Tag Archives: Carlos F. Guimarães

Living optical fibers

The word ‘living’ isn’t usually associated with optical fibers and the addition had me thinking that this October 11, 2021 Nanowerk Spotlight story by Michael Berger would be a synthetic biology story. Well, not exactly. Do read on for a good introduction describing glass, fiber optics, and optogenetics,

Glass is one of the oldest manufactured materials used by humans and glass making dates back at least 6000 years, long before humans had discovered how to smelt iron. Glasses have been based on the chemical compound silica – silicon dioxide, or quartz – the primary constituent of sand. Soda-lime glass, containing around 70% silica, accounts for around 90% of manufactured glass.

Historically, we are familiar with glasses’ decorative use or as window panes, household items, and in optics such as eyeglasses, microscopes and telescopes. More recently, starting in the 1950s, glass has been used in the manufacture of fiber optic cables, a technology that has revolutionized the communications industry and helped ring in the digital revolution.

Fiber optic cables propagate a signal as a pulse of light along a transparent medium, usually glass. This is not only used to transmit information but, for instance in many healthcare and biomedical applications, scientists use optical fibers for sensing applications by shining light into a sample and evaluating the absorbed or transmitted light.

A recent development in this field is optogenetics, a neuromodulation method that uses activation or deactivation of brain cells by illumination with different colors of light in order to treat brain disorders.

Berger goes on to explain the latest work and reveals what ‘living’ means where this work is concerned,

This work represents a simple and low-cost approach to fabricating optical fibers made from biological materials. These fibers can be easily modified for specific applications and don’t require sophisticated equipment to generate relevant information. This method could be used for many practical sensing and biological modeling applications.

“We use a natural, ionic, and biologically compatible crosslinking approach, which enables us to produce flexible hydrogel fibers in continuous multi-layered architectures, meaning they are easy to produce and can be modified after fabrication,” explains Guimarães [Carlos Guimarães, the paper’s first author]. “Similarly to silica fibers, the core hydrogel of our structures can be exposed, fused to another fiber or reassembled if they break, and efficiently guide light through the established connection.”

These flexible hydrogel fibers are made from sugars and work just like solid-state optical fibers used to transmit data. However, they are biocompatible so they can be easily integrated with biological systems.

“We could even consider them to be alive [emphasis mine] since we can use them to grow living cells inside the fiber,” says Guimarães. “As these embedded cells grow over time, we can then use light to inform on living dynamic events, for example to track cancer invasive proliferation into optical information.” [emphasis mine]

As to what constitutes optical information in this context,

Another intriguing aspect of these hydrogel fibers is that their permeable mesh enables the inclusion of biological targets of interest for detection. For example, the scientists observed that fibers were able to soak SARS-CoV-2 viruses, and by integrating nanoparticles for their binding and detection, shifts in visible light could be observed for detecting the accumulation of viral particles within the fiber.

“When light moving through the fiber encounters living cells, it changes its characteristics depending on cellular density, invasive proliferation, expression of molecules, etc.” Guimarães notes. “This light-cell interaction can digitize complex biological events, converting responses such as cancer cell progression in 3D environments and susceptibility to drugs into numbers and data, very fast and without the need for sample destruction.”

Here’s a link to and a citation for the paper,

Engineering Polysaccharide-Based Hydrogel Photonic Constructs: From Multiscale Detection to the Biofabrication of Living Optical Fibers by Carlos F. Guimarães, Rajib Ahmed, Amideddin Mataji-Kojouri, Fernando Soto, Jie Wang, Shiqin Liu, Tanya Stoyanova, Alexandra P. Marques, Rui L. Reis, Utkan Demirci. Advanced Materials DOI: https://doi.org/10.1002/adma.202105361 First published: 07 October 2021

This paper is behind a paywall.