Tag Archives: Christin Bird

A fully implantable wireless medical device for patients with severe paralysis

There have been only two people who have tested the device from Australia but the research raises hope, from an Oct, 28, 2020 news item on ScienceDaily,

A tiny device the size of a small paperclip has been shown to help patients with upper limb paralysis to text, email and even shop online in the first human trial.

The device, Stentrode™, has been implanted successfully in two patients, who both suffer from severe paralysis due to amyotrophic lateral sclerosis (ALS) — also known as motor neuron disease (MND) — and neither had the ability to move their upper limbs.

Published in the Journal of NeuroInterventional Surgery, the results found the Stentrode™ was able to wirelessly restore the transmission of brain impulses out of the body. This enabled the patients to successfully complete daily tasks such as online banking, shopping and texting, which previously had not been available to them.

An Oct. 28, 2020 University of Melbourne press release (also on EurekAlert), which originated the news item, fills in some of the detail,

The Royal Melbourne Hospital’s Professor Peter Mitchell, Neurointervention Service Director and principal investigator on the trial, said the findings were promising and demonstrate the device can be safely implanted and used within the patients.

“This is the first time an operation of this kind has been done, so we couldn’t guarantee there wouldn’t be problems, but in both cases the surgery has gone better than we had hoped,” Professor Mitchell said.

Professor Mitchell implanted the device on the study participants through their blood vessels, next to the brain’s motor cortex, in a procedure involving a small ‘keyhole’ incision in the neck.

“The procedure isn’t easy, in each surgery there were differences depending on the patient’s anatomy, however in both cases the patients were able to leave the hospital only a few days later, which also demonstrates the quick recovery from the surgery,” Professor Mitchell said.

Neurointerventionalist and CEO of Synchron – the research commercial partner – Associate Professor Thomas Oxley, said this was a breakthrough moment for the field of brain-computer interfaces.

“We are excited to report that we have delivered a fully implantable, take home, wireless technology that does not require open brain surgery, which functions to restore freedoms for people with severe disability,” Associate Professor Oxley, who is also co-head of the Vascular Bionics Laboratory at the University of Melbourne, said.

The two patients used the Stentrode™ to control the computer-based operating system, in combination with an eye-tracker for cursor navigation. This meant they did not need a mouse or keyboard.

They also undertook machine learning-assisted training to control multiple mouse click actions, including zoom and left click. The first two patients achieved an average click accuracy of 92 per cent and 93 per cent, respectively, and typing speeds of 14 and 20 characters per minute with predictive text disabled.

University of Melbourne Associate Professor Nicholas Opie, co-head of the Vascular Bionics Laboratory at the University and founding chief technology officer of Synchron said the developments were exciting and the patients involved had a level of freedom restored in their lives.

“Observing the participants use the system to communicate and control a computer with their minds, independently and at home, is truly amazing,” Associate Professor Opie said.

“We are thankful to work with such fantastic participants, and my colleagues and I are honoured to make a difference in their lives. I hope others are inspired by their success.

“Over the last eight years we have drawn on some of the world’s leading medical and engineering minds to create an implant that enables people with paralysis to control external equipment with the power of thought. We are pleased to report that we have achieved this.”

The researchers caution that while it is some years away before the technology, capable of returning independence to complete everyday tasks is publicly available, the global, multidisciplinary team is working tirelessly to make this a reality.

The trial recently received a $AU1.48 million grant from the Australian commonwealth government to expand the trial to hospitals in New South Wales and Queensland, with hopes to enrol more patients.

###

About Stentrode™

Stentrode™ was developed by researchers from the University of Melbourne, the Royal Melbourne Hospital, the Florey Institute of Neuroscience and Mental Health, Monash University and the company Synchron Australia – the corporate vehicle established by Associate Professors Thomas Oxley (CEO) and Nicholas Opie (CTO) that aims to develop and commercialise neural bionics technology and products. It draws on some of the world’s leading medical and engineering minds

There’s a little more detail and information in an Oct. 28, 2020 Society of NeuroInterventional Surgery news release on EurekAlert,

Researchers demonstrated the success of a fully implantable wireless medical device, the Stentrode™ brain-computer interface (BCI), designed to allow patients with severe paralysis to resume daily tasks — including texting, emailing, shopping and banking online — without the need for open brain surgery. The first-in-human study was published in the Journal of NeuroInterventional Surgery™, the leading international peer-reviewed journal for the clinical field of neurointerventional surgery.

The patients enrolled in the study utilized the Stentrode neuroprosthesis to control the Microsoft Windows 10 operating system in combination with an eye-tracker for cursor navigation, without a mouse or keyboard. The subjects undertook machine learning-assisted training to control multiple mouse-click actions, including zoom and left click.

“This is a breakthrough moment for the field of brain-computer interfaces. We are excited to report that we have delivered a fully implantable, take home, wireless technology that does not require open brain surgery, which functions to restore freedoms for people with severe disability,” said Thomas Oxley, MD, PhD, and CEO of Synchron, a neurovascular bioelectronics medicine company that conducted the research. “Seeing these first heroic patients resume important daily tasks that had become impossible, such as using personal devices to connect with loved ones, confirms our belief that the Stentrode will one day be able to help millions of people with paralysis.”[1]

Graham Felstead, a 75-year-old man living at home with his wife, has experienced severe paralysis due to amyotrophic lateral sclerosis (ALS). He was the first patient enrolled in the first Stentrode clinical study and the first person to have any BCI implanted via the blood vessels. He received the Stentrode implant in August 2019. With the Stentrode, Felstead was able to remotely contact his spouse, increasing his autonomy and reducing her burden of care. Philip O’Keefe, a 60-year-old man with ALS who works part time, was able to control computer devices to conduct work-related tasks and other independent activities after receiving the Stentrode in April 2020. Functional impairment to his fingers, elbows and shoulders had previously inhibited his ability to engage in these efforts.

The Stentrode device is small and flexible enough to safely pass through curving blood vessels, so the implantation procedure is similar to that of a pacemaker and does not require open brain surgery. Entry through the blood vessels may reduce risk of brain tissue inflammation and rejection of the device, which has been an issue for techniques that require direct brain penetration. Implantation is conducted using well-established neurointerventional techniques that do not require any novel automated robotic assistance.

Here’s a link to and a citation for the paper,

Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience by Thomas J Oxley, Peter E Yoo, Gil S Rind, Stephen M Ronayne, C M Sarah Lee, Christin Bird, Victoria Hampshire, Rahul P Sharma, Andrew Morokoff, Daryl L Williams, Christopher MacIsaac, Mark E Howard, Lou Irving, Ivan Vrljic, Cameron Williams, Sam E John, Frank Weissenborn, Madeleine Dazenko, Anna H Balabanski, David Friedenberg, Anthony N Burkitt, Yan T Wong, Katharine J Drummond, Patricia Desmond, Douglas Weber, Timothy Denison, Leigh R Hochberg, Susan Mathers, Terence J O’Brien, Clive N May, J Mocco, David B Grayden, Bruce C V Campbell, Peter Mitchell, Nicholas L Opie. Journal of Neurointerventional Surgery, DOI: http://dx.doi.org/10.1136/neurintsurg-2020-016862 Published Online First: 28 October 2020

This paper is open access.