Tag Archives: Carnegie Mellon University

Vaccine as a salad

A research project into growing vaccines in edible plants has been funded at the University of California at Riverside (UCR) according a September 16, 2021 news item on Nanowerk,

The future of vaccines may look more like eating a salad than getting a shot in the arm. UC Riverside scientists are studying whether they can turn edible plants like lettuce into mRNA vaccine factories.

Messenger RNA or mRNA technology, used in COVID-19 vaccines, works by teaching our cells to recognize and protect us against infectious diseases.

One of the challenges with this new technology is that it must be kept cold to maintain stability during transport and storage. If this new project is successful, plant-based mRNA vaccines — which can be eaten — could overcome this challenge with the ability to be stored at room temperature.

The project’s goals, made possible by a $500,000 grant from the National Science Foundation, are threefold: showing that DNA containing the mRNA vaccines can be successfully delivered into the part of plant cells where it will replicate, demonstrating the plants can produce enough mRNA to rival a traditional shot, and finally, determining the right dosage.

Caption: Chloroplasts (magenta) in leaves expressing a green fluorescent protein. The DNA encoding for the protein was delivered by targeted nanomaterials without mechanical aid by applying a droplet of the nano-formulation to the leaf surface. Credit: Israel Santana/UCR

A September 16, 2021 UC Riverside news release (also on EurekAlert) by Jules Bernstein, which originated the news item, provides more information about the project (Note: A link has been removed),

“Ideally, a single plant would produce enough mRNA to vaccinate a single person,” said Juan Pablo Giraldo, an associate professor in UCR’s Department of Botany and Plant Sciences who is leading the research, done in collaboration with scientists from UC San Diego and Carnegie Mellon University. 

“We are testing this approach with spinach and lettuce and have long-term goals of people growing it in their own gardens,” Giraldo said. “Farmers could also eventually grow entire fields of it.”

Key to making this work are chloroplasts — small organs in plant cells that convert sunlight into energy the plant can use. “They’re tiny, solar-powered factories that produce sugar and other molecules which allow the plant to grow,” Giraldo said. “They’re also an untapped source for making desirable molecules.”

In the past, Giraldo has shown that it is possible for chloroplasts to express genes that aren’t naturally part of the plant. He and his colleagues did this by sending foreign genetic material into plant cells inside a protective casing. Determining the optimal properties of these casings for delivery into plant cells is a specialty of Giraldo’s laboratory. 

For this project Giraldo teamed up with Nicole Steinmetz, a UC San Diego professor of nanoengineering, to utilize nanotechnologies engineered by her team that will deliver genetic material to the chloroplasts. 

“Our idea is to repurpose naturally occurring nanoparticles, namely plant viruses, for gene delivery to the plants,” Steinmetz said. “Some engineering goes into this to make the nanoparticles go to the chloroplasts and also to render them non-infectious toward the plants.”

For Giraldo, the chance to develop this idea with mRNA is the culmination of a dream. “One of the reasons I started working in nanotechnology was so I could apply it to plants and create new technology solutions. Not just for food, but for high-value products as well, like pharmaceuticals,” Giraldo said. 

He is also co-leading a related project using nanomaterials to deliver nitrogen, a fertilizer, directly to chloroplasts, where plants need it most. 

Nitrogen is limited in the environment, but plants need it to grow. Most farmers apply nitrogen to the soil. As a result, roughly half of it ends up in groundwater, contaminating waterways, causing algae blooms, and interacting with other organisms. It also produces nitrous oxide, another pollutant. 

This alternative approach would get nitrogen into the chloroplasts through the leaves and control its release, a much more efficient mode of application that could help farmers and improve the environment. 

The National Science Foundation has granted Giraldo and his colleagues $1.6 million to develop this targeted nitrogen delivery technology.

“I’m very excited about all of this research,” Giraldo said. “I think it could have a huge impact on peoples’ lives.”

I wish the researchers the best of luck.

Gold nanoparticles not always always biologically stable

It’s usually silver nanoparticles (with a nod to titanium dioxide as another problem nanoparticle) which star in scenarios regarding environmental concerns, especially with water. According to an Aug. 28, 2018 news item on Nanowerk, gold nanoparticles under certain conditions could also pose problems,

It turns out gold isn’t always the shining example of a biologically stable material that it’s assumed to be, according to environmental engineers at Duke’s Center for the Environmental Implications of NanoTechnology (CEINT).

In a nanoparticle form, the normally very stable, inert, noble metal actually gets dismantled by a microbe found on a Brazilian aquatic weed.

While the findings don’t provide dire warnings about any unknown toxic effects of gold, they do provide a warning to researchers on how it is used in certain experiments.

Here’s an image of one of the researchers standing in the test bed where they made their discovery (the caption will help to make sense of the reference to mesocosms in the news release, which follows,,

Mark Wiesner stands with rows of mesocosms—small, manmade structures containing different plants and microorganisms meant to represent a natural environment with experimental controls. Courtesy: Duke University

An August 28, 2018 Duke University news release (also on EurekAlert) by Ken Kingery, which originated the news item, provides more detail about gold nanoparticle instability,

CEINT researchers from Duke, Carnegie Mellon and the University of Kentucky were running an experiment to investigate how nanoparticles used as a commercial pesticide affect wetland environments in the presence of added nutrients. Although real-world habitats often receive doses of both pesticides and fertilizers, most studies on the environmental effects of such compounds only look at a single contaminant at a time.

For nine months, the researchers released low doses of nitrogen, phosphorus and copper hydroxide nanoparticles into wetland mesocosms [emphasis mine]– small, manmade structures containing different plants and microorganisms meant to represent a natural environment with experimental controls. The goal was to see where the nanoparticle pesticides ended up and how they affected the plant and animal life within the mesocosm.

The researchers also released low doses of gold nanoparticles as tracers, assuming the biologically inert nanoparticles would remain stable while migrating through the ecosystem. This would help the researchers interpret data on the pesticide particles that partly dissolve by showing them how a solid metal particle acts within the system.

But when the researchers went to analyze their results, they found that many of the gold nanoparticles had been oxidized and dissolved.

“We were taken completely by surprise,” said Mark Wiesner, the James B. Duke Professor and chair of civil and environmental engineering at Duke. “The nanoparticles that were supposed to be the most stable turned out to be the least stable of all.”

After further inspection, the researchers found the culprit — the microbiome growing on a common Brazilian waterweed called Egeria densa. Many bacteria secrete chemicals to essentially mine metallic nutrients from their surroundings. With their metabolism spiked by the experiment’s added nutrients, the bacteria living on the E. densa were catalyzing the reaction to dissolve the gold nanoparticles.

This process wouldn’t pose any threat [emphasis mine] to humans or other animal species in the wild. But when researchers design experiments with the assumption that their gold nanoparticles will remain intact, the process can confound the interpretation of their results.

“The assumption that gold is inert did not hold in these experiments,” said Wiesner. “This is a good lesson that underscores how real, complex environments, that include for example the bacteria growing on leaves, can give very different results from experiments run in a laboratory setting that do not include these complexities.”

Here’s a link to and a citation for the paper,

Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome by Astrid Avellan, Marie Simonin, Eric McGivney, Nathan Bossa, Eleanor Spielman-Sun, Jennifer D. Rocca, Emily S. Bernhardt, Nicholas K. Geitner, Jason M. Unrine, Mark R. Wiesner, & Gregory V. Lowry. Nature Nanotechnology (2018) DOI: https://doi.org/10.1038/s41565-018-0231-y Published

This paper is behind a paywall.

NanoFARM: food, agriculture, and nanoparticles

The research focus for the NanoFARM consortium is on pesticides according to an October 19, 2017 news item on Nanowerk,

The answer to the growing, worldwide food production problem may have a tiny solution—nanoparticles, which are being explored as both fertilizers and fungicides for crops.

NanoFARM – research consortium formed between Carnegie Mellon University [US], the University of Kentucky [US], the University of Vienna [Austria], and Aveiro University in Prague [Czech Republic] – is studying the effects of nanoparticles on agriculture. The four universities received grants from their countries’ respective National Science Foundations to discover how these tiny particles – some just 4 nanometers in diameter – can revolutionize how farmers grow their food.

An October ??, 2017 Carnegie Mellon University news release by Adam Dove, which originated the news item, fills in a few more details,

“What we’re doing is getting a fundamental understanding of nanoparticle-to-plant interactions to enable future applications,” says Civil and Environmental Engineering (CEE) Professor Greg Lowry, the principal investigator for the nanoFARM project. “With pesticides, less than 5% goes into the crop—the rest just goes into the environment and does harmful things. What we’re trying to do is minimize that waste and corresponding environmental damage by doing a better job of targeting the delivery.”

The teams are looking at related questions: How much nanomaterial is needed to help crops when it comes to driving away pests and delivering nutrients, and how much could potentially hurt plants or surrounding ecosystems?

Applied pesticides and fertilizers are vulnerable to washing away—especially if there’s a rainstorm soon after application. But nanoparticles are not so easily washed off, making them extremely efficient for delivering micronutrients like zinc or copper to crops.

“If you put in zinc oxide nanoparticles instead, it might take days or weeks to dissolve, providing a slow, long-term delivery system.”

Gao researches the rate at which nanoparticles dissolve. His most recent finding is that nanoparticles of copper oxide take up to 20-30 days to dissolve in soil, meaning that they can deliver nutrients to plants at a steady rate over that time period.

“In many developing countries, a huge number of people are starving,” says Gao. “This kind of technology can help provide food and save energy.”

But Gao’s research is only one piece of the NanoFARM puzzle. Lowry recently traveled to Australia with Ph.D. student Eleanor Spielman-Sun to explore how differently charged nanoparticles were absorbed into wheat plants.

They learned that negatively charged particles were able to move into the veins of a plant—making them a good fit for a farmer who wanted to apply a fungicide. Neutrally charged particles went into the tissue of the leaves, which would be beneficial for growers who wanted to fortify a food with nutritional value.

Lowry said they are still a long way from signing off on a finished product for all crops—right now they are concentrating on tomato and wheat plants. But with the help of their university partners, they are slowly creating new nano-enabled agrochemicals for more efficient and environmentally friendly agriculture.

For more information, you can find the NanoFARM website here.

Surgery on nanoparticles?

Chemists performed “surgery” on a 23-gold-atom nanoparticle according to a June 12, 2017 news item on Nanowerk (Note: A link has been removed),

A team of chemists led by Carnegie Mellon University’s [CMU] Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle. The procedure, which allows for the precise tailoring of nanoparticles, stands to advance the field of nanochemistry.

The surgical technique developed by Qi Li, the study’s lead author and a 3rd year graduate student in the Jin group, will allow researchers to enhance nanoparticles’ functional properties, such as catalytic activity and photoluminescence, increasing their usefulness in a wide variety of fields including health care, electronics and manufacturing. The findings were published in Science Advances (“Molecular “surgery” on a 23-gold-atom nanoparticle”).

Here’s an image the researchers have provided,

Caption: Carnegie Mellon chemists used a two-step metal exchange method to remove two S-Au-S staples from the surface of a nanoparticle. Credit: Carnegie Mellon University

A June 12, 2017 CMU press release (also on EurekAlert), which originated the news item, provides more details about the research,

“Nanochemistry is a relatively new field, it’s only about 20 years old. We’ve been racing to catch up to fields like organic chemistry that are more than 100 years old,” said Jin, a chemistry professor in the Mellon College of Science. “Organic chemists have been able to tailor the functional groups of molecules for quite some time, like tailoring penicillin for better medical functions, for example. We dreamed that we could do something similar in nanoscience. Developing atomically precise nanoparticles has allowed us to make this dream come true.”

In order to make this “nano-surgery” a reality, researchers needed to begin with atomically precise nanoparticles that could be reliably produced time after time. Jin’s lab has been at the forefront of this research. Working with gold nanoparticles, he and his team have developed methods to precisely control the number of atoms in each nanoparticle, resulting in uniformly-sized nanoparticles with every batch. With reliably precise particles, Jin and colleagues were able to identify the particles’ structures, and begin to tease out how that structure impacted the particles’ properties and functionality.

With these well-defined nanoparticles in hand, Jin’s next step was to find a way to surgically tailor the particles in order to learn more about­ – and hopefully enhance – their functionality.

In their recent study, Jin and colleagues performed nano-surgery on a gold nanoparticle made up of 23 gold atoms surrounded by a protective surface of ligands in staple-like motifs. Using a two-step metal exchange method, they removed two S-Au-S staples from the particle’s surface. In doing this they revealed the structural factors that determine the particle’s optical properties and established the role that the surface plays in photoluminescence. Significantly, the surgery increased the particle’s photoluminescence by about 10-fold. Photoluminescence plays a critical role in biological imaging, cancer diagnosis and LED technology, among other applications.

Jin and coworkers are now trying to generalize this site-specific surgery method to other nanoparticles.

Here’s a link to and a citation for the paper,

Molecular “surgery” on a 23-gold-atom nanoparticle by Qi Li, Tian-Yi Luo, Michael G. Taylor, Shuxin Wang, Xiaofan Zhu, Yongbo Song, Giannis Mpourmpakis, Nathaniel L. Rosi, and Rongchao Jin. Science Advances 19 May 2017: Vol. 3, no. 5, e1603193 DOI: 10.1126/sciadv.1603193

This paper is open access.

From flubber to thubber

Flubber (flying rubber) is an imaginary material that provided a plot point for two Disney science fiction comedies, The Absent-Minded Professor in 1961 which was remade in 1997 as Flubber. By contrast, ‘thubber’ (thermally conductive rubber) is a real life new material developed at Carnegie Mellon University (US).

A Feb. 13, 2017 news item on phys.org makes the announcement (Note: A link has been removed),

Carmel Majidi and Jonathan Malen of Carnegie Mellon University have developed a thermally conductive rubber material that represents a breakthrough for creating soft, stretchable machines and electronics. The findings were published in Proceedings of the National Academy of Sciences this week.

The new material, nicknamed “thubber,” is an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, elasticity similar to soft, biological tissue, and can stretch over six times its initial length.

A Feb.13, 2017 Carnegie Mellon University news release (also on EurekAlert), which originated the news item, provides more detail (Note A link has been removed),

“Our combination of high thermal conductivity and elasticity is especially critical for rapid heat dissipation in applications such as wearable computing and soft robotics, which require mechanical compliance and stretchable functionality,” said Majidi, an associate professor of mechanical engineering.

Applications could extend to industries like athletic wear and sports medicine—think of lighted clothing for runners and heated garments for injury therapy. Advanced manufacturing, energy, and transportation are other areas where stretchable electronic material could have an impact.

“Until now, high power devices have had to be affixed to rigid, inflexible mounts that were the only technology able to dissipate heat efficiently,” said Malen, an associate professor of mechanical engineering. “Now, we can create stretchable mounts for LED lights or computer processors that enable high performance without overheating in applications that demand flexibility, such as light-up fabrics and iPads that fold into your wallet.”

The key ingredient in “thubber” is a suspension of non-toxic, liquid metal microdroplets. The liquid state allows the metal to deform with the surrounding rubber at room temperature. When the rubber is pre-stretched, the droplets form elongated pathways that are efficient for heat travel. Despite the amount of metal, the material is also electrically insulating.

To demonstrate these findings, the team mounted an LED light onto a strip of the material to create a safety lamp worn around a jogger’s leg. The “thubber” dissipated the heat from the LED, which would have otherwise burned the jogger. The researchers also created a soft robotic fish that swims with a “thubber” tail, without using conventional motors or gears.

“As the field of flexible electronics grows, there will be a greater need for materials like ours,” said Majidi. “We can also see it used for artificial muscles that power bio-inspired robots.”

Majidi and Malen acknowledge the efforts of lead authors Michael Bartlett, Navid Kazem, and Matthew Powell-Palm in performing this multidisciplinary work. They also acknowledge funding from the Air Force, NASA, and the Army Research Office.

Here’s a link to and a citation for the paper,

High thermal conductivity in soft elastomers with elongated liquid metal inclusions by Michael D. Bartlett, Navid Kazem, Matthew J. Powell-Palm, Xiaonan Huang, Wenhuan Sun, Jonathan A. Malen, and Carmel Majidi.  Proceedings of the National Academy of Sciences of the United States of America (PNAS, Proceedings of the National Academy of Sciences) doi: 10.1073/pnas.1616377114

This paper is open access.

Synthesized nanoparticles with the complexity of protein molecules

Caption: The structure of the largest gold nanoparticle to-date, Au246(SR)80, was resolved using x-ray crystallography. Credit: Carnegie Mellon University

Carnegie Mellon University (CMU) researchers synthesized a self-assembled nanoparticle of gold as they built on their 2015 work described in my April 14, 2015 posting (Nature’s patterns reflected in gold nanoparticles). Here’s the latest from the team in a Jan. 23, 2017 news item on phys.org,

Chemists at Carnegie Mellon University have demonstrated that synthetic nanoparticles can achieve the same level of structural complexity, hierarchy and accuracy as their natural counterparts – biomolecules. The study, published in Science, also reveals the atomic-level mechanisms behind nanoparticle self-assembly.

The findings from the lab of Chemistry Professor Rongchao Jin provide researchers with an important window into how nanoparticles form, and will help guide the construction of nanoparticles, including those that can be used in the fabrication of computer chips, creation of new materials, and development of new drugs and drug delivery devices.

Caption: By resolving the structure of Au246, Carnegie Mellon researchers were able to visualize its hierarchical assembly into artificial solid. Credit: Carnegie Mellon University

A Jan.  23, 2017 CMU news release on EurekAlert, which originated the news item, expands on the theme,

“Most people think that nanoparticles are simple things, because they are so small. But when we look at nanoparticles at the atomic level, we found that they are full of wonders,” said Jin.

Nanoparticles are typically between 1 and 100 nanometers in size. Particles on the larger end of the nanoscale are harder to create precisely. Jin has been at the forefront of creating precise gold nanoparticles for a decade, first establishing the structure of an ultra-small Au25 nanocluster and then working on larger and larger ones. In 2015, his lab used X-ray crystallography to establish the structure of an Au133 nanoparticle and found that it contained complex, self-organized patterns that mirrored patterns found in nature.

In the current study, they sought to find out the mechanisms that caused these patterns to form. The researchers, led by graduate student Chenjie Zeng, established the structure of Au246, one of the largest and most complex nanoparticles created by scientists to-date and the largest gold nanoparticle to have its structure determined by X-ray crystallography. Au246 turned out to be an ideal candidate for deciphering the complex rules of self- assembly because it contains an ideal number of atoms and surface ligands and is about the same size and weight as a protein molecule.

Analysis of Au246’s structure revealed that the particles had much more in common with biomolecules than size. They found that the ligands in the nanoparticles self-assembled into rotational and parallel patterns that are strikingly similar to the patterns found in proteins’ secondary structure. This could indicate that nanoparticles of this size could easily interact with biological systems, providing new avenues for drug discovery.

The researchers also found that Au246 particles form by following two rules. First, they maximize the interactions between atoms, a mechanism that had been theorized but not yet seen. Second the nanoparticles match symmetric surface patterns, a mechanism that had not been considered previously. The matching, which is similar to puzzle pieces coming together, shows that the components of the particle can recognize each other by their patterns and spontaneously assemble into the highly ordered structure of a nanoparticle.

“Self-assembly is an important way of construction in the nanoworld. Understanding the rules of self-assembly is critical to designing and building up complex nanoparticles with a wide-range of functionalities,” said Zeng, the study’s lead author.

In future studies, Jin hopes to push the crystallization limits of nanoparticles even farther to larger and larger particles. He also plans to explore the particles’ electronic and catalytic power.

Here’s a link to and a citation for the paper,

Emergence of hierarchical structural complexities in nanoparticles and their assembly by Chenjie Zeng, Yuxiang Chen, Kristin Kirschbaum, Kelly J. Lambright, Rongchao Jin. Science  23 Dec 2016: Vol. 354, Issue 6319, pp. 1580-1584 DOI: 10.1126/science.aak9750

This paper is behind a paywall.

Investigating nanoparticles and their environmental impact for industry?

It seems the Center for the Environmental Implications of Nanotechnology (CEINT) at Duke University (North Carolina, US) is making an adjustment to its focus and opening the door to industry, as well as, government research. It has for some years (my first post about the CEINT at Duke University is an Aug. 15, 2011 post about its mesocosms) been focused on examining the impact of nanoparticles (also called nanomaterials) on plant life and aquatic systems. This Jan. 9, 2017 US National Science Foundation (NSF) news release (h/t Jan. 9, 2017 Nanotechnology Now news item) provides a general description of the work,

We can’t see them, but nanomaterials, both natural and manmade, are literally everywhere, from our personal care products to our building materials–we’re even eating and drinking them.

At the NSF-funded Center for Environmental Implications of Nanotechnology (CEINT), headquartered at Duke University, scientists and engineers are researching how some of these nanoscale materials affect living things. One of CEINT’s main goals is to develop tools that can help assess possible risks to human health and the environment. A key aspect of this research happens in mesocosms, which are outdoor experiments that simulate the natural environment – in this case, wetlands. These simulated wetlands in Duke Forest serve as a testbed for exploring how nanomaterials move through an ecosystem and impact living things.

CEINT is a collaborative effort bringing together researchers from Duke, Carnegie Mellon University, Howard University, Virginia Tech, University of Kentucky, Stanford University, and Baylor University. CEINT academic collaborations include on-going activities coordinated with faculty at Clemson, North Carolina State and North Carolina Central universities, with researchers at the National Institute of Standards and Technology and the Environmental Protection Agency labs, and with key international partners.

The research in this episode was supported by NSF award #1266252, Center for the Environmental Implications of NanoTechnology.

The mention of industry is in this video by O’Brien and Kellan, which describes CEINT’s latest work ,

Somewhat similar in approach although without a direction reference to industry, Canada’s Experimental Lakes Area (ELA) is being used as a test site for silver nanoparticles. Here’s more from the Distilling Science at the Experimental Lakes Area: Nanosilver project page,

Water researchers are interested in nanotechnology, and one of its most commonplace applications: nanosilver. Today these tiny particles with anti-microbial properties are being used in a wide range of consumer products. The problem with nanoparticles is that we don’t fully understand what happens when they are released into the environment.

The research at the IISD-ELA [International Institute for Sustainable Development Experimental Lakes Area] will look at the impacts of nanosilver on ecosystems. What happens when it gets into the food chain? And how does it affect plants and animals?

Here’s a video describing the Nanosilver project at the ELA,

You may have noticed a certain tone to the video and it is due to some political shenanigans, which are described in this Aug. 8, 2016 article by Bartley Kives for the Canadian Broadcasting Corporation’s (CBC) online news.

Nanomedicine and the immune system

Interest in how the body reacts to nanoparticle drug delivery materials seems to be gaining momentum (see my Sept. 9, 2016 post about how the liver prevents nanoparticles from reaching cancer cells and my April 27, 2016 post about the discovery that fewer than 1% of nanoparticle-based drugs reach their destination). Now, we can add this research to the list according to an Oct. 4, 2016 news item on phys.org,

Katie Whitehead, assistant professor of chemical engineering at Carnegie Mellon University, has focused her research efforts on two clear objectives: treating and preventing disease. Her clinical-minded approach to laboratory research has recently led her to join forces with immunologists at the Indian Institute of Technology (IIT) in Bombay on a project that will explore how the immune system reacts to nanoparticle drug delivery materials.

“At its face, it may seem like an obvious goal. You would want a drug delivery system that doesn’t provoke an immune response,” says Whitehead. “However, the immune response to drug delivery vehicles is an understudied area because it’s complicated and expensive—but it deserves more attention.”

An Oct. 4, 2016 Carnegie Mellon University news release, which originated the news item, describes the research in more detail (Note: A link has been removed),

If the immune system reacts to a drug delivery system, the body mistakenly identifies the material as an invading pathogen and goes into a heightened state of alert. This response can trigger inflammation throughout the body and lead to a host of issues. According to Nature, about 25 percent of all Phase II and III clinical trials fail, not because the drug did not treat the disease, but because of safety concerns.

Creating a drug delivery system that effectively treats disease at the same time as avoiding immune response are two separate aims in drug delivery research. But for Whitehead, “My argument has always been that both pieces of the puzzle are equally important. If a system causes an immune response, then it’s a nonstarter. It may yield great results in treating disease in the lab, but it won’t ever reach a patient.”

Unfortunately, very little is understood about how the chemical molecules that make up nanoparticles ultimately affect our body’s immune response. “This research, however, is going to fill a critical gap in our knowledge base that will allow us to create nanoparticle systems that effectively deliver drugs without provoking our body’s natural defense mechanisms,” explains Whitehead. “Such knowledge will give us a head start in moving our delivery systems into clinical settings.”

Whitehead’s lab creates a number of nanoparticle drug delivery systems for diseases ranging from inflammatory bowel disease to Mantle cell lymphoma. She is tackling the challenge of immune response head-on with the help of a four-year, $500,000 grant from the Wadhwani Foundation for her work with IIT Bombay. She’ll specifically study how the chemical structure of the drug delivery nanoparticles affects the immune system.

Here’s a video of Katie Whitehead discussing her work in a simplified fashion,

 

How might artificial intelligence affect urban life in 2030? A study

Peering into the future is always a chancy business as anyone who’s seen those film shorts from the 1950’s and 60’s which speculate exuberantly as to what the future will bring knows.

A sober approach (appropriate to our times) has been taken in a study about the impact that artificial intelligence might have by 2030. From a Sept. 1, 2016 Stanford University news release (also on EurekAlert) by Tom Abate (Note: Links have been removed),

A panel of academic and industrial thinkers has looked ahead to 2030 to forecast how advances in artificial intelligence (AI) might affect life in a typical North American city – in areas as diverse as transportation, health care and education ­– and to spur discussion about how to ensure the safe, fair and beneficial development of these rapidly emerging technologies.

Titled “Artificial Intelligence and Life in 2030,” this year-long investigation is the first product of the One Hundred Year Study on Artificial Intelligence (AI100), an ongoing project hosted by Stanford to inform societal deliberation and provide guidance on the ethical development of smart software, sensors and machines.

“We believe specialized AI applications will become both increasingly common and more useful by 2030, improving our economy and quality of life,” said Peter Stone, a computer scientist at the University of Texas at Austin and chair of the 17-member panel of international experts. “But this technology will also create profound challenges, affecting jobs and incomes and other issues that we should begin addressing now to ensure that the benefits of AI are broadly shared.”

The new report traces its roots to a 2009 study that brought AI scientists together in a process of introspection that became ongoing in 2014, when Eric and Mary Horvitz created the AI100 endowment through Stanford. AI100 formed a standing committee of scientists and charged this body with commissioning periodic reports on different aspects of AI over the ensuing century.

“This process will be a marathon, not a sprint, but today we’ve made a good start,” said Russ Altman, a professor of bioengineering and the Stanford faculty director of AI100. “Stanford is excited to host this process of introspection. This work makes practical contribution to the public debate on the roles and implications of artificial intelligence.”

The AI100 standing committee first met in 2015, led by chairwoman and Harvard computer scientist Barbara Grosz. It sought to convene a panel of scientists with diverse professional and personal backgrounds and enlist their expertise to assess the technological, economic and policy implications of potential AI applications in a societally relevant setting.

“AI technologies can be reliable and broadly beneficial,” Grosz said. “Being transparent about their design and deployment challenges will build trust and avert unjustified fear and suspicion.”

The report investigates eight domains of human activity in which AI technologies are beginning to affect urban life in ways that will become increasingly pervasive and profound by 2030.

The 28,000-word report includes a glossary to help nontechnical readers understand how AI applications such as computer vision might help screen tissue samples for cancers or how natural language processing will allow computerized systems to grasp not simply the literal definitions, but the connotations and intent, behind words.

The report is broken into eight sections focusing on applications of AI. Five examine application arenas such as transportation where there is already buzz about self-driving cars. Three other sections treat technological impacts, like the section on employment and workplace trends which touches on the likelihood of rapid changes in jobs and incomes.

“It is not too soon for social debate on how the fruits of an AI-dominated economy should be shared,” the researchers write in the report, noting also the need for public discourse.

“Currently in the United States, at least sixteen separate agencies govern sectors of the economy related to AI technologies,” the researchers write, highlighting issues raised by AI applications: “Who is responsible when a self-driven car crashes or an intelligent medical device fails? How can AI applications be prevented from [being used for] racial discrimination or financial cheating?”

The eight sections discuss:

Transportation: Autonomous cars, trucks and, possibly, aerial delivery vehicles may alter how we commute, work and shop and create new patterns of life and leisure in cities.

Home/service robots: Like the robotic vacuum cleaners already in some homes, specialized robots will clean and provide security in live/work spaces that will be equipped with sensors and remote controls.

Health care: Devices to monitor personal health and robot-assisted surgery are hints of things to come if AI is developed in ways that gain the trust of doctors, nurses, patients and regulators.

Education: Interactive tutoring systems already help students learn languages, math and other skills. More is possible if technologies like natural language processing platforms develop to augment instruction by humans.

Entertainment: The conjunction of content creation tools, social networks and AI will lead to new ways to gather, organize and deliver media in engaging, personalized and interactive ways.

Low-resource communities: Investments in uplifting technologies like predictive models to prevent lead poisoning or improve food distributions could spread AI benefits to the underserved.

Public safety and security: Cameras, drones and software to analyze crime patterns should use AI in ways that reduce human bias and enhance safety without loss of liberty or dignity.

Employment and workplace: Work should start now on how to help people adapt as the economy undergoes rapid changes as many existing jobs are lost and new ones are created.

“Until now, most of what is known about AI comes from science fiction books and movies,” Stone said. “This study provides a realistic foundation to discuss how AI technologies are likely to affect society.”

Grosz said she hopes the AI 100 report “initiates a century-long conversation about ways AI-enhanced technologies might be shaped to improve life and societies.”

You can find the A100 website here, and the group’s first paper: “Artificial Intelligence and Life in 2030” here. Unfortunately, I don’t have time to read the report but I hope to do so soon.

The AI100 website’s About page offered a surprise,

This effort, called the One Hundred Year Study on Artificial Intelligence, or AI100, is the brainchild of computer scientist and Stanford alumnus Eric Horvitz who, among other credits, is a former president of the Association for the Advancement of Artificial Intelligence.

In that capacity Horvitz convened a conference in 2009 at which top researchers considered advances in artificial intelligence and its influences on people and society, a discussion that illuminated the need for continuing study of AI’s long-term implications.

Now, together with Russ Altman, a professor of bioengineering and computer science at Stanford, Horvitz has formed a committee that will select a panel to begin a series of periodic studies on how AI will affect automation, national security, psychology, ethics, law, privacy, democracy and other issues.

“Artificial intelligence is one of the most profound undertakings in science, and one that will affect every aspect of human life,” said Stanford President John Hennessy, who helped initiate the project. “Given’s Stanford’s pioneering role in AI and our interdisciplinary mindset, we feel obliged and qualified to host a conversation about how artificial intelligence will affect our children and our children’s children.”

Five leading academicians with diverse interests will join Horvitz and Altman in launching this effort. They are:

  • Barbara Grosz, the Higgins Professor of Natural Sciences at HarvardUniversity and an expert on multi-agent collaborative systems;
  • Deirdre K. Mulligan, a lawyer and a professor in the School of Information at the University of California, Berkeley, who collaborates with technologists to advance privacy and other democratic values through technical design and policy;

    This effort, called the One Hundred Year Study on Artificial Intelligence, or AI100, is the brainchild of computer scientist and Stanford alumnus Eric Horvitz who, among other credits, is a former president of the Association for the Advancement of Artificial Intelligence.

    In that capacity Horvitz convened a conference in 2009 at which top researchers considered advances in artificial intelligence and its influences on people and society, a discussion that illuminated the need for continuing study of AI’s long-term implications.

    Now, together with Russ Altman, a professor of bioengineering and computer science at Stanford, Horvitz has formed a committee that will select a panel to begin a series of periodic studies on how AI will affect automation, national security, psychology, ethics, law, privacy, democracy and other issues.

    “Artificial intelligence is one of the most profound undertakings in science, and one that will affect every aspect of human life,” said Stanford President John Hennessy, who helped initiate the project. “Given’s Stanford’s pioneering role in AI and our interdisciplinary mindset, we feel obliged and qualified to host a conversation about how artificial intelligence will affect our children and our children’s children.”

    Five leading academicians with diverse interests will join Horvitz and Altman in launching this effort. They are:

    • Barbara Grosz, the Higgins Professor of Natural Sciences at HarvardUniversity and an expert on multi-agent collaborative systems;
    • Deirdre K. Mulligan, a lawyer and a professor in the School of Information at the University of California, Berkeley, who collaborates with technologists to advance privacy and other democratic values through technical design and policy;
    • Yoav Shoham, a professor of computer science at Stanford, who seeks to incorporate common sense into AI;
    • Tom Mitchell, the E. Fredkin University Professor and chair of the machine learning department at Carnegie Mellon University, whose studies include how computers might learn to read the Web;
    • and Alan Mackworth, a professor of computer science at the University of British Columbia [emphases mine] and the Canada Research Chair in Artificial Intelligence, who built the world’s first soccer-playing robot.

    I wasn’t expecting to see a Canadian listed as a member of the AI100 standing committee and then I got another surprise (from the AI100 People webpage),

    Study Panels

    Study Panels are planned to convene every 5 years to examine some aspect of AI and its influences on society and the world. The first study panel was convened in late 2015 to study the likely impacts of AI on urban life by the year 2030, with a focus on typical North American cities.

    2015 Study Panel Members

    • Peter Stone, UT Austin, Chair
    • Rodney Brooks, Rethink Robotics
    • Erik Brynjolfsson, MIT
    • Ryan Calo, University of Washington
    • Oren Etzioni, Allen Institute for AI
    • Greg Hager, Johns Hopkins University
    • Julia Hirschberg, Columbia University
    • Shivaram Kalyanakrishnan, IIT Bombay
    • Ece Kamar, Microsoft
    • Sarit Kraus, Bar Ilan University
    • Kevin Leyton-Brown, [emphasis mine] UBC [University of British Columbia]
    • David Parkes, Harvard
    • Bill Press, UT Austin
    • AnnaLee (Anno) Saxenian, Berkeley
    • Julie Shah, MIT
    • Milind Tambe, USC
    • Astro Teller, Google[X]
  • [emphases mine] and the Canada Research Chair in Artificial Intelligence, who built the world’s first soccer-playing robot.

I wasn’t expecting to see a Canadian listed as a member of the AI100 standing committee and then I got another surprise (from the AI100 People webpage),

Study Panels

Study Panels are planned to convene every 5 years to examine some aspect of AI and its influences on society and the world. The first study panel was convened in late 2015 to study the likely impacts of AI on urban life by the year 2030, with a focus on typical North American cities.

2015 Study Panel Members

  • Peter Stone, UT Austin, Chair
  • Rodney Brooks, Rethink Robotics
  • Erik Brynjolfsson, MIT
  • Ryan Calo, University of Washington
  • Oren Etzioni, Allen Institute for AI
  • Greg Hager, Johns Hopkins University
  • Julia Hirschberg, Columbia University
  • Shivaram Kalyanakrishnan, IIT Bombay
  • Ece Kamar, Microsoft
  • Sarit Kraus, Bar Ilan University
  • Kevin Leyton-Brown, [emphasis mine] UBC [University of British Columbia]
  • David Parkes, Harvard
  • Bill Press, UT Austin
  • AnnaLee (Anno) Saxenian, Berkeley
  • Julie Shah, MIT
  • Milind Tambe, USC
  • Astro Teller, Google[X]

I see they have representation from Israel, India, and the private sector as well. Refreshingly, there’s more than one woman on the standing committee and in this first study group. It’s good to see these efforts at inclusiveness and I’m particularly delighted with the inclusion of an organization from Asia. All too often inclusiveness means Europe, especially the UK. So, it’s good (and I think important) to see a different range of representation.

As for the content of report, should anyone have opinions about it, please do let me know your thoughts in the blog comments.

Korea Advanced Institute of Science and Technology (KAIST) at summer 2016 World Economic Forum in China

From the Ideas Lab at the 2016 World Economic Forum at Davos to offering expertise at the 2016 World Economic Forum in Tanjin, China that is taking place from June 26 – 28, 2016.

Here’s more from a June 24, 2016 KAIST news release on EurekAlert,

Scientific and technological breakthroughs are more important than ever as a key agent to drive social, economic, and political changes and advancements in today’s world. The World Economic Forum (WEF), an international organization that provides one of the broadest engagement platforms to address issues of major concern to the global community, will discuss the effects of these breakthroughs at its 10th Annual Meeting of the New Champions, a.k.a., the Summer Davos Forum, in Tianjin, China, June 26-28, 2016.

Three professors from the Korea Advanced Institute of Science and Technology (KAIST) will join the Annual Meeting and offer their expertise in the fields of biotechnology, artificial intelligence, and robotics to explore the conference theme, “The Fourth Industrial Revolution and Its Transformational Impact.” The Fourth Industrial Revolution, a term coined by WEF founder, Klaus Schwab, is characterized by a range of new technologies that fuse the physical, digital, and biological worlds, such as the Internet of Things, cloud computing, and automation.

Distinguished Professor Sang Yup Lee of the Chemical and Biomolecular Engineering Department will speak at the Experts Reception to be held on June 25, 2016 on the topic of “The Summer Davos Forum and Science and Technology in Asia.” On June 27, 2016, he will participate in two separate discussion sessions.

In the first session entitled “What If Drugs Are Printed from the Internet?” Professor Lee will discuss the future of medicine being impacted by advancements in biotechnology and 3D printing technology with Nita A. Farahany, a Duke University professor, under the moderation of Clare Matterson, the Director of Strategy at Wellcome Trust in the United Kingdom. The discussants will note recent developments made in the way patients receive their medicine, for example, downloading drugs directly from the internet and the production of yeast strains to make opioids for pain treatment through systems metabolic engineering, and predicting how these emerging technologies will transform the landscape of the pharmaceutical industry in the years to come.

In the second session, “Lessons for Life,” Professor Lee will talk about how to nurture life-long learning and creativity to support personal and professional growth necessary in an era of the new industrial revolution.

During the Annual Meeting, Professors Jong-Hwan Kim of the Electrical Engineering School and David Hyunchul Shim of the Aerospace Department will host, together with researchers from Carnegie Mellon University and AnthroTronix, an engineering research and development company, a technological exhibition on robotics. Professor Kim, the founder of the internally renowned Robot World Cup, will showcase his humanoid micro-robots that play soccer, displaying their various cutting-edge technologies such as imaging processing, artificial intelligence, walking, and balancing. Professor Shim will present a human-like robotic piloting system, PIBOT, which autonomously operates a simulated flight program, grabbing control sticks and guiding an airplane from take offs to landings.

In addition, the two professors will join Professor Lee, who is also a moderator, to host a KAIST-led session on June 26, 2016, entitled “Science in Depth: From Deep Learning to Autonomous Machines.” Professors Kim and Shim will explore new opportunities and challenges in their fields from machine learning to autonomous robotics including unmanned vehicles and drones.

Since 2011, KAIST has been participating in the World Economic Forum’s two flagship conferences, the January and June Davos Forums, to introduce outstanding talents, share their latest research achievements, and interact with global leaders.

KAIST President Steve Kang said, “It is important for KAIST to be involved in global talks that identify issues critical to humanity and seek answers to solve them, where our skills and knowledge in science and technology could play a meaningful role. The Annual Meeting in China will become another venue to accomplish this.”

I mentioned KAIST and the Ideas Lab at the 2016 Davos meeting in this Nov. 20, 2015 posting and was able to clear up my (and possible other people’s) confusion as to what the Fourth Industrial revolution might be in my Dec. 3, 2015 posting.