Tag Archives: Canadian

Quantum realities and perceptions (part 2)

To sum up Friday’s posting: I discussed the nature of reality (both quantum and macro) and its relationship to our perceptions while examining a Buddhist perspective on science. Today, I’m adding a recently published (Nature Nanotechnology) paper, Anticipating the perceived risk of nanotechnologies, by Terre Satterfield [University of British Columbia, Canada], Milind Kandlikar, Christian E. H. Beaudrie, Joseph Conti and Barbara Herr-Harthorn to the mix.

It’s a meta-analysis of a number of public surveys on nanotechnology and perceptions of risk. From the paper,

Perception is critical [] for a number of reasons: because human behaviour is derivative of what we believe or perceive to be true [emphasis mine]; because perceptions and biases are not easily amenable to change with new knowledge1 [ ] and because risk perceptions are said to be, at least in part, the result of social and psychological factors and not a ‘knowledge deficit’ about risks per se []. [Note: I can’t figure out how to reproduce the numbered notes in superscripted form as my WordPress installation is still problematic. Please read the article if you are interested in them.] p. 1 of the PDF.

Although the authors of the paper are not concerned with the ultimate nature of reality, the words I’ve emphasized struck home because it touches on the notion of relationships. From Peter McKnight’s article about Buddhism and science,

In other words, how we define the objects of our knowledge — in this case, particles — depends on the capacity we have to know about them. This instrumentalist view has a deeply Kantian flavour: Kant taught that our knowledge of phenomena is a product of the relation between things and our ways of knowing about them, rather than about things themselves.

… [Mathieu Ricard, Buddhist monk and former geneticist speaking]

“All properties, all observable phenomena, appear in relationship with each other and dependent on each other. This view of interdependence — one thing arising in dependence on another, and their relationship — actually defines what appear to us as objects. So relations and interdependence are the basic fabric of reality. We participate in that interdependence with our consciousness; we crystallize some aspect of it that appears to us as objects.”

At the base, it’s our perception that governs our behaviour which in turn governs our relationships. Richard Jones in his book (2004), Soft Machines, had this to say,

Issues that concern the nature of life are particularly prone to lead to such a reaction–hence the gulf that has opened up between many scientists and many of the public about the rights and wrongs of genetic modification. These very profound issues about the proper relationship between man and nature are likely to become very urgent as bionanotechnology develops. p. 217

It seems that Jones is not alone, from the Satterfield, et al. paper,

More broadly as applications move as predicted towards more complex domains where bioinformation and nanotechnologies converge, the nature of the risks involved will move beyond the immediate concerns relation to toxicity and enter into contentious moral and ethical terrains. p. 6 of PDF

For me, the whole thing resembles a very complex conversation. More tomorrow.

Nano magazine; quantum tamers; insight into Intel; science publicity hounds

I found a new magazine, nano: The Magazine for Small Science,  this morning (thanks to Andy Miah). There’s an eclectic range of material some of which you can access  for free here.  I’m particularly interested in the ‘Nano’ versus nano article by Andrew Carruthers as it’s all about marketing and branding and how nanotechnology branding should not be left to marketing communications departments in various businesses. He uses Apple’s iPod Nano and Tata’s Nano Car as two examples of businesses that used the word nano to brand their products. I understand that neither product is considered truly nano-based which makes the examples rather telling since they are branding exercises that could be described as purely ‘fantasy’.

Carruthers does mention ‘Silver Nano’ products (which are nano-based) marketed by Samsung but there is no comparison of the marketing strategies or even a discussion of the difference between ‘fantasy’ and genuine nano products. That said, I have no idea what his constraints were with regard to word count.

Carruthers states the main issue this way,

Like so many areas of research, nanotechnology can be discussed quite easily with people who understand it, but can effortlessly mutate into a perfect nightmare when explaining it to people who do not. At some time or another, many of us will have been placed in a position where it was necessary to explain our professions and areas of research to people who may not understand them. On many occasions, such people seem keen yet are completely dumbfounded by colourful explanations. There is a sense of dismay [emphasis mine] as they and others ‘misinterpret’ descriptions, ask seemingly unrelated questions, and generally find endeavours at explanation incomprehensible and bewildering. In the main, people are quite genuinely either oblivious to nanotechnology, or have a decidedly skewed notion of ‘what it does’. This chasm within public understanding can be quite easily filled by other means, and the real difficulty is when that chasm becomes filled by marketing communications, rather than fact.

I don’t agree with him about having a “… sense of dismay …”  when people misunderstand or misinterpret information as I think those interactions provide useful data for the person who’s doing the explaining. Sometimes a ‘wrong’ question points you in a completely direction because it wasn’t the question that was wrong, it was you.

In my opinion,  marketing communication and pop culture are for most people the top purveyors of science information, like it or not. The challenge is finding a way to get your own messages out there and heard by using some of the same strategies or even incorporating some of the ‘noxious’ marketing communication messages. I’m not sure whether Carruthers would agree with me or not but, given the tone of his article, I think not. You can read the article for yourself here.

Quantum Tamers; Revealing our weird and wired future is a documentary being presented October 17, 2009 at the Quantum to Cosmos (Q2C) festival in Waterloo, Canada. From the Azonano news item,

The documentary brings together a stellar line-up of quantum experts to explore promising future technologies involving super quantum computers, ultra secure quantum codes to safeguard our communications, and even teleportation.

Although quantum principles are not fully understood, quantum technologies are already responsible for many advances in technology we already use including lasers and their many applications, magnetic resonance imaging (MRIs), modern micro circuitry, plus CDs and DVDs.

For more about the festival including details about when and where the documentary will be shown, go here.

Since the January 2009 announcement, by Paul Otellini, Intel CEO, that Intel would be investing $7B US to retool three  plants for the manufacture if 32 nanometre chips, I’ve been interested in Intel’s progress. This morning I found an article by Ellen McGirt on Fast Company which details Intel’s latest reinvention. I was intrigued to note that the $7B US investment was mentioned without a single hint that it’s a nanotechnology initiative.  From page 5 of the article,

When he [Otellini] made the unusual decision to travel to Washington, D.C., early this year to announce his $7 billion bet on U.S. manufacturing, “no one knew where the bottom was [in the economy], and there was a lot of uncertainty,” he recalls. The business case for U.S.-based facilities may not have been clear to others, but to Otellini, it’s right out of the Intel playbook: If the company controls manufacturing, it can control quality. “Now, we’re going to be a generation ahead.” He had another motive, too: “I wanted to get the attention of the government and to send a message to other companies that Intel was investing in the United States at a time of great uncertainty, and that we should reinvest together in the infrastructure of the country.” If this was a considered effort to improve Intel’s standing for future infrastructure projects, it’s not one other companies have picked up on. The response from other business leaders, he says, has been mute. “On the other hand, the President called and said that it was the only piece of good economic news since he’d been inaugurated,” Otellini says.

It’s an interesting article not least for how the writer portrays the various personalities.

I had a little wake-up call this morning on reading one of Andrew Maynard’s recent posts (here) where he is excoriating the publicity practices of some peer-reviewed journals. He mentions two articles that I have posted about here (the China deaths and the Canadian nano safety article from yesterday, October 15, 2009) and notes that the articles are being held back from public scrutiny for rather long periods while they are being made available to journalists and science writers with the effect that they are not receiving the scrutiny that they should. I had vaguely noticed that the first article was not available when I went looking and that the access information for the article I mentioned yesterday was vague but I didn’t make much of it. So, thanks Andrew for making me stop and think about it.

Body computing; Canadian scientists talk about nano safety

Did you know that a pedometer is considered body computing? I had not realized that before reading Chris Dannen’s Fast Company article, Million-Dollar Question: Who Owns Your Genetic Data? The body computing concept includes implanted, digested, or wearable devices that transmit health data.  From the article,

But the fundamental shift that comes with body computing, says Dr. Leslie Saxon, cofounder of the Body Computing Conference, is “dignifying the patient by allowing them access in a connected world.”But does access equal ownership?

This, of course, was written in the US and I believe that they have  a different legal approach than the one we have in Canada to issues such as owning genetic material. Still, it’s food for thought as we devise new means to monitor health and interface with computers.

In a forthcoming issue of the International Journal of Nanotechnology, Patricia Dolez of the Department of Mechanical Engineering at the École de technologie supérieure in Montreal (Canada) along with her colleagues have published a paper which suggests that the current safety gear may not be adequate for protection from handling potentially noxious nanomaterials.

Happy T Day! Robots; Nano-enabled prosthetics; ISEA 2009 aesthetics and prosthetics; Global TV (national edition): part 2

Happy Thanksgiving to everyone as Canada celebrates.

Since I have mentioned military robots in the not too distant past, this recent headline Two Military Robots That Rival the Creepiest Sci-Fi Creatures for Kit Eaton’s Fast Company article caught my eye. One of the robots, Big Dog (and its companion prototype Small Dog), utilizes artificial intelligence to navigate terrain and assist soldiers in the field. The larger one can carry heavy loads while the smaller one could be used for reconnaissance. The other robot is a cyborg beetle. Electrodes have been implanted so the beetle’s flight patterns can be controlled. There are two videos, one for each robot. It is a very disconcerting experience watching the beetle being flown by someone standing in front of a set of controls.

Keeping with the theme of planting electrodes, I found something on Azonano about a bio- adaptive prosthetic hand. Funded by the European Union as a nanotechnology project, here’s more from the news item,

What is unique about the sophisticated prototype artificial hand developed by the SMARTHAND partners is that not only does it replicate the movements of a real hand, but it also gives the user sensations of touch and feeling. The researchers said the hand has 4 electric motors and 40 sensors that are activated when pressed against an object. These sensors stimulate the arm’s nerves to activate a part in the brain that enables patients to feel the objects.

Led by Sweden’s Lund University, the researchers continue to work on the sensory feedback system within the robotic hand. The hurdle they need to cross is to make the cables and electric motors smaller. Nanotechnology could help the team iron out any problems. Specifically, they would implant a tiny processing unit, a power source and a trans-skin communication method into the user of the hand to optimise functionality.

It’s a fascinating read which brought to mind an ISEA (International Symposium on Electronic Arts) 2009 presentation by Dr. Lanfranco Aceti (professor at Sabanci University in Istanbul, Turkey). Titled The Aesthetic Beauty of the Artificial: When Prosthetic Bodies Become an Art Expression of Empowering Design Technologies, the presentation was a revelation. Dr. Aceti’s research yielded a rather surprising insight from a doctor in London, England who specializes in prosthetics. According to the doctor, women want limbs that most closely resemble their original but men (under 50 years old usually) want limbs that are metallic and/or look high tech. Lanfranco suggested that the men have been influenced by movies. Take for example, Wolverine (Wikipedia entry here) where the hero’s skeleton has been reinforced with metal and he can make his claws (now covered with metal) protrude from his arms at will. You can view Lanfranco’s site here or a simple biography about him here.

A few months back I posted about  prosthetics and design student projects and I’m starting to sense a trend emerging from these bits and pieces of information. There is the repair aspect to prosthetics but there is also an increasing interest not just in the aesthetics but in the notion of improving on the original. At its most extreme, I can imagine people wanting to remove perfectly healthy limbs and organs to get an improved version.

I got a chance to see part 2 of Global TV’s (broadcast in Canada) nanotechnology series, Small Wonders. As I’ve noticed that my link for part 1 of the series is no longer useful I am providing a link to part 2 which will land you on the search page. If you don’t see part 2 listed, go to the mutimedia tab which is just above the search results and where you can find part 1 and I assume, at some point, part 2.

As I hoped, they focused on nanotechnology projects in the materials field in part 2 of the series. They noted that nanotechnology-based materials in sports equipment and clothing are already available in the market place. An interview with Dr. Robert Wolkow at the National Institute of Nanotechnology and at the Physics Dept. at the University of Alberta, featured a discussion about replacing silicon chips with more efficient materials built at the molecular level.

Global TV (national edition) and nanotechnology; EPA develops a ‘kinder to animals’ nanomaterials research strategy

Wouldn’t you know it? Just as soon as I finish my ‘science communication in Canada’ series, Global TV’s national news starts broadcasting a series on nanotechnology. Interestingly, the focus in part 1 is on medicine only. There was no mention of any other kind of application or the fact that we already have many nanotechnology-based products available in consumer markets. Maybe they’ll mention these other sectors in subsequent parts of the series.

They too (it was one of the problems I mentioned at my recent conference talk at ISEA 2009) were stuck for ways of communicating nanotechnology and so reverted to the human hair example (i.e. a nanometer = 1/100,000 of a human hair). I f you want to see part 1 of the series, it’s here.  Oh, they have beautiful graphics.

The US Environmental Protection Agency (EPA) recently announced a nanomaterials research strategy which I mentioned here in my Oct. 1, 2009 posting and they’ve already revised it. This time it’s all about the animals. According to the news item on Azonano,

Importantly, the research strategy articulates the goal of identifying non-animal methods that may ultimately be able to preclude the perceived need for any in vivo testing. The EPA appears to have taken to heart the principles outlined in the National Academy of Sciences’ report ‘Toxicity Testing in the 21st Century: A Vision and a Strategy,’ which calls for increased use of current non-animal technologies and biological understanding that is more precise, relevant, and that will improve hazard assessment.

There’s more at Azonano. I’m glad to see that the effort to move away from animal testing is being embraced.

Nanotechnology in Manitoba; petition for a National Day for Canadian Research; Word on the Street Festival

I wasn’t expecting to find that researchers in Manitoba were working with researchers from Johns Hopkins University, two biopharmaceutical companies, Dartmouth College, and researchers from the US National Institute of Standards and Technology (NIST) to study sugar-coated nanoparticles. In fact since I don’t cover nanomedicine very often, I almost missed the item which is about how these particles might be used in cancer therapy .

From the news item on Science Daily,

In cooperation with colleagues at The Johns Hopkins University, Dartmouth College, the University of Manitoba and two biopharmaceutical companies, the NIST team has demonstrated that the particles—essentially sugar-coated bits of iron oxide, about 100 nanometers wide—are potent cancer killers because they interact with one another in ways that smaller nanoparticles do not. The interactions, thought by many bioengineers to be undesirable, actually help the larger particles heat up better when subjected to an alternating magnetic field. Because this heat destroys cancer cells, the team’s findings may help engineers design better particles and treatment methods.

Sometimes it seems to me that there is a drive to work with smaller and smaller bits of matter so this realization that the larger particle could be prove to be more effective is interesting and mildly amusing to me since I get caught up in this ‘drive to smaller and smaller’.

I recently received notice of a petition for a National Day for Canadian Research being organized by graduate students (presumably across the country).  From the notice,

Myself and others are trying to establish a National Day for Canadian Research to help support and recognize the achievements of researchers in Canada. This is a non-partisan and cost-free approach that the government should have no difficulty accepting.

For this to occur, it must be enacted by Parliament and we must petition them formally. In this effort, we have set up a website where hard copies of a petition (in either French or English) can be downloaded and signed (www.canadianresearchday.ca). In addition, an online petition can also be found at http://www.petitiononline.com/NCRD/petition.html or through the link found at www.canadianresearchday.ca. The CSBMCB has also posted our links on their advocacy website.

Signing the online petition is good but if the effort is to be successful, hard copy petitions must be signed and sent. If you want to read the full notice, you can go here to the Don’t leave Canada behind forum.

The Vancouver (Canada) edition of the Word on the Street Festival is this Sunday, Sept.27, 2009. It goes from 11 am to 5 pm and is being held in the blocks surrounding the main branch of the Vancouver Public Library (at 350 West Georgia St.). There are maps on their website as well as other information. They do advise using public transit since they do close  a few blocks to car traffic for the festival.

Transatlantic Regulatory Cooperation tidbits; TAPPI and the nanotechnology forestry conference in Alberta; a modern House of Wisdom

I caught only part of the Project on Emerging Nanotechnologies (PEN) event, Transatlantic Regulatory Cooperation, due to two factors. (1) I was busy posting here and so was late to the live webcast. (2) About an hour after I started watching, something (either my system choked or the Wilson Center facility was having difficulties or I lost broadband speed for some reason)  happened and the live webcast became unwatchable.

This was an international collaborative project titled, Regulating Nanotechnologies in the EU and US. Researchers from the London School of Economics and Political Science (LSE), Chatham House, the Environmental Law Institute (ELI), and PEN at the Woodrow Wilson International Center for Scholars worked together to produce a report, a briefing paper, and a slide presentation about their findings and recommendations that can be downloaded from here.

The Washington, DC presentation was yesterday (Sept. 23, 2009) at the Wilson Center facility. There were two panels and I missed the introduction for the first group but I did recognize the moderator, David Rejeski who’s PEN’s executive director. The discussion was about the report and the recommendations.

One of the more interesting bits was the mention of a discrepancy between the UK and EU food industries submissions to some sort of inquiry. The UK representative claimed there are 2 nano type food products on the market (in the UK,  i.e. Europe) while in an earlier meeting elsewhere an EU representative claimed there are 20 such products on the market in Europe. No one was able to explain the discrepancy, which is troubling.

As for the participants in the project, there was general agreement that some sort of regulatory system needs to be developed quickly. Amongst other recommendations:

  1. Voluntary reporting of the use and manufacture of nano materials should be made mandatory.
  2. There should be a ‘technology label’ for food and cosmetic products that contain nanomaterials.
  3. A global approach to nanotechnology regulation that draws together major players such as China and India, as well as many others, needs to be adopted.

There was some mention of Canada at one point. I believe the speaker was referring to an Environment Canada initiative, i.e. a one-time inventory of nanomaterials used in manufacturing products which is mandatory. (I commented on this matter in my Feb. 3, 4, and 6, 2009 postings.) I haven’t heard anything about their progress lately but it is used as an example of a mandatory nanotechnology inventory. Interestingly, they never mention that it is supposed to be one time only.

As for the second panel (moderated by Dr. Andrew Maynard, Chief Science Advisor for PEN), this was oriented to some of the practicalities of introducing nano regulation into current regulatory environments. At least, I think that’s what it was about as things began to malfunction shortly after the introductions.

TAPPI (Technical Association of the Pulp and Paper Industry) held a nanotechnology forestry conference in Alberta this last June. I should have mentioned it at the time but, trite as it is,  better late than never.  From today’s news item about the conference on Nanowerk,

More than 180 nanoscience experts from 12 countries met in June to discuss the potential of nano-enabled biomaterials. Held in Edmonton, AB, Canada, and co-sponsored by TAPPI and the Alberta Ingenuity Fund, the conference revealed developments for revolutionizing paper and wood products, as well as capturing sustainability-focused markets with bionanocomposites and capitalizing on wood-derived nanocrystalline cellulose (NCC) and nanofibrillar cellulose (NFC).

The 2010 conference will be held in Helsinki, Finland.

The House of Wisdom existed from the 9th to 13th centuries CE (common era) in Baghdad. Originally intended as a library whose main purpose was for the translation of books from Persian into Arabic, the House of Wisdom became a centre for the study of the humanities and sciences that was unrivaled in its time. One of its great scholars (Al-Khawarizmi) is known as the ‘father of algebra’. They invented the library catalogue where books were organized according to subjects. Note: I was recently at the oldest library at Trinity College in Dublin and the guide mentioned that those books are organized on the shelves by size, weight, and the colour of their bindings. (I got my information about the House of Wisdom here in Wikipedia and from a Nanowerk Spotlight article by Michael Berger.)

I mention the House of Wisdom because of Berger’s article which uses it as a metaphor to discuss a modern attempt to recreate the ‘house’,  this time, in Saudi Arabia. A new, 36 square kilometer,  science/technology campus/city called the King Abdullah University for Science and Technology (KAUST) opened yesterday on Sept. 23, 2009.

From the article,

Much more than a future elite university, the vision behind KAUST is to create the nucleus of a modern society, free from the strict religious dictates of a conservative Islamic culture, and laying the foundation for a science and technology based society of future generations.

This sounds quite ambitious for a conservative Islamic country that doesn’t have public entertainment facilities such as cinemas or theaters – they are regarded as incompatible with Islam; where most schools have focused on religion much more than on science and other modern knowledge; and where a strict interpretation of Islam imposes many restrictions on women’s daily lives.

This all is supposed to change with mega projects like the $8bn Knowledge Economic City (KEC), the King Abdullah Economic City (KAEC) a $26.6 billion project that will generate more than 500,000 jobs upon completion in 2016; and nearby KAUST, intended to catapult Saudi Arabia’s education system into the 21st century and prepare its society for the time after oil. This move to a knowledge-based society is a top priority for the country – in 2009 alone, 25.7% of Saudi Arabia’s budget has been allocated to educational development.

As an oil-producing country, Saudi Arabia is getting ready for a time when there won’t be any left to pump out of the ground. Do read the article as there’s much more about the facilities which, according to Berger, “… will enable top-notch nanotechnology research.”

It reminds me a little of the situation in Alberta where they are currently trying to extract oil from sand only because the oil that was easy to access is almost gone while heavily investing in emerging advanced technologies such as nanotechnology.

Alberta and Texas collaborate on nanotechnology and greenish energy; a meta analysis of public perceptions of nanotechnology risks; how scientists think

The Premier of Alberta (Canada), Ed Stelmach, has signed a memorandum of understanding with Rice University (Texas, US) President, David Leebron, to collaborate through nanoAlberta (Alberta Advanced Education and Technology) and the Richard E. Smalley Institute for Nanoscale Science and Technology (Rice University). The two institutions will collaborate in the energy, environmental, medical,  agriculture, and forestry sectors. From the news item on Azonano,

Wade Adams, director of the Smalley Institute, said the interests of nanoAlberta and those of his team at Rice are perfectly aligned. “We want to help them figure out how to extract oil from their resources in a more environmentally friendly way, a more efficient way and one that will cause less damage to their own territory as well as provide oil for the needs of the human race, as they become a more important source of it.”

When I read the title for the item I thought they were referring to green or bio fuels but, as you can see from the quote, the intention is altogether different. From a pragmatic perspective, since we have to depend on fossil fuels for a while longer, it’s best if we can find more environmentally friendly ways to extract it while developing other renewable sources.

This reminds me of the recent invite I received from the Project on Emerging Nanotechnologies (PEN) for the Perverse Incentives: The Untold Story of Federal Subsidies for Fossil Fuels event held on Sept. 18, 2009. Unfortunately, the webcast isn’t available quite yet but I think that in light of this memorandum it could be interesting viewing and might provide a critical perspective on the initiative.

PEN is holding another somewhat related event on Tuesday, Sept. 29, 2009 at 12:30 pm EST, Nanotechnology, Synthetic Biology, and Biofuels: What does the public think? If you’re in Washington, DC, you can attend the event live but you should RSVP here, otherwise there’s a live webcast which is posted a few days later on their website.  (There’s a PEN event tomorrow, Sept. 23, 2009 at 12 pm to 2:30 pm EST, titled Transatlantic Regulatory Cooperation: Securing the Promise of Nanotechnologies. If you wish to attend the live event, you can RSVP using the link I’ve posted previously. If you’re interested in this event, in June I posted a more complete description of it here.)

One more Canadian development on the nanotechnology front, a meta analysis of 22 surveys on public perceptions of the risks and benefits of nanotechnology has been published at Nature Online as of Sept. 20, 2009. The article (lead author from the University of British Columbia, Canada)  is behind a paywall but you can read more about it in the news item on Nanowerk (from the news item),

Previous studies have found that new and unknown technologies such as biotechnology tend to be regarded as risky, but that’s not the case for nanotechnology, according to this research. People who thought nanotechnology had more benefits than risks outnumbered those who perceived greater risks by 3 to 1 in this study. The 44 percent of people who didn’t have an opinion either way surprised the researchers. “You don’t normally get that reluctance,” says Terre Satterfield of the University of British Columbia in Canada, lead author of the study and a collaborator with CNS-UCSB [Center for Nanotechnology in Society at the University of California, Santa Barbara].

In almost three years of scanning, I don’t think I’ve ever seen two announcements that both feature a Canadian nanotechnology development of sorts. This is a banner day!

Topping today off, I’m going to segue into How Scientists Think.  It’s a paper about how scientists creatively problem solve.  From the news item on Physorg.com,

Her [Dr. Nancy J. Nersessian] study of the working methods of scientists helps in understanding how class and instructional laboratory settings can be improved to foster creativity, and how new teaching methods can be developed based on this understanding. These methods will allow science students to master model-based reasoning approaches to problem solving and open the field to many more who do not think of themselves as traditional “scientists.”

I’ve been interested in how scientists think because I’ve been trying to understand why the communication with ‘non scientists’ can be so poor. To some extent I think it is cultural. After years of training in special skills and a special language, scientists are members of a unique occupational culture, which has given birth to many, many subcultures. People who are immersed in their own cultures don’t always realize that the rest of us may not understand what they’re saying very well. (Try reading art criticism if you don’t have an understanding of art history and critical theory.) That’s my short answer and, one of these days, I’m going to write a paper with my long answer.

I had every intention of writing another part of my science communication series today but I have a couple of projects to start or finish and these series postings take more time than I have to spare.

Science communication in Canada (part 3)

We have  a lot of science communication programmes and activities in Canada but a huge percentage of them are aimed at children. Once you leave high school you don’t learn much about science any more. Yes, you can read an article in a newspaper or catch a science programme on tv but as I noted in my Friday (Sept. 18, 2009) posting, the media don’t cover  the sciences very often. (I’ll see if I can dig up some data on science coverage in the media.)

There is another issue with science coverage which has an impact on  the media’s willingness to run science stories, legal suits for defamation.  There’s an article on Techdirt, UK Libel Laws, Scientific Criticism, Chilling Effects, Bloggers and The Streisand Effect, which presents the interesting case of Simon Singh (physicist and author of books such as Fermat’s Last Theorem, aka Fermat’s Enigma: The Epic Quest to Solve the Word’s Greatest Mathematical Problem, Big Bang and others) who’s being sued for criticising the evidence for claims by the British Chiropractic Association (BCA) about diseases that chiropractors can cure. The BCA filed a defamation suit against Singh, which is having a chilling effect on science journalism not only in the UK but also in the US (I haven’t found any Canadian commentary). You can find links to other articles on the topic including one from the New York Times in the Techdirt article. Meanwhile, I think this comment from the British Humanist Association (BHA) summarises the issues best,

BHA Chief Executive Hanne Stinson said today, “We’re proud to re-publish Simon’s article here on our website. This is not just an issue about freedom of speech, although that is important in itself. But if legitimate scientific criticism ever leads to a successful libel action, that will not only prevent people speaking out about false claims, it actually threatens scientific progress. Scientific advances almost always involve disagreement and criticism, and scientists have to able to express their views robustly without fear of prosecution. If our courts interpret one ambiguous phrase in a piece labelled ‘Comment’ as defamation, with the result that the writer loses a huge sum of money, then there is something very wrong in the balance between libel and freedom of speech.”

I found Singh’s edited (of allegedly libellous comments, apparently Singh used the word ‘bogus’ to describe some of the claims) article on the BHA site and even though I’m late to the party (there was a July 29, 2009 worldwide posting of the article, organized by Sense about Science, I’m going to post it now.

Beware the spinal trap

Some practitioners claim it is a cure-all, but the research suggests chiropractic therapy has mixed results – and can even be lethal, says Simon Singh.

You might be surprised to know that the founder of chiropractic therapy, Daniel David Palmer, wrote that “99% of all diseases are caused by displaced vertebrae”. In the 1860s, Palmer began to develop his theory that the spine was involved in almost every illness because the spinal cord connects the brain to the rest of the body. Therefore any misalignment could cause a problem in distant parts of the body.

In fact, Palmer’s first chiropractic intervention supposedly cured a man who had been profoundly deaf for 17 years. His second treatment was equally strange, because he claimed that he treated a patient with heart trouble by correcting a displaced vertebra.

You might think that modern chiropractors restrict themselves to treating back problems, but in fact some still possess quite wacky ideas. The fundamentalists argue that they can cure anything, including helping treat children with colic, sleeping and feeding problems, frequent ear infections, asthma and prolonged crying – even though there is not a jot of evidence.

I can confidently label these assertions as utter nonsense because I have co-authored a book about alternative medicine with the world’s first professor of complementary medicine, Edzard Ernst. He learned chiropractic techniques himself and used them as a doctor. This is when he began to see the need for some critical evaluation. Among other projects, he examined the evidence from 70 trials exploring the benefits of chiropractic therapy in conditions unrelated to the back. He found no evidence to suggest that chiropractors could treat any such conditions.

But what about chiropractic in the context of treating back problems? Manipulating the spine can cure some problems, but results are mixed. To be fair, conventional approaches, such as physiotherapy, also struggle to treat back problems with any consistency. Nevertheless, conventional therapy is still preferable because of the serious dangers associated with chiropractic.

In 2001, a systematic review of five studies revealed that roughly half of all chiropractic patients experience temporary adverse effects, such as pain, numbness, stiffness, dizziness and headaches. These are relatively minor effects, but the frequency is very high, and this has to be weighed against the limited benefit offered by chiropractors.

More worryingly, the hallmark technique of the chiropractor, known as high-velocity, low-amplitude thrust, carries much more significant risks. This involves pushing joints beyond their natural range of motion by applying a short, sharp force. Although this is a safe procedure for most patients, others can suffer dislocations and fractures.

Worse still, manipulation of the neck can damage the vertebral arteries, which supply blood to the brain. So-called vertebral dissection can ultimately cut off the blood supply, which in turn can lead to a stroke and even death. Because there is usually a delay between the vertebral dissection and the blockage of blood to the brain, the link between chiropractic and strokes went unnoticed for many years. Recently, however, it has been possible to identify cases where spinal manipulation has certainly been the cause of vertebral dissection.

Laurie Mathiason was a 20-year-old Canadian waitress who visited a chiropractor 21 times between 1997 and 1998 to relieve her low-back pain. On her penultimate visit she complained of stiffness in her neck. That evening she began dropping plates at the restaurant, so she returned to the chiropractor. As the chiropractor manipulated her neck, Mathiason began to cry, her eyes started to roll, she foamed at the mouth and her body began to convulse. She was rushed to hospital, slipped into a coma and died three days later. At the inquest, the coroner declared: “Laurie died of a ruptured vertebral artery, which occurred in association with a chiropractic manipulation of the neck.”

This case is not unique. In Canada alone there have been several other women who have died after receiving chiropractic therapy, and Edzard Ernst has identified about 700 cases of serious complications among the medical literature. This should be a major concern for health officials, particularly as under-reporting will mean that the actual number of cases is much higher.
If spinal manipulation were a drug with such serious adverse effects and so little demonstrable benefit, then it would almost certainly have been taken off the market.

Simon Singh is a science writer in London and the co-author, with Edzard Ernst, of Trick or Treatment? Alternative Medicine on Trial. This is an edited version of an article published in The Guardian for which Singh is being personally sued for libel by the British Chiropractic Association.

Personally, I have gone to chiropractors for spinal manipulations and like any other profession (including writing), there’s the good, the bad, the competent, and the mediocre. I also know people who get good results and others for whom chiropractic adjustments do nothing. I think, in common with many others, that the BHA (correction: this should be BCA for British Chiropractic Association) should have responded with evidence and not with a legal suit complaining that they were being criticised.

As for whether or not this legal suit has had any impact on science journalism in Canada, I have no evidence, other than the absence of any discussion in the Canadian media, to back the assertion that follows. Taking into account the federal government’s relatively recent dictum (gag order) that scientists in Environment Canada are not allowed to speak to journalists unless they had received permission from the ministry’s communication department (National Post, Jan. 31, 2008, article by Margaret Munro, other articles can be found via search engines) and our close ties to UK jurisprudence, there is a big chill taking place here that affects both scientists and journalists.

Tomorrow I expect to be looking at public relations/marketing and science.

Science communication in Canada (part 2)

Today I’m going to discuss science journalism. There’s not a lot of science journalism as the Science Day report notes,

In communicating science issues, the media fall far short. Science-focused stories rarely make the news in Canada, and when they do, often fail to adequately explain either the science or its significance. It seems that Canadian news editors and producers assume that the public considers science uninteresting or complicated. The European media, in contrast, appreciating that science can hold readers’ and viewers’ attention, routinely cover science news. Scientists, for their part, too often do not engage the world beyond their labs and institutes. When they do venture out, they sometimes fail to succinctly convey the gist or broader relevance of their research to the public, industry and government.

Contrary to the media’s assumptions, a surprisingly large number of Canadians share a keen interest in science. When conveyed properly, science news can capture the public’s imagination. And scientists are perfectly capable of conveying science to a wide audience.

I also found out recently that science journalism is not science communication; that field was described to me (by a member of the School of Journalism at the University of British Columbia) as public relations and marketing. Interesting, non? I view science communication more broadly but I can understand why it’s viewed that way. First, communication departments are often charged with public relations, media relations, and/or marketing communication initiatives. (Note: I don’t know if it’s still true but 15 years ago people in communication departments viewed their roles as distinct from public relations and/or marketing communication. Personally, I always found the lines to be blurry.) Second, there is a longstanding snobbery about public relations, communication, etc. in the journalism community.

Getting back to science journalism, I think pretty anyone will agree that there’s not much coverage of the science scene in Canada. You’re not going find many science stories in your local papers or on the radio and tv unless you make a special effort. In terms of general science magazines that are not being issued by a government agency, only two spring to mind. SEED and Yes Mag for Children and unfortunately I’ve never seen either magazine on the news stands. As for broadcast programmes,  there’s SPARK and Quirks and Quarks on CBC (Canadian Broadcasting Corporation) Radio and Daily Planet on the Discovery Channel (a Canadian offshoot station of a US television channel). SPACE: the imagination station (another offshoot of a US television channel [Syfy] which focuses on science fiction and fantasy) does cover the odd science story but they insert the news bits between programming and I’ve never been able to discern a schedule. Please let me know if  I’ve missed anything.

I’d like to note is that the term science story also includes medical stories, health stories, and environment stories which members of the news media believe are of much interest to the general public (and even they don’t get great coverage). The consequence is that other sciences tend to get short shrift in the competition for news coverage when there are so few outlets.

I will have more next week on this. In the meantime, the Project on Emerging Nanotechnologies (PEN) has a new event coming up on Tuesday, Sept. 29, 2009 at 12:30 pm EST in Washington, DC. The event is titled, Nanotechnology, Synthetic Biology, and Biofuels: What does the public think? If you’re in Washington, DC and want to attend, you can RSVP here or there will be both a live webcast and a posted webcast after the event, no RSVP required.

Finally, Rob Annan (Don’t leave Canada behind) is digging deeper into the issue of entrepreneurship in Canada and how we can nurture it here. He also provides some resources that you may want to check out or you may want to let him know of your network.