Tag Archives: Christof Teuscher

An ‘artificial brain’ and life-long learning

Talk of artificial brains (also known as, brainlike computing or neuromorphic computing) usually turns to memory fairly quickly. This February 3, 2022 news item on ScienceDaily does too although the focus is on how memory and forgetting affect the ability to learn,

When the human brain learns something new, it adapts. But when artificial intelligence learns something new, it tends to forget information it already learned.

As companies use more and more data to improve how AI recognizes images, learns languages and carries out other complex tasks, a paper publishing in Science this week shows a way that computer chips could dynamically rewire themselves to take in new data like the brain does, helping AI to keep learning over time.

“The brains of living beings can continuously learn throughout their lifespan. We have now created an artificial platform for machines to learn throughout their lifespan,” said Shriram Ramanathan, a professor in Purdue University’s [Indiana, US] School of Materials Engineering who specializes in discovering how materials could mimic the brain to improve computing.

Unlike the brain, which constantly forms new connections between neurons to enable learning, the circuits on a computer chip don’t change. A circuit that a machine has been using for years isn’t any different than the circuit that was originally built for the machine in a factory.

This is a problem for making AI more portable, such as for autonomous vehicles or robots in space that would have to make decisions on their own in isolated environments. If AI could be embedded directly into hardware rather than just running on software as AI typically does, these machines would be able to operate more efficiently.

A February 3, 2022 Purdue University news release (also on EurekAlert), which originated the news item, provides more technical detail about the work (Note: Links have been removed),

In this study, Ramanathan and his team built a new piece of hardware that can be reprogrammed on demand through electrical pulses. Ramanathan believes that this adaptability would allow the device to take on all of the functions that are necessary to build a brain-inspired computer.

“If we want to build a computer or a machine that is inspired by the brain, then correspondingly, we want to have the ability to continuously program, reprogram and change the chip,” Ramanathan said.

Toward building a brain in chip form

The hardware is a small, rectangular device made of a material called perovskite nickelate,  which is very sensitive to hydrogen. Applying electrical pulses at different voltages allows the device to shuffle a concentration of hydrogen ions in a matter of nanoseconds, creating states that the researchers found could be mapped out to corresponding functions in the brain.

When the device has more hydrogen near its center, for example, it can act as a neuron, a single nerve cell. With less hydrogen at that location, the device serves as a synapse, a connection between neurons, which is what the brain uses to store memory in complex neural circuits.

Through simulations of the experimental data, the Purdue team’s collaborators at Santa Clara University and Portland State University showed that the internal physics of this device creates a dynamic structure for an artificial neural network that is able to more efficiently recognize electrocardiogram patterns and digits compared to static networks. This neural network uses “reservoir computing,” which explains how different parts of a brain communicate and transfer information.

Researchers from The Pennsylvania State University also demonstrated in this study that as new problems are presented, a dynamic network can “pick and choose” which circuits are the best fit for addressing those problems.

Since the team was able to build the device using standard semiconductor-compatible fabrication techniques and operate the device at room temperature, Ramanathan believes that this technique can be readily adopted by the semiconductor industry.

“We demonstrated that this device is very robust,” said Michael Park, a Purdue Ph.D. student in materials engineering. “After programming the device over a million cycles, the reconfiguration of all functions is remarkably reproducible.”

The researchers are working to demonstrate these concepts on large-scale test chips that would be used to build a brain-inspired computer.

Experiments at Purdue were conducted at the FLEX Lab and Birck Nanotechnology Center of Purdue’s Discovery Park. The team’s collaborators at Argonne National Laboratory, the University of Illinois, Brookhaven National Laboratory and the University of Georgia conducted measurements of the device’s properties.

Here’s a link to and a citation for the paper,

Reconfigurable perovskite nickelate electronics for artificial intelligence by Hai-Tian Zhang, Tae Joon Park, A. N. M. Nafiul Islam, Dat S. J. Tran, Sukriti Manna, Qi Wang, Sandip Mondal, Haoming Yu, Suvo Banik, Shaobo Cheng, Hua Zhou, Sampath Gamage, Sayantan Mahapatra, Yimei Zhu, Yohannes Abate, Nan Jiang, Subramanian K. R. S. Sankaranarayanan, Abhronil Sengupta, Christof Teuscher, Shriram Ramanathan. Science • 3 Feb 2022 • Vol 375, Issue 6580 • pp. 533-539 • DOI: 10.1126/science.abj7943

This paper is behind a paywall.

Dr. Wei Lu and bio-inspired ‘memristor’ chips

It’s been a while since I’ve featured Dr. Wei Lu’s work here. This April  15, 2010 posting features Lu’s most relevant previous work.) Here’s his latest ‘memristor’ work , from a May 22, 2017 news item on Nanowerk (Note: A link has been removed),

Inspired by how mammals see, a new “memristor” computer circuit prototype at the University of Michigan has the potential to process complex data, such as images and video orders of magnitude, faster and with much less power than today’s most advanced systems.

Faster image processing could have big implications for autonomous systems such as self-driving cars, says Wei Lu, U-M professor of electrical engineering and computer science. Lu is lead author of a paper on the work published in the current issue of Nature Nanotechnology (“Sparse coding with memristor networks”).

Lu’s next-generation computer components use pattern recognition to shortcut the energy-intensive process conventional systems use to dissect images. In this new work, he and his colleagues demonstrate an algorithm that relies on a technique called “sparse coding” to coax their 32-by-32 array of memristors to efficiently analyze and recreate several photos.

A May 22, 2017 University of Michigan news release (also on EurekAlert), which originated the news item, provides more information about memristors and about the research,

Memristors are electrical resistors with memory—advanced electronic devices that regulate current based on the history of the voltages applied to them. They can store and process data simultaneously, which makes them a lot more efficient than traditional systems. In a conventional computer, logic and memory functions are located at different parts of the circuit.

“The tasks we ask of today’s computers have grown in complexity,” Lu said. “In this ‘big data’ era, computers require costly, constant and slow communications between their processor and memory to retrieve large amounts data. This makes them large, expensive and power-hungry.”

But like neural networks in a biological brain, networks of memristors can perform many operations at the same time, without having to move data around. As a result, they could enable new platforms that process a vast number of signals in parallel and are capable of advanced machine learning. Memristors are good candidates for deep neural networks, a branch of machine learning, which trains computers to execute processes without being explicitly programmed to do so.

“We need our next-generation electronics to be able to quickly process complex data in a dynamic environment. You can’t just write a program to do that. Sometimes you don’t even have a pre-defined task,” Lu said. “To make our systems smarter, we need to find ways for them to process a lot of data more efficiently. Our approach to accomplish that is inspired by neuroscience.”

A mammal’s brain is able to generate sweeping, split-second impressions of what the eyes take in. One reason is because they can quickly recognize different arrangements of shapes. Humans do this using only a limited number of neurons that become active, Lu says. Both neuroscientists and computer scientists call the process “sparse coding.”

“When we take a look at a chair we will recognize it because its characteristics correspond to our stored mental picture of a chair,” Lu said. “Although not all chairs are the same and some may differ from a mental prototype that serves as a standard, each chair retains some of the key characteristics necessary for easy recognition. Basically, the object is correctly recognized the moment it is properly classified—when ‘stored’ in the appropriate category in our heads.”

Image of a memristor chip Image of a memristor chip Similarly, Lu’s electronic system is designed to detect the patterns very efficiently—and to use as few features as possible to describe the original input.

In our brains, different neurons recognize different patterns, Lu says.

“When we see an image, the neurons that recognize it will become more active,” he said. “The neurons will also compete with each other to naturally create an efficient representation. We’re implementing this approach in our electronic system.”

The researchers trained their system to learn a “dictionary” of images. Trained on a set of grayscale image patterns, their memristor network was able to reconstruct images of famous paintings and photos and other test patterns.

If their system can be scaled up, they expect to be able to process and analyze video in real time in a compact system that can be directly integrated with sensors or cameras.

The project is titled “Sparse Adaptive Local Learning for Sensing and Analytics.” Other collaborators are Zhengya Zhang and Michael Flynn of the U-M Department of Electrical Engineering and Computer Science, Garrett Kenyon of the Los Alamos National Lab and Christof Teuscher of Portland State University.

The work is part of a $6.9 million Unconventional Processing of Signals for Intelligent Data Exploitation project that aims to build a computer chip based on self-organizing, adaptive neural networks. It is funded by the [US] Defense Advanced Research Projects Agency [DARPA].

Here’s a link to and a citation for the paper,

Sparse coding with memristor networks by Patrick M. Sheridan, Fuxi Cai, Chao Du, Wen Ma, Zhengya Zhang, & Wei D. Lu. Nature Nanotechnology (2017) doi:10.1038/nnano.2017.83 Published online 22 May 2017

This paper is behind a paywall.

For the interested, there are a number of postings featuring memristors here (just use ‘memristor’ as your search term in the blog search engine). You might also want to check out ‘neuromorphic engineeering’ and ‘neuromorphic computing’ and ‘artificial brain’.