Tag Archives: Center for Sustainable Nanotechnology

Are nano electronics as good as gold?

“As good as gold” was a behavioural goal when I was a child. It turns out, the same can be said of gold in electronic devices according to the headline for a March 26, 2020 news item on Nanowerk (Note: Links have been removed),

As electronics shrink to nanoscale, will they still be good as gold?

Deep inside computer chips, tiny wires made of gold and other conductive metals carry the electricity used to process data.

But as these interconnected circuits shrink to nanoscale, engineers worry that pressure, such as that caused by thermal expansion when current flows through these wires, might cause gold to behave more like a liquid than a solid, making nanoelectronics unreliable. That, in turn, could force chip designers to hunt for new materials to make these critical wires.

But according to a new paper in Physical Review Letters (“Nucleation of Dislocations in 3.9 nm Nanocrystals at High Pressure”), chip designers can rest easy. “Gold still behaves like a solid at these small scales,” says Stanford mechanical engineer Wendy Gu, who led a team that figured out how to pressurize gold particles just 4 nanometers in length — the smallest particles ever measured — to assess whether current flows might cause the metal’s atomic structure to collapse.

I have seen the issue about gold as a metal or liquid before but I can’t find it here (search engines, sigh). However, I found this somewhat related story from almost five years ago. In my April 14, 2015 posting (Gold atoms: sometimes they’re a metal and sometimes they’re a molecule), there was news that the number of gold atoms present means the difference between being a metal and being a molecule .This could have implications as circuit elements (which include some gold in their fabrication) shrink down past a certain point.

A March 24, 2020 Stanford University news release (also on Eurekalert but published on March 25, 2020) by Andrew Myers, which originated the news item, provides details about research designed to investigate a similar question, i.e, can we used gold as we shrink the scale?*,

To conduct the experiment, Gu’s team first had to devise a way put tiny gold particles under extreme pressure, while simultaneously measuring how much that pressure damaged gold’s atomic structure.

To solve the first problem, they turned to the field of high-pressure physics to borrow a device known as a diamond anvil cell. As the name implies, both hammer and anvil are diamonds that are used to compress the gold. As Gu explained, a nanoparticle of gold is built like a skyscraper with atoms forming a crystalline lattice of neat rows and columns. She knew that pressure from the anvil would dislodge some atoms from the crystal and create tiny defects in the gold.

The next challenge was to detect these defects in nanoscale gold. The scientists shined X-rays through the diamond onto the gold. Defects in the crystal caused the X-rays to reflect at different angles than they would on uncompressed gold. By measuring variations in the angles at which the X-rays bounced off the particles before and after pressure was applied, the team was able to tell whether the particles retained the deformations or reverted to their original state when pressure was lifted.

In practical terms, her findings mean that chipmakers can know with certainty that they’ll be able to design stable nanodevices using gold — a material they have known and trusted for decades — for years to come.

“For the foreseeable future, gold’s luster will not fade,” Gu says.

*The 2015 research measured the gold nanoclusters by the number of atoms within the cluster with the changes occurring at some where between 102 atoms and 144 atoms. This 2020 work measures the amount of gold by nanometers as in 3.9 nm gold nanocrystals . So, how many gold atoms in a nanometer? Cathy Murphy provides the answer and the way to calculate it for yourself in a July 26, 2016 posting on the Sustainable Nano blog ( a blog by the Center for Sustainable Nanotechnology),

Two years ago, I wrote a blog post called Two Ways to Make Nanoparticles, describing the difference between top-down and bottom-up methods for making nanoparticles. In the post I commented, “we can estimate, knowing how gold atoms pack into crystals, that there are about 2000 gold atoms in one 4 nm diameter gold nanoparticle.” Recently, a Sustainable Nano reader wrote in to ask about how this calculation is done. It’s a great question!

So, a 3.9 nm gold nanocrystal contains approximately 2000 gold atoms. (If you have time, do read Murphy’s description of how to determine the number of gold atoms in a gold nanoparticle.) So, this research does not answer the question posed by the 2015 research.

It may take years before researchers can devise tests for gold nanoclusters consisting of 102 atoms as opposed to nanoparticles consisting of 2000 atoms. In the meantime, here’s a link to and a citation for the latest on how gold reacts as we shrink the size of our electronics,

Nucleation of Dislocations in 3.9 nm Nanocrystals at High Pressure by Abhinav Parakh, Sangryun Lee, K. Anika Harkins, Mehrdad T. Kiani, David Doan, Martin Kunz, Andrew Doran, Lindsey A. Hanson, Seunghwa Ryu, and X. Wendy Gu. Phys. Rev. Lett. 124, 106104 DOI:https://doi.org/10.1103/PhysRevLett.124.106104 Published 13 March 2020 © 2020 American Physical Society

This paper is behind a paywall.

Center for Sustainable Nanotechnology or how not to poison and make the planet uninhabitable

I received notice of the Center for Sustainable Nanotechnology’s newest deal with the US National Science Foundation in an August 31, 2015 email University of Wisconsin-Madison (UWM) news release,

The Center for Sustainable Nanotechnology, a multi-institutional research center based at the University of Wisconsin-Madison, has inked a new contract with the National Science Foundation (NSF) that will provide nearly $20 million in support over the next five years.

Directed by UW-Madison chemistry Professor Robert Hamers, the center focuses on the molecular mechanisms by which nanoparticles interact with biological systems.

Nanotechnology involves the use of materials at the smallest scale, including the manipulation of individual atoms and molecules. Products that use nanoscale materials range from beer bottles and car wax to solar cells and electric and hybrid car batteries. If you read your books on a Kindle, a semiconducting material manufactured at the nanoscale underpins the high-resolution screen.

While there are already hundreds of products that use nanomaterials in various ways, much remains unknown about how these modern materials and the tiny particles they are composed of interact with the environment and living things.

“The purpose of the center is to explore how we can make sure these nanotechnologies come to fruition with little or no environmental impact,” explains Hamers. “We’re looking at nanoparticles in emerging technologies.”

In addition to UW-Madison, scientists from UW-Milwaukee, the University of Minnesota, the University of Illinois, Northwestern University and the Pacific Northwest National Laboratory have been involved in the center’s first phase of research. Joining the center for the next five-year phase are Tuskegee University, Johns Hopkins University, the University of Iowa, Augsburg College, Georgia Tech and the University of Maryland, Baltimore County.

At UW-Madison, Hamers leads efforts in synthesis and molecular characterization of nanomaterials. soil science Professor Joel Pedersen and chemistry Professor Qiang Cui lead groups exploring the biological and computational aspects of how nanomaterials affect life.

Much remains to be learned about how nanoparticles affect the environment and the multitude of organisms – from bacteria to plants, animals and people – that may be exposed to them.

“Some of the big questions we’re asking are: How is this going to impact bacteria and other organisms in the environment? What do these particles do? How do they interact with organisms?” says Hamers.

For instance, bacteria, the vast majority of which are beneficial or benign organisms, tend to be “sticky” and nanoparticles might cling to the microorganisms and have unintended biological effects.

“There are many different mechanisms by which these particles can do things,” Hamers adds. “The challenge is we don’t know what these nanoparticles do if they’re released into the environment.”

To get at the challenge, Hamers and his UW-Madison colleagues are drilling down to investigate the molecular-level chemical and physical principles that dictate how nanoparticles interact with living things.
Pedersen’s group, for example, is studying the complexities of how nanoparticles interact with cells and, in particular, their surface membranes.

“To enter a cell, a nanoparticle has to interact with a membrane,” notes Pedersen. “The simplest thing that can happen is the particle sticks to the cell. But it might cause toxicity or make a hole in the membrane.”

Pedersen’s group can make model cell membranes in the lab using the same lipids and proteins that are the building blocks of nature’s cells. By exposing the lab-made membranes to nanomaterials now used commercially, Pedersen and his colleagues can see how the membrane-particle interaction unfolds at the molecular level – the scale necessary to begin to understand the biological effects of the particles.

Such studies, Hamers argues, promise a science-based understanding that can help ensure the technology leaves a minimal environmental footprint by identifying issues before they manifest themselves in the manufacturing, use or recycling of products that contain nanotechnology-inspired materials.

To help fulfill that part of the mission, the center has established working relationships with several companies to conduct research on materials in the very early stages of development.

“We’re taking a look-ahead view. We’re trying to get into the technological design cycle,” Hamers says. “The idea is to use scientific understanding to develop a predictive ability to guide technology and guide people who are designing and using these materials.”

What with this initiative and the LCnano Network at Arizona State University (my April 8, 2014 posting; scroll down about 50% of the way), it seems that environmental and health and safety studies of nanomaterials are kicking into a higher gear as commercialization efforts intensify.