and panel members were Gordon Price (again), John Tylee, and James Fletcher. I was a bit disappointed in this one. Fletcher’s comments were on the academic side and at times vague; Price was cogent although he didn’t have any big revelations; and Tylee was focused on attracting big business (technology industries, I think) and developing ‘sticky’ relationships. (sigh) Do the marketing types really want to reference Madonna and/or poor sanitation practices? Or are they more scientifically minded and going for a reference to particle physics? It’s beside the point anyway. Large businesses care about their bottom line and when times get tough they cut employee numbers and/or facilities regardless of ‘sticky’ relationships. Since many of the technology businesses in Vancouver have headquarters in the US where the newly elected Democratic administration has committed to a ‘Made in the USA’ policy/protectionism, you can assume that they will cut in Canada first and more deeply.

(For some insight into the new US protectionism check this story about the City of Sacramento digging up newly laid pipe that had Made in Canada stamped on it. The irony: the pipes were made of materials imported from Texas. Go here for more.)

There wasn’t much about the green economy and virtually no detail  was offered.

The third panel featured media pundits Miro Cernetig, Jonathan Ross, Monte Paulsen, and Mike Klassen as panelists and Frances Bula as the moderator. This was the panel that responded with ‘Bambi eyes’ when I asked a perfectly simple question which I have to paraphrase as I don’t recall the exact wording. “What is your take on city council’s support for small business?” In my preamble I referenced the previous panel’s focus on big business and noted that small business owners contribute hugely to neighbourhoods and their character.  Klassen was the only person who attempted a response or even seemed to grasp the nature of the question. While he didn’t have anything substantive, he did note some of the problems that come with a strong focus on hosting big business facilities (i.e. branch plants) mentioning Kodak. If y0u want more proof that there is no such thing as a ‘sticky’ relationship with larger enterprises, check out this blog entry from someone working at Kodak’s facility in Burnaby (before its purchase this was the local business,  Creo Products).

I was shocked. Quite frankly I expected more of this panel. If nothing else they could have noted that it’s not on the agenda at the moment or …  Although how they’ve missed the fact that a lot of small businesses are having problems (I’m seeing vacancies (Edie’s Hats, Big News, etc.), departures (Jackson’s Meats, McKinnon’s Bakery, etc.)  coupled with some very large US retailers (American Apparel, Williams and Sonoma,  etc.) moving into my neighbourhood).

On another matter, Bula’s moderation was problematic and I should note here that she had the most challenging panel of the morning. Back to the problems. First, she seated herself in the centre of the table with panelists on either side of her in contrast the other two moderators stood a little removed and to the side of their panels. (Sitting in the center of the panel makes it harder to establish eye contact with individual panelists and makes it harder to manage them.)  She had a difficult panel member with Klassen who highjacked the discussion a few times.

Another problem with sitting in the middle of the panel is that you tend to forget that you’re moderating and not a member of the panel and so,  Bula forgot a few times. However, my biggest disappointment was that she didn’t shut down questions and comments that really had nothing to do with the topic at hand, the pundits’ perspective on the current city council’s performance. Instead, there was a substantive period of time devoted to the state of journalism, newspapers and newspaper writing, the roles of bloggers vis a vis journalists, and the question of how one makes money by blogging. Then, she had to cut off questions at the end because there wasn’t enough time. (As for the two other moderators, the first one had a smoothly oiled machine as panels go and needed only to keep time [I think he could have been a little more aggressive about that] and the second one, Peter Ladner, gave a mediocre performance with a low energy panel. He could have dome more to provoke comments  and/or questions from the panel and the audience.)

This all got me to thinking about business, science, and innovation. I’ve discussed in the past my issues with Canadian businesses not having their own commercial research labs and their general reluctance to invest in innovation.

Until this meeting, I hadn’t realized how little interest there is in Canadian business of any size. The plan for Vancouver’s economic development is to attract big business which generally means a business from the US (or another country). How are we going to encourage innovation and risk taking if we don’t support business large and small? It seems to me that we need to create a kind of business ecosystem which supports businesses and we need to start with the small ones, those local retailers that add so much to the experience of a neighbourhood. I think we need to change the mindset about business at every level and that focusing on Canada’s larger businesses and asking how we can get them to take more risks and become more innovative misses the point. We need to develop a culture around all of our businesses.

For anyone who’s interested in more comments about Geller’s event or Vancouver politics, you can visit: civicscene.ca, citycaucus.com, Michael Geller’s blog, and Frances Bula’s blog. My reservations notwithstanding, it was a worthwhile event and as these things go, came off remarkably well, Bravo to the organizers!

Industrial production of carbon nanotubes?; Portland Art Museum’s China exhibit; scientific business not a good idea

We hear a lot of hype about all the new products and materials that nanotechnology will make possible for us but it’s always at some unspecified future date or  something like ‘it will come to market in three to five years or, five to seven years’.  I’m still waiting for self-cleaning windows which, as far as I know, no one has promised to bring market at any time (sigh). There is a ray of light regarding new carbon nanotube-based materials according to an article by Michael Berger on Nanowerk. From the article,

For years now, nanotechnology researchers have been promising us carbon nanotubes as the basis for numerous breakthrough applications such as multifunctional high-strength fibres, coatings and transparent conducting films. Not to mention as a cure for cancer (see “Horeradish, carbon nanotubes and cancer therapy”) and a solution to the energy crisis. … CNTs are notoriously difficult to work with and, because researchers haven’t found efficient ways yet to assemble them, the resulting materials demonstrate only a small fraction of the possible single-object properties of CNTs. …

New research reported this week has now established an industrially relevant process for assembling carbon nanotubes that allows them to efficiently be made into fibers, coatings and films – the basic forms of material that can be used in engineering applications.

With the possibility of producing carbon nanotubes on a large scale, I would imagine some folks will be curious about health & safety and environmental issues. On occasion I’ve included information about research on carbon nanotubes and their resemblance to asbestos fibres. These carbon nanotubes are multi-walled carbon nanotubes (MWCNT) and the ones being made ready for industrial purposes in Berger’s article are single-walled CNTs. I have not come across anything yet which suggests that single-walled CNTs resemble asbestos fibres.

Back to China. The Portland (Oregon) Art Museum has a major exhibit called China Design Now according to an article by Steve McCallion, The Portland Art Museum Transforms an Art Exhibition into a Social Platform, in Fast Company. From the article,

As I mentioned in previous posts, the Portland Art Museum brought China Design Now, the London Victoria & Albert exhibit, to Portland to attract a new audience and elevate Portland’s cultural discourse to a global level. The exhibition documents China’s impressive advancement in graphics, fashion and design over the last 20 years. In my last post  I discussed how the Portland Art Museum used story and metaphor to make the exhibition even more meaningful. The museum’s most significant innovation, however, is not in the content of the exhibition–it’s the museum experience itself.

I’m very enthused about this and would dearly love to get to Portland to experience the various shows, that’s right plural–shows not show. The museum folks encouraged artists and people working in galleries to put on their own shows as part of a larger dialog for Portland. The art museum also extended itself online,

To extend community involvement online, the museum created CDNPDX.org where sixteen different blog editors from the community contribute content and editorial perspectives daily. They are not museum employees, but people from the community that have insight into China and/or design, and are willing to contribute to the discourse for free.

While including potentially offensive underground comics and “amateur” art may make some traditional museum-goers uncomfortable, the museum believes that inviting people to be part of the experience is necessary to remain relevant and worth the risk.

Meanwhile at the Vancouver Art Gallery, we continue with the traditional art museum experience (sigh).

Following my concerns about introducing scientific methods into government bureaucracies, I found this somewhat related article by Linda Tischler (in Fast Company) about scientific methods in business. From the article, a portion of the interview with Roger Martin, Dean of the Rotman School of Management at the University of Toronto,

Martin: Well, yes. With every good thing in life, there’s often a dark shadow. The march of science is good, and corporations are being run more scientifically. But what they analyze is the past. And if the future is not exactly like the past, or there are things happening that are hard to measure scientifically, they get ignored. Corporations are pushing analytical thinking so far that it’s become unproductive. The future has no legitimacy for analytical thinkers.

Fast Company: What’s the alternative?

Martin: New ideas must come from a new kind of thinking. The American pragmatist Charles Sanders Peirce called it abductive logic. It’s a logical leap of the mind that you can’t prove from past data.

Fast Company: I can’t see many CEOs being comfortable with that!

Martin: Why not? The scientific method starts with a hypothesis. It’s often what happens in the shower or when an apple hits you on the head. It’s what we call ‘intuitive thinking.’ Its purpose is to know without explicit reasoning.

I’m relieved to see that Martin points out that scientific thinking does require creativity but his point that things which are hard to measure scientifically get ignored is well taken. While scientific breakthroughs often arise from a creative leap, the work (using the scientific method) to achieve that leap is painstaking and the narratives within the field tend to ignore the creative element. This is almost the opposite of an artistic or creative endeavour which also requires a creative leap and painstaking work to achieve but where narrative focuses primarily on the creative.

The scientific method for many is considered to be  rigorously objective and inspires a certain faith (at times, religious in its intensity). It is a tool and a very effective tool in some, not all, situations. After all, you use a hammer ti build something with a nail, you don’t use it to paint your walls.

As for the Thomson Reuters report on China, I tried but had no joy when trying to retrieve it.

Butterfly wings inspire nanotechnology; Canadian nanoscience and business breakthrough?; Visible Verse

The iridescence and colours that you see on butterflies and other insects result from  nanoscale structures not pigment as was believed previously. From a news item on Azonano,

Insects’ colours and their iridescence (the ability to change colours depending on the angle) or their ability to appear metallic are determined by tiny nano-sized photonic structures (1 nanometre=10-9 m) which can be found in their cuticle. Scientists have focused on these biostructures to develop devices with light emitting properties that they have just presented in the journal Bioinspiration & Biomimetics.

A joint team of researchers from the State University of Pennsylvania and the Universidad Autonoma de Madrid have developed a new technique for replicating these structures. From another news item on Azonano about the same research,

Up to now, the methods used to replicate biostructures on a nanometric scale have been limited, often damaging the original biostructure because of the high temperatures and toxic, corrosive substances that were applied.

The new method uses a normal temperature and avoids toxins.

Potential uses for this material (if and when it comes to market) include covers that maximize solar light cell absorption and optical diffusers, as well as, other optically active structures. What I found most intriguing is that the scientists have replicated the colours and iridescence that we see on butterfly wings and insects. I would imagine then that these structures will be quite beautiful (assuming the materials retain those properties at sizes much larger than butterflies and insects) and the aesthetics could help to increase consumer interest in solar cells.

There’s an interesting article (Canada strikes nanotech gold)  in Canadian Business by Rosie Lombardi about FP Innovations and a new material, NanoCrystalline Cellulose, which the company is readying for the market. I suspect FP could stand for ‘forest products although I couldn’t confirm it from viewing their website although the company tag line is highly suggestive, Creating forest sector solutions.

From the article,

Although the concept of NCC has been around for decades and its source — any kind of tree — is abundant, Berry and his team have cracked the code in developing a process to produce large-scale quantities economically.

NCC has many unusual properties, in addition to having all the biodegradable attributes associated with its cellulose source.  Materials scientists are in awe of NCC’s extraordinary potential due to its strength, optical properties, conductivity, reactivity, self-assembling, anti-microbial, self-cleaning and bio-compatibility characteristics. “NCC is beautiful,” says Orlando Rojas, chair of the American Chemical Society.

Design plans for a plant have been developed by NORAM Engineering +  Constructors,  a Vancouver-based company, and three Canadian forestry companies are currently vying for the right to host the federally-funded facility (competition results should be announced by the end of 2009).

Why all the excitement from forest companies? From the article,

But it’s hard-nosed economic imperatives, not just green goodwill, that are driving the battered forestry sector to pour millions into research for new products that may ensure its survival.

Over the past two years, the Canadian forestry sector lost 50,000 jobs and more than 250 mills closed or suspended operations, according to Avrim Lazar, CEO of the Forest Products Association of Canada.

The sector has been bleeding red ink since 2006, says Craig Campbell, leader of the Canadian forestry group at PricewaterhouseCoopers. “It’s been hard hit by the sub-prime mortgage crisis. Most of our lumber goes to the U.S. but housing starts were down 75% last winter. And newsprint is another key area: demand has been contracting every quarter since 9/11.”

As a result, the forestry industry is looking to transform itself by switching its focus beyond tissue paper and two-by-fours to producing higher-value materials with advanced technology.

I’ve commented before about Canadians being seen as ‘drawers of water and hewers of wood’ and so I find this development is very much in line with our history.  From the article,

Having conquered the science and start-up issues, Canadian researchers now have yet another mountain to climb. The real hurdles in developing NCC’s potential lie in economics, and the complicated realm of working with other industries outside the familiar confines of the forestry sector to develop new industrial applications.

To facilitate cross-industry development, a new R&D network called ArboraNano was set up this year through Industry Canada’s Business-led Centres of Excellence program. The initiative received $8.9 million in funding over four years, and is working with industry partners such as Bell Helicopter and Kruger, and scientists at McGill and other universities to develop and test new materials made with NCC for various industries.

Canada is doing a lot of things right, says Jones. [Phil Jones, Atlanta-based director of new ventures at IMERYS Mineral Ltd.] “Supporting the application development side is the critical bit. People talk about the valley of death: university guys spin out ideas, and then industry has to commercialize them. But that part is enormously expensive, and the five-year payback is usually low. Anyone in industry doing this is punished by Wall Street.”

I think Canadians support companies through their ‘valley of death’ stage quite well. We just don’t grow the companies afterward; we sell them, which contributes in part to the lack of  industrial innovation in Canada. No company gets big enough to support a large industrial laboratory.

Kudos to Rosie Lombardi for an exciting and hopeful article. Do read the article, there’s a lot I couldn’t include here.

My nitpicks have nothing to do with the writer but I would like to have seen some information about health and safety and environmental issues as per NCC production and some scientific information about NCC. I expect the magazine, Canadian Business, does not encourage forays into topics that are not usually considered part of the business scene but if business is based on economics, then health, safety, and environmental concerns are important and ignored economic issues in many business magazines. As for more science information, I have to admit that’s my personal preference.

Heather Haley’s annual videopoetry festival, See the Voice: Visible Verse 2009 will take place on November 19, 2009, 7:30 pm at Pacific Cinematheque (1131 Howe St., Vancouver, Canada). You can read more about the festival here. This year, in addition to the short videos, the festival features a live performance by Gabrielle Everall from Australia.

Nanotechnology and biocompatibility; carbon nanotubes in agriculture; venture capital for nanotechnology

One of the big nanotechnology toxicity issues centers around the question of its biocompatibility i.e. what effect do the particles have on cells in human bodies, plants, and other biological organisms? Right now, the results are mixed. Two studies have recently been published which suggest that there are neutral or even positive responses to nanoparticles.

Researchers at Lund University (Sweden) have conducted tests of nanowires, which they are hoping could be used as electrodes in the future, showing that microglial cells break down the nanowires and almost completely clean them away over a period of weeks. You can read more about the work here on Nanowerk. I would expect they’ll need to do more studies confirming these results as well more tests establishing what happens to the nanowire debris over longer periods of time and what problems, if any, emerge when electrodes are introduced in succession (i.e. how many times can you implant nanowires and have them ‘mostly’ cleaned away?).

The other biocompatibility story centers on food stuffs. Apparently carbon nanotubes can have a positive effect on crops. According to researchers in Arkansas*, Mariya Khodakovskaya, Alexandru Biris, and their colleagues, the treated seeds (tomato) sprouted twice as fast and grew more than twice as much as their untreated neighbours. The news item is here on Nanowerk and there is a more in-depth article about agriculture and nanotechnology here in Nanowerk Spotlight. (Note: I have checked and both of the papers have been published although I believe they’re both behind paywalls.)

It seems be to a Nanowerk day as I’m featuring the site again for this item. They have made a guide to finding venture capital for startup nanotechnology companies available on their site. From the item,

To help potential nanotechnology start-up founders with shaping their plans, Nanowerk, the leading nanotechnology information service, and Nanostart, the world’s leading nanotechnology venture capital company, have teamed up to provide this useful guide which particularly addresses the funding aspects of nanotechnology start-ups, along with answers to some of the most commonly asked questions.

You can read more here.

*’Arkansaa’ corrected to ‘Arkansas’ on Dec. 7, 2017.

Fish camouflage, Australian webinar for nano business, medical nanobots in your bloodstream and Simon Fraser U has nano news

First off, the American Chemical Society (ACS) has declared ‘The Nano Song‘ a winner (in the People’s Choice and Critic’s Choice categories)  in their ACS Nanotation web community video contest ‘What is Nano?’.  If you haven’t seen the video yet, you can go here (scroll down).

Researchers at Sandia Labs are working to develop materials that change colour in the same that some fish can. Here’s how it works with the fish (from Nanowerk News here):

Certain fish species blend with their environment by changing color like chameleons. Their tiny motor proteins carry skin pigment crystals in their “tails” as they walk with their “feet” along the microtubule skeletons of cells to rearrange the animal’s color display.

The fish change colour as the environment around them changes. The researchers led by George Bachand are trying to enable synthetic or hybrid materials to do the same thing. Applications could be for military and/or fashion.

If you’re interested in the business end of nano, then there’s a webinar courtesy of the Australian Office of Nanotechnology coming up on April 29, 2009. NanoVentures Australia CEO, Peter Binks, will be talking about nanotechnology’s impact on global markets and industries. For more info. about the event, check here and to sign up for the event, go here.

Researchers at Pennsylvania State University (US) are honing in on a way to get hordes of microrobots (or nanobots) that have been introduced into the bloodstream to flock or swarm together so they can repair organs or deliver drugs to a specific target. I gather the problem has been  getting the machines to work together and the proposed solution is to use UV light. More details here.

Finally, some latebreaking news from Simon Fraser University (Vancouver, Canada). The university’s nano research facility, 4D Labs, has won funding (roughly $884, 000) from the federal government’s Western Economic Diversification agency to build a maskwritiing facility.  More about this tomorrow.