Tag Archives: cars

Cars that read minds?

Today’s blogging seems to have acquired a transportation theme. Here’s another item about a car, this one can read minds. From the Sept. 28, 2011 news item on physorg.com,

In the future, thinking about turning left may no longer be just a thought. Japanese auto giant Nissan and a Swiss university are developing cars that scan the driver’s thoughts and prepares the vehicle for the next move.

I found more information at the Nissan website in their Sept.28, 2011 news release,

As the driver thinks about turning left ahead, for example, so the car will prepare itself for the manoeuvre, selecting the correct speed and road positioning, before completing the turn. The aim? To ensure that our roads are as safe as possible and that the freedom that comes with personal mobility remains at the heart of society.

Nissan is undertaking this pioneering work in collaboration with the École Polytechnique Fédérale de Lausanne in Switzerland (EPFL). Far reaching research on Brain Machine Interface (BMI) systems by scientists at EPFL already allows disabled users to manoeuvre their wheelchairs by thought transference alone. The next stage is to adapt the BMI processes to the car – and driver – of the future.

Professor José del R. Millán, leading the project, said: “The idea is to blend driver and vehicle intelligence together in such a way that eliminates conflicts between them, leading to a safer motoring environment.”

Using brain activity measurement, eye movement patterns and by scanning the environment around the car in conjunction with the car’s own sensors, it should be possible to predict what the driver plans to do – be it a turn, an overtake, a lane change – and then assist with the manoeuvre in complete safety, thus improving the driving experience.

Here’s an image of some of the lab work being performed,

Nissan Brain-Computer Interface. Photo Credit: EPFL / Alain Herzog

I wonder what it’s going to look like when it’s ready for testing with real people. I’m pretty sure most people are not going to be interested in wearing head caps for very long. I imagine the researchers have come to this conclusion too, which means that they are likely considering some very sophisticated sensors. (I hope so, otherwise the researchers are somewhat delusional.  Sadly, this can be true. I speak from experiences dealing with technical experts who seemed to be designing their software for failure, i.e. the average person using would be likely to make an error.)

Interview with the Urbee car’s Jim Kor

In an earlier posting today, (Manitoba’s Urbee) about the Urbee, I promised an interview with Jim Kor, project leader and lead designer. Befoe getting to the interview, here’s a little biographical information from the Urbee website’s Team page,

Jim Kor is a professional engineer (mechanical) with over 35 years of experience in designing automotive, bus, rail, agricultural, and heavy mobile equipment as well as civil structures and product for the aerospace and medical industries. He is the senior designer and project leader for the Urbee project. Jim is the owner of Kor Product Design, a 30 year old international consulting firm.

Congratulations on your achievement, i.e., getting your first prototype completed. Could you describe the 3D printing process in simple terms? (e.g. do you lay down layers of atoms? particles? bits of polymer?; what does a 3D printer look like compared to the printers most of us are accustomed to?; etc.)

The 3-D printing process is an additive process, where a ‘3-D printer’ precisely places a material (such as plastic), thin strands or particles at a time, layer by layer, with each layer bonding to the next, all under computer control, until a rigid part emerges. These 3-D printers look like large metal boxes, and can be the size of bar-fridges (desktop models) or walk-in freezers (floor-mounted models). The input to the machine is strands of material (wound in loops, like wire), and the output is finished parts.

Has this 3D printing process been enabled by nanotechnology?

Yes, I believe so. The head, where the material emerges hot and bonds to the lower layer, is where all the action takes place, and most of the technology is focussed.

Is every single element (tires, windows, seats, panels, etcl) of this car produced by 3D printing?

On our first prototype Urbee, just the body panels are 3-D printed. All the windows were also 3-D printed, but these 3-D printed parts were used as patterns for making the plastic and glass windows within Urbee.

How long does it take to print a piece?
The larger pieces currently can take a long time, or at least they did on our first prototype. But, we are learning, and this machine time will come down, especially with further progress regarding the printing of larger panels.

I gather you’re raising funds for your 2nd prototype. Is that one going to be identical to the first or are you refining the design and how?

The second prototype will greatly benefit from the first prototype (the first time we have seen all major components working within the car). We plan on refining and expanding our use of 3-D printing, taking it into the interior and parts of the chassis.
How close is your product to being commercialized and what would it take to get it commercialized?

We are at first prototype stage. Most optimistic production date would be 2014. It will take continued Research & Development by our Team to get us there.

Could you tell me a little bit about how this project came to be located in Manitoba?

The originators of the project, and most of the Urbee Team lives and works (as designers and engineers) in Winnipeg, Manitoba, Canada.

Have you gotten provincial and federal support for this project? And, if any, what kind? Have you also gotten support from venture capitalists, banks, etc.?

We have gratefully received financial assistance, but the project remains largely self-funded. Without financial assistance (especially donations), and without the expertise and in-kind support of our sponsors (as listed on our website), the project could not have advanced to the point it has. We continue to receive fantastic support from some of the best people, within some of the best companies and organizations in the world. Hats off to them for making this project what it is today.

On a completely different note, Urbee sounds like Herbie, the name of a Volkswagen beetle featured in a number of Disney movies. Was this intentional?

No, it was not intentional. URBEE stands for URBan Electric with Ethanol as back-up. It is a project name that has stuck, is rather unique (easy to do google searches), and which I personally have grown to like. I don’t mind being associated with the original VW Beetle, one of the best-selling cars in the world, … ever, …. (over 24 million units sold worldwide, I believe).

Why did you choose that particular colour for your prototype?

The Industrial Designers within the Team chose the colour. They are extremely talented (the best in the world, in my opinion). They have designed the body to not only look aesthetically pleasing and ‘correct’, but have achieved a Coefficient of Drag (Cd) of 0.15, … extremely low for a practical car. Some would say impossibly low, but two independent computer aerodynamic simulations have verified this number, so we are satisfied that we are there. It is what makes us claim that ‘One day all cars will look like this’, because this body shape honours the physics of the problem (a car body moving at the bottom of an ocean of air).

Is there anything you’d like to add?

Yes. Thanks to all those that have helped advance this groundbreaking and important project. Thanks for your interest in this project, that is helping propel it forward. And keep your eye on our website (www.urbee.net), to see where we’re going next.

Thank you and I wish you and your team the best of luck, Jim Kor.

Here’s one more look at the Urbee,

Urbee rear side at TEDxWinnipeg Sept. 15,2011

ETA Sept. 28,2011 11:50 am PST: I’ve corrected a few grammatical and spelling errors of my own. I am including two videos featuring the Urbee. The first is promotional video produced by the Urbee team,

This second video is a clip from a television programme interview of Jim Kor and Jeff Hanson discussing the 3D printing process and the Urbee,

Manitoba’s Urbee

Manitoba's Urbee and its engineering team at TEDxWinnipeg Sept. 15, 2011 event

There’s a brand new car (prototype) in town. It was unveiled at TEDx Winnipeg on Sept. 15, 2011 by Manitoba-based company. From the Urbee website,

Urbee is a two-passenger hybrid car designed to be incredibly fuel efficient, easy to repair, safe to drive, and inexpensive to own.

Shortly after the TED presentation, the Urbee was featured in a Sept. 20, 2011 article by Ariel Schwartz for Fast Company and in a Sept. 21, 2011 news item for BBC News. From the Schwartz article,

Last year, Stratasys and Kor Ecologic teamed up to develop the first 3-D printed car–a vehicle that has its entire body 3-D printed layer by layer until a finished product emerges. The Urbee was just a partially completed prototype when we first wrote about it last year. …

 

The [finished] prototype, unveiled a few days ago at the TEDx Winnipeg event, is a two-passenger, single-cylinder, eight-horsepower vehicle. That means it has significantly less power than today’s vehicles, which usually have at least 68 horsepower. But those missing horses don’t matter: the Urbee requires just an eighth of the energy of conventional cars. The electric-ethanol hybrid is also designed to get up to 200 mpg on the highway and 100 mpg in city conditions–and it lasts up to 30 years.

There are more details about the printing process and its contribution to the car’s ‘greeness’ in the BBC article,

The use of “additive manufacturing”, where layers of material are built up, or “printed” to form a solid objects, contributed to the car’s green credentials, according to project leader Jim Kor.

“One only puts material where one needs it,” explained Mr Kor, who unveiled his vehicle at the TEDxWinnipeg conference.

“It is an additive process, building the part essentially one ‘molecule’ of material at a time, ultimately with no waste.

“This process can do many materials, and our goal would be to use fully-recycled materials.”

Currently it is only the Urbee’s body panels that are printed – by Minneapolis-based Stratasys. However, Mr Kor said he hoped that other parts would be produced this way in future.

Jim Kor, project leader and lead designer, very kindly answered some questions for an interview about the Urbee, which I will be posting later today.

Fuel cells and iron veins and Ballard Power Systems

The iron ‘veins’ are an idea from the researchers at the US National Institute of Standards and Technology (NIST) that might make fuel cells a standard piece of equipment in a car. From the August 31, 2011 news item on Nanowerk,

With a nod to biology, scientists at the National Institute of Standards and Technology (NIST) have a new approach to the problem of safely storing hydrogen in future fuel-cell-powered cars. Their idea: molecular scale “veins” of iron permeating grains of magnesium like a network of capillaries. The iron veins may transform magnesium from a promising candidate for hydrogen storage into a real-world winner (“Thermodynamics, kinetics and microstructural evolution during hydrogenation of iron-doped magnesium thin films”).

Hydrogen has been touted as a clean and efficient alternative to gasoline, but it has one big drawback: the lack of a safe, fast way to store it onboard a vehicle. According to NIST materials scientist Leo Bendersky, iron-veined magnesium could overcome this hurdle. The combination of lightweight magnesium laced with iron could rapidly absorb—and just as importantly, rapidly release—sufficient quantities of hydrogen so that grains made from the two metals could form the fuel tank for hydrogen-powered vehicles.

There are more technical details in the Nanowerk news item.

Since Ballard Power Systems, known for its fuel cell powered buses, is located in the Vancouver area (the region where I live) I was curious as the why this NIST advance is considered so wonderful. After all, fuel cells are already being used commercially. From the Ballard website page on buses,

Ballard designs and manufactures fully-integrated FC velocity®-HD6 fuel cell modules delivering 75 kW or 150 kW of power for use in the bus market. Ballard’s leading-edge fuel cell technology combined with our customer’s advanced hybrid bus system designs have demonstrated improved vehicle performance, durability and lower cost. All of which has created a path to commercialization for the fuel cell hybrid bus.

Zero-emission fuel cell-powered buses deliver economic, operational as well as environmental benefits, when compared to traditional diesel or diesel hybrid systems. Economic benefits are a direct result of increased fuel cell efficiency and reliability. And fuel cell buses emit only water vapour, eliminating air pollutants such as nitrogen oxides, sulphur oxides and particulate matter. Fuel cell buses can also significantly reduce greenhouse gas emissions on a “well-to-wheel” basis, when compared to conventional technologies.

I note Ballard has a hybrid system so perhaps the NIST researchers are working on a 100% fuel cell system? I did check one more thing while I was on the Ballard website, the technical specifications for the fuel cells used to power the buses. The weight for the smaller 75w fuel cell is 350 kg or 772 lbs. and its dimensions are 1530 x 871 x 495 mm or 50 x 34 x 12 in. With that weight and those dimensions, I imagine that’s why we haven’t been hearing about hybrid fuel cell cars. I now better understand why the NIST researchers are excited.

Thoughts on part 3 of (PBS) Nova’s Making Stuff series

Since the title of the programme was Making Stuff Cleaner, my hopes were up. Anyone who reads me with any frequency knows that I’m obsessed with windows, especially the self-cleaning type. Sadly, my hopes for part 3 of (PBS) Nova’s Making Stuff series were frustrated as the focus was largely on cars (with Jay Leno being prominently featured) and petroleum products as they pertain to climate change and energy requirements.

Leno, for anyone who may not know, is a serious car collector and, as one could see, he’s also well informed about the history of the car and alternatives to the car’s current reliance on petroleum products.

As I’m learning to expect, they didn’t talk about the nanotechnology research for several minutes. I didn’t time it for part three but in part one it was roughly 30 minutes before they got to it.

There was a lot of discussion about the various kinds of batteries that are available and new, more environmentally clean batteries being developed, while we got to watch a lot of people driving cars.

The car companies are also working on materials to replace the plastics that are used in car interiors. Fascinatingly, one project involves growing a car part from bacteria. (This reminds of a visual artist who grows clothing from bacteria as mentioned in my Bacteria as couture and transgenic salmon? posting, July 12, 2010.)

It was a very upbeat, positive take on the work being done to find new energy sources and to deal with climate change issues. I think that someone using this programme as a primary source of information might be persuaded we are much closer to replacing our use of petroleum with more environmentally sound practices than is the case. The Friends of the Earth (FoE), civil society group, released a fairly pointed report in November 2010 titled, Nanotechnology, climate and energy: Over-heated promises and hot air?, which suggests otherwise. I’m given to understand that there is good research in this report but anything not supporting their main thesis has been omitted.

The two agendas: Making Stuff Cleaner programme and FOE’s report, curiously enough, mirror each other with their relentless insistence on interpreting the information in a light that highlights their perspective only. Let’s not discount either; let’s refer to both, judiciously.

I did miss part 2 of the series, Making Stuff Smaller and cannot view it on the PBS website since I’m  not living in the right region. Next week, the fourth and final part: Making Stuff Smarter.

ETA Feb.4.11: According my NISE Net newsletter for Feb. 2011, tonight’s episode of tv programme Jeopardy will feature Making Stuff  as a full category. (For anyone not familiar Je0pardy,  it’s a quiz show where contestants choose categories of answers for which they must determine the questions. E.g. The category ‘Whose Bob?’ might feature the clue ‘birds’ to which the contestant would reply, ‘What kind of animal are bobolinks?’)  I’m not sure how including the category ‘Making Stuff’ will work given that there’s one more episode to be broadcast. From the newsletter,

For those of you Jeopardy! fans out there, Making Stuff will be a full category on the program airing Friday, February 4th.