Tag Archives: chaotic dynamics

Mott memristor

Mott memristors (mentioned in my Aug. 24, 2017 posting about neuristors and brainlike computing) gets more fulsome treatment in an Oct. 9, 2017 posting by Samuel K. Moore on the Nanoclast blog (found on the IEEE [Institute of Electrical and Electronics Engineers] website) Note: 1: Links have been removed; Note 2 : I quite like Moore’s writing style but he’s not for the impatient reader,

When you’re really harried, you probably feel like your head is brimful of chaos. You’re pretty close. Neuroscientists say your brain operates in a regime termed the “edge of chaos,” and it’s actually a good thing. It’s a state that allows for fast, efficient analog computation of the kind that can solve problems that grow vastly more difficult as they become bigger in size.

The trouble is, if you’re trying to replicate that kind of chaotic computation with electronics, you need an element that both acts chaotically—how and when you want it to—and could scale up to form a big system.

“No one had been able to show chaotic dynamics in a single scalable electronic device,” says Suhas Kumar, a researcher at Hewlett Packard Labs, in Palo Alto, Calif. Until now, that is.

He, John Paul Strachan, and R. Stanley Williams recently reported in the journal Nature that a particular configuration of a certain type of memristor contains that seed of controlled chaos. What’s more, when they simulated wiring these up into a type of circuit called a Hopfield neural network, the circuit was capable of solving a ridiculously difficult problem—1,000 instances of the traveling salesman problem—at a rate of 10 trillion operations per second per watt.

(It’s not an apples-to-apples comparison, but the world’s most powerful supercomputer as of June 2017 managed 93,015 trillion floating point operations per second but consumed 15 megawatts doing it. So about 6 billion operations per second per watt.)

The device in question is called a Mott memristor. Memristors generally are devices that hold a memory, in the form of resistance, of the current that has flowed through them. The most familiar type is called resistive RAM (or ReRAM or RRAM, depending on who’s asking). Mott memristors have an added ability in that they can also reflect a temperature-driven change in resistance.

The HP Labs team made their memristor from an 8-nanometer-thick layer of niobium dioxide (NbO2) sandwiched between two layers of titanium nitride. The bottom titanium nitride layer was in the form of a 70-nanometer wide pillar. “We showed that this type of memristor can generate chaotic and nonchaotic signals,” says Williams, who invented the memristor based on theory by Leon Chua.

(The traveling salesman problem is one of these. In it, the salesman must find the shortest route that lets him visit all of his customers’ cities, without going through any of them twice. It’s a difficult problem because it becomes exponentially more difficult to solve with each city you add.)

Here’s what the niobium dioxide-based Mott memristor looks like,

Photo: Suhas Kumar/Hewlett Packard Labs
A micrograph shows the construction of a Mott memristor composed of an 8-nanometer-thick layer of niobium dioxide between two layers of titanium nitride.

Here’s a link to and a citation for the paper,

Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing by Suhas Kumar, John Paul Strachan & R. Stanley Williams. Nature 548, 318–321 (17 August 2017) doi:10.1038/nature23307 Published online: 09 August 2017

This paper is behind a paywall.

Turn back timeline of ‘nonlinear objects’

A Dec. 6, 2012 news item on Nanowerk announced a ‘time-reversal’ technique being developed at the University of Maryland (Note: I have removed links),

… researchers at the University of Maryland have come up with a sci-fi seeming technology that one day could make them real. Using a “time-reversal” technique, the team has discovered how to transmit power, sound or images to a “nonlinear object” without knowing the object’s exact location or affecting objects around it (“Nonlinear Time-Reversal in a Wave Chaotic System”).

“That’s the magic of time reversal,” says Steven Anlage, a university physics professor involved in the project. “When you reverse the waveform’s direction in space and time, it follows the same path it took coming out and finds its way exactly back to the source.”

The Nov. 29, 2012 University of Maryland news release, which originated the news item, provides some technical information,

The time-reversal process is less like living the last five minutes over and more like playing a record backwards, explains Matthew Frazier, a postdoctoral research fellow in the university’s physics department. When a signal travels through the air, its waveforms scatter before an antenna picks it up. Recording the received signal and transmitting it backwards reverses the scatter and sends it back as a focused beam in space and time.

“If you go toward a secure building, they won’t let you take cell phones,” Frazier says, “So instead of checking everyone, they could detect the cell phone and send a lot of energy to to jam it.”

What differentiates this research from other time-reversal projects, such as underwater communication, is that it focuses on nonlinear objects such as a cellphone, diode or even a rusty piece of metal. When the altered, nonlinear frequency of nonlinear objects is recorded, time-reversed and retransmitted, it creates a private communication channel, because other objects cannot understand the signal.

“Time reversal has been around for 10 to 20 years but it requires some pretty sophisticated technology to make it work,” Anlage says. …

Not only could this nonlinear characteristic secure a wireless communication line, it could prevent transmitted energy from affecting any object but its target. For example, Frazier says, if scientists find a way to tag tumors with chemicals or nanoparticles that react to microwaves in a nonlinear way, doctors could use the technology to direct destructive heat to the errant cells, much like ultrasound is used to break down kidney stones. But unlike ultrasound, which must be directed to a specific location, doctors would not need to know where the tumors were to remove them. Also, the heat treatment would not affect surrounding cells.

To study time-reversal, the researchers sent a microwave pulse into an enclosed area where waveforms scattered and bounced around inside, as well as off a nonlinear and a linear port. A transceiver then recorded and time-reversed the frequencies the nonlinear port had altered, then broadcast them back into the space. The nonlinear port picked up the time-reversed signal, but the linear port did not.

The paper can be found on arXiv.org,

Nonlinear Time-Reversal in a Wave Chaotic System by Matthew Frazier, Biniyam Taddese, Thomas Antonsen, Steven M. Anlage

(Submitted on 6 Jul 2012 (v1), last revised 26 Jul 2012 (this version, v2))

The last ‘time’ oriented posting (July 14, 2011) on this blog (Splitting light to make events invisible) was about a temporal invisibility cloak.