Tag Archives: carbon nanomaterials

Substituting graphene and other carbon materials for scarce metals

A Sept. 19, 2017 news item on Nanowerk announces a new paper from the Chalmers University of Technology (Sweden), the lead institution for the Graphene Flagship (a 1B Euro 10 year European Commission programme), Note: A link has been removed,

Scarce metals are found in a wide range of everyday objects around us. They are complicated to extract, difficult to recycle and so rare that several of them have become “conflict minerals” which can promote conflicts and oppression. A survey at Chalmers University of Technology now shows that there are potential technology-based solutions that can replace many of the metals with carbon nanomaterials, such as graphene (Journal of Cleaner Production, “Carbon nanomaterials as potential substitutes for scarce metals”).

They can be found in your computer, in your mobile phone, in almost all other electronic equipment and in many of the plastics around you. Society is highly dependent on scarce metals, and this dependence has many disadvantages.

A Sept. 19, 2017 Chalmers University of Technology press release by Ulrika Ernstrom,, which originated the news item, provides more detail about the possibilities,

They can be found in your computer, in your mobile phone, in many of the plastics around you and in almost all electronic equipment. Society is highly dependent on scarce metals, and this dependence has many disadvantages.
Scarce metals such as tin, silver, tungsten and indium are both rare and difficult to extract since the workable concentrations are very small. This ensures the metals are highly sought after – and their extraction is a breeding ground for conflicts, such as in the Democratic Republic of the Congo where they fund armed conflicts.
In addition, they are difficult to recycle profitably since they are often present in small quantities in various components such as electronics.
Rickard Arvidsson and Björn Sandén, researchers in environmental systems analysis at Chalmers University of Technology, have now examined an alternative solution: substituting carbon nanomaterials for the scarce metals. These substances – the best known of which is graphene – are strong materials with good conductivity, like scarce metals.
“Now technology development has allowed us to make greater use of the common element carbon,” says Sandén. “Today there are many new carbon nanomaterials with similar properties to metals. It’s a welcome new track, and it’s important to invest in both the recycling and substitution of scarce metalsfrom now on.”
The Chalmers researchers have studied  the main applications of 14 different metals, and by reviewing patents and scientific literature have investigated the potential for replacing them by carbon nanomaterials. The results provide a unique overview of research and technology development in the field.
According to Arvidsson and Sandén the summary shows that a shift away from the use of scarce metals to carbon nanomaterials is already taking place.
….
“There are potential technology-based solutions for replacing 13 out of the 14 metals by carbon nanomaterials in their most common applications. The technology development is at different stages for different metals and applications, but in some cases such as indium and gallium, the results are very promising,” Arvidsson says.
“This offers hope,” says Sandén. “In the debate on resource constraints, circular economy and society’s handling of materials, the focus has long been on recycling and reuse. Substitution is a potential alternative that has not been explored to the same extent and as the resource issues become more pressing, we now have more tools to work with.”
The research findings were recently published in the Journal of Cleaner Production. Arvidsson and Sandén stress that there are significant potential benefits from reducing the use of scarce metals, and they hope to be able to strengthen the case for more research and development in the field.
“Imagine being able to replace scarce metals with carbon,” Sandén says. “Extracting the carbon from biomass would create a natural cycle.”
“Since carbon is such a common and readily available material, it would also be possible to reduce the conflicts and geopolitical problems associated with these metals,” Arvidsson says.
At the same time they point out that more research is needed in the field in order to deal with any new problems that may arise if the scarce metals are replaced.
“Carbon nanomaterials are only a relatively recent discovery, and so far knowledge is limited about their environmental impact from a life-cycle perspective. But generally there seems to be a potential for a low environmental impact,” Arvidsson says.

FACTS AND MORE INFORMATION

Carbon nanomaterials consist solely or mainly of carbon, and are strong materials with good conductivity. Several scarce metals have similar properties. The metals are found, for example, in cables, thin screens, flame-retardants, corrosion protection and capacitors.
Rickard Arvidsson and Björn Sandén at Chalmers University of Technology have investigated whether the carbon nanomaterials graphene, fullerenes and carbon nanotubes have the potential to replace 14 scarce metals in their main areas of application (see table). They found potential technology-based solutions to replace the metals with carbon nanomaterials for all applications except for gold in jewellery. The metals which we are closest to being able to substitute are indium, gallium, beryllium and silver.

Here’s a link to and a citation for the paper,

Carbon nanomaterials as potential substitutes for scarce metals by Rickard Arvidsson, Björn A. Sandén. Journal of Cleaner Production (0959-6526). Vol. 156 (2017), p. 253-261. DOI: https://doi.org/10.1016/j.jclepro.2017.04.048

This paper appears to be open access.

Inhaling buckyballs (C60 fullerenes)

Carbon nanotubes (also known as buckytubes) have attracted most of the attention where carbon nanomaterials and health and safety are concerned. But, University of Michigan researchers opted for a change of pace and focused their health and safety research on buckyballs (also known as C60 or fullerenes) according to a Feb. 24, 2016 news item on Nanowerk,

Scientists at the University of Michigan have found evidence that some carbon nanomaterials can enter into immune cell membranes, seemingly going undetected by the cell’s built-in mechanisms for engulfing and disposing of foreign material, and then escape through some unidentified pathway. [emphasis mine]

The researchers from the School of Public Health and College of Engineering say their findings of a more passive entry of the materials into cells is the first research to show that the normal process of endocytosis-phagocytosis isn’t always activated when cells are confronted with tiny Carbon 60 (C60 ) molecules.

A Feb. 23, 2016 University of Michigan news release (also on EurekAlert but dated Feb. 24, 2016), which originated the news item, provides more detail about the research,

… This study examined nanomaterials known as carbon fullerenes, in this case C60, which has a distinct spherical shape.

Over the last decade, scientists have found these carbon-based materials useful in a number of commercial products, including drugs, medical devices, cosmetics, lubricants, antimicrobial agents and more. Fullerenes also are produced in nature through events like volcanic eruptions and wildfires.

The concern is that however exposed, commercially or naturally, little is known about how inhaling these materials impacts health.

“It’s entirely possible that even tiny amounts of some nanomaterials could cause altered cellular signaling,” said Martin Philbert, dean and professor of toxicology at the U-M School of Public Health.

Philbert said much of the previously published research bombarded cells with large amounts of particle clusters, unlike a normal environmental exposure.

The U-M researchers examined various mechanisms of cell entry through a combination of classical biological, biophysical and newer computational techniques, using models developed by a team led by Angela Violi to determine how C60 molecules find their way into living immune cells of mice.

They found that the C60 particles in low concentrations were entering the membrane individually, without perturbing the structure of the cell enough to trigger its normal response.

“Computational modeling of C60 interacting with lipid bilayers, representative of the cellular membrane, show that particles readily diffuse into biological membranes and find a thermodynamically stable equilibrium in an eccentric position within the bilayer,” said Violi, U-M professor of mechanical engineering, chemical engineering, biomedical engineering, and macromolecular science and engineering.

“The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research, as we still don’t know exactly what are the mechanisms that cause this crossing.”

So, while the buckyballs enter cells, they also escape from them somehow. I wonder if the mechanisms that allow them to enter the cells are similar to the ones that allow them to escape. Regardless, here’s a link to and a citation for the paper,

C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages by K. A. Russ, P. Elvati, T. L. Parsonage, A. Dews, J. A. Jarvis, M. Ray, B. Schneider, P. J. S. Smith, P. T. F. Williamson, A. Violi and M. A. Philbert. Nanoscale, 2016, 8, 4134-4144 DOI: 10.1039/C5NR07003A First published online 25 Jan 2016

This paper is behind a paywall.