Tag Archives: Clemson University

Investigating nanoparticles and their environmental impact for industry?

It seems the Center for the Environmental Implications of Nanotechnology (CEINT) at Duke University (North Carolina, US) is making an adjustment to its focus and opening the door to industry, as well as, government research. It has for some years (my first post about the CEINT at Duke University is an Aug. 15, 2011 post about its mesocosms) been focused on examining the impact of nanoparticles (also called nanomaterials) on plant life and aquatic systems. This Jan. 9, 2017 US National Science Foundation (NSF) news release (h/t Jan. 9, 2017 Nanotechnology Now news item) provides a general description of the work,

We can’t see them, but nanomaterials, both natural and manmade, are literally everywhere, from our personal care products to our building materials–we’re even eating and drinking them.

At the NSF-funded Center for Environmental Implications of Nanotechnology (CEINT), headquartered at Duke University, scientists and engineers are researching how some of these nanoscale materials affect living things. One of CEINT’s main goals is to develop tools that can help assess possible risks to human health and the environment. A key aspect of this research happens in mesocosms, which are outdoor experiments that simulate the natural environment – in this case, wetlands. These simulated wetlands in Duke Forest serve as a testbed for exploring how nanomaterials move through an ecosystem and impact living things.

CEINT is a collaborative effort bringing together researchers from Duke, Carnegie Mellon University, Howard University, Virginia Tech, University of Kentucky, Stanford University, and Baylor University. CEINT academic collaborations include on-going activities coordinated with faculty at Clemson, North Carolina State and North Carolina Central universities, with researchers at the National Institute of Standards and Technology and the Environmental Protection Agency labs, and with key international partners.

The research in this episode was supported by NSF award #1266252, Center for the Environmental Implications of NanoTechnology.

The mention of industry is in this video by O’Brien and Kellan, which describes CEINT’s latest work ,

Somewhat similar in approach although without a direction reference to industry, Canada’s Experimental Lakes Area (ELA) is being used as a test site for silver nanoparticles. Here’s more from the Distilling Science at the Experimental Lakes Area: Nanosilver project page,

Water researchers are interested in nanotechnology, and one of its most commonplace applications: nanosilver. Today these tiny particles with anti-microbial properties are being used in a wide range of consumer products. The problem with nanoparticles is that we don’t fully understand what happens when they are released into the environment.

The research at the IISD-ELA [International Institute for Sustainable Development Experimental Lakes Area] will look at the impacts of nanosilver on ecosystems. What happens when it gets into the food chain? And how does it affect plants and animals?

Here’s a video describing the Nanosilver project at the ELA,

You may have noticed a certain tone to the video and it is due to some political shenanigans, which are described in this Aug. 8, 2016 article by Bartley Kives for the Canadian Broadcasting Corporation’s (CBC) online news.

The reason the findings in a popular thermoelectricity paper can’t be replicated

It seems to me that over the last few years there’s been a lot more discussion about errors in science. There have always been scandals but this public interest in reproducibility of scientific results seems relatively new. In any event, a Nov. 17, 2016 news item on Nanowerk highlights research that explains why scientists have been unable to reproduce results of an influential 2014 paper (Note: A link has been removed),

A team of physicists in Clemson University’s College of Science and Academia Sinica in Taiwan has determined why other scientists have been unable to replicate a highly influential thermoelectricity study published in a prestigious, peer-reviewed journal.

In the April 2014 issue of the journal Nature (“Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals”), a group of scientists described an emerging crystalline material made of tin selenide that provided the highest efficiency ever recorded for thermoelectricity, the process of capturing wasted energy which is released as heat and making it available again as electricity. The paper has been viewed 45,000 times and its findings have been referenced in 600 subsequent studies, according to Google Scholar.

A thermoelectricity (TE) module captures waste energy, released as heat, converts it to electricity and returns it to a device. Image Credit: Thomas Masservy, Clemson University

There appears to have been a mistake in the original research. A Nov. 17, 2016 Clemson University news release, which originated the news item, expands on the theme (Note: A link has been removed),

“If it were true, basically, they would have found a crown jewel,” said Apparao Rao, the Robert A. Bowen professor of Physics and the director of the Clemson Nanomaterials Institute.

On Nov. 3, 2016, Nature ran a brief communication by the Clemson-Sinica team explaining why the 2014 data could not be replicated.

Thermoelectricity could provide enormous monetary and environmental savings because it is sustainable; instead of requiring fuel it continually captures wasted heat energy and puts it to use. And there’s a lot of wasted energy; about 70 percent in most machines, including cars.

“When your laptop gets hot, energy is released as waste heat because it doesn’t use all the supplied electricity. Machines have limited efficiency,” according to Ramakrishna Podila, assistant professor of physics and astronomy at Clemson who co-authored the paper solving the mystery.

But, so far, the perfect material for capturing and creating thermoelectricity has proven elusive.

Heat and electrical current can flow through any material when heat is applied to one side. But to efficiently harness thermoelectricity, the material has to trap heat on one side while letting the current flow. The difference in temperature, from one side to the other, generates energy.

Imagine cookware. Expensive pots and pans are copper or they have copper cores. Copper is a great heat-conducting material: it quickly and evenly spreads heat so food cooks evenly. Copper makes for good cookware, but poor thermoelectric material.

In an ideal thermoelectric material, current-carrying electrons should flow unimpeded from the hot side to the cold side, but heat-carrying phonons, which are atomic vibrations, must be blocked, either by large atoms or defects where the material is of lower density.

Rao; Podila; Sriparna Bhattacharya, a research assistant professor in astronomy and physics; and Jian He, an associate professor in physics and astronomy at Clemson and a thermoelectrics expert, performed their own study on tin selenide in collaboration with Academia Sinica’s Institute of Physics in Taipei.

Right away, Bhattacharya noticed a problem. “The most puzzling thing was that when we measured our own tin-selenide material, we observed the same electrical flow as reported in the 2014 article, but the heat carried by the phonons was relatively higher,” Bhattacharya said.

The original research group “made tin-selenide crystal that was not fully dense,” Bhattacharya said. Ideally, a crystalline material matches its “theoretical density,” meaning it’s as dense as it can be expected to get.

“Instead of reaching 100 percent theoretical density, it reached 89 percent. A 10 percent difference might not seem like much,” she said, but it can have a huge implication on the electron and phonon flow.

The Clemson-Taiwan collaborators are now focusing on their own assessment of thermoelectricity in tin-selenide. They expect to publish soon.

Here’s a link to and a citation to the 2014 thermoelectricity paper and a link to and a citation for the 2016 paper critiquing it,

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals by Li-Dong Zhao, Shih-Han Lo, Yongsheng Zhang, Hui Sun, Gangjian Tan, Ctirad Uher, C. Wolverton, Vinayak P. Dravid, & Mercouri G. Kanatzidis. Nature 508, 373–377 (17 April 2014) doi:10.1038/nature13184 Published online 16 April 2014

The intrinsic thermal conductivity of SnSe by Pai-Chun Wei, S. Bhattacharya, J. He, S. Neeleshwar, R. Podila, Y. Y. Chen, & A. M. Rao. Nature 539, E1–E2 (03 November 2016) doi:10.1038/nature19832 Published online 02 November 2016

Both papers are behind a paywall.

One final observation, scientists may mistakes as do we all. The point after all is to contribute and the mistakes can be as useful as the successes.

Cellulosic nanomaterials in automobile parts and a CelluForce update

The race to find applications for cellulosic nanomaterials continues apace. The latest entrant is from Clemson University in South Carolina (US). From a July 27, 2016 news item on Nanowerk,

Trees that are removed during forest restoration projects could find their way into car bumpers and fenders as part of a study led by Srikanth Pilla of Clemson University.

Pilla is collaborating on the study with researchers from the USDA Forest Service’s Forest Products Laboratory in Madison, Wisconsin.

The Madison researchers are converting some of those trees into liquid suspensions of tiny rod-like structures with diameters 20,000 times smaller than the width of a human hair. Pilla is using these tiny structures, known as cellulosic nanomaterials, to develop new composite materials that could be shaped into automotive parts with improved strength.

The auto parts would also be biorenewable, which means they could go to a composting facility instead of a landfill when their time on the road is done. The research could help automakers meet automotive recycling regulations that have been adopted in Europe and could be on the way to the United States.

Pilla, an assistant professor in the Department of Automotive Engineering at Clemson University, wants to use the composite materials he is creating to make bumpers and fenders that will be less likely to distort or break on impact.

“They will absorb the energy and just stay intact,” he said. “You won’t have to replace them because there will be no damage at all. Parts made with current materials might resist one impact. These will resist three or four impacts.”

A July 27, 2016 Clemson University media release, which originated the news item, describes the project and the reason for the support provides an interesting view of the politics behind the science (Note: A link has been removed),

The U.S. Department of the Agriculture’s National Institute of Food and Agriculture is funding the $481,000 research project for five years. Pilla’s research will be based out of the Clemson University International Center for Automotive Research in Greenville, South Carolina.

Craig Clemons, a materials research engineer at the Forest Products Laboratory and co-principal investigator on the project, said that the Forest Service wants to find large-volume uses for cellulosic nanomaterials.

“We find appropriate outlets for all kinds of forest-derived materials,” he said. “In this case, it’s cellulosic nanomaterials. We’re trying to move up the value chain with the cellulosic nanomaterials, creating high-value products out of what could otherwise be low-value wood. We’ll be producing the cellulosic nanomaterials, which are the most fundamental structural elements that you can get out of wood and pulp fibers. We’ll also be lending our more than 25 years of experience in creating composites from plastics and wood-derived materials to the project.”

The research is environmentally friendly from start to finish.

The cellulosic nanomaterials could come from trees that are removed during forest restoration projects. Removing this material from the forests helps prevent large, catastrophic wildfires. Researchers will have no need to cut down healthy trees that could be used for other purposes, Pilla said.

Ted Wegner, assistant director at the Forest Products Laboratory, said, “The use of cellulosic nanomaterials will help meet the needs of people for sustainable, renewable and lightweight products while helping to improve the health and condition of America’s forests. The United States possesses abundant forest resources and the infrastructure to support a large cellulosic nanomaterials industry. Commercialization of cellulosic nanomaterials has the potential to create jobs, especially in rural America.”

One of the technical challenges Pilla and Clemons face in their work is combining the water-friendly cellulosic nanomaterials with the water-unfriendly polymers. They will need to show that the material can be mass produced because automakers need to make thousands of parts.

“We will use supercritical fluid as a plasticizer, allowing the nanoreinforcements to disperse through the polymer,” Pilla said. “We can help develop a conventional technique that will be scalable in the automotive sector.”

Robert Jones, executive vice president for academic affairs and provost at Clemson, congratulated Pilla on the research, which touches on Jones’ area of expertise.

Jones has a bachelor’s in forest management, a master’s in forestry from Clemson and a doctorate in forest ecology from the State University of New York College of Environmental Science and Forestry, Syracuse University.

“The research that Srikanth Pilla is doing with the USDA Forest Service is a creative way of using what might otherwise be a low-value wood product to strengthen automobile parts,” Jones said. “It’s even better that these parts are biorenewable. The research is good for the Earth in more ways than one.”

This research could grow in importance if the United States were to follow the European Union’s lead in setting requirements on how much of a vehicle must be recovered and recycled after it has seen its last mile on the road.

“In the U.S., such legislation is not yet here,” Pilla said. “But it could make its way here, too.”

Pilla is quickly establishing himself as a leading expert in making next-generation automotive parts. He won the 2016 Robert J. Hocken Outstanding Young Manufacturing Engineer Award from the nonprofit student and professional organization SME.

Pilla is nearing the end of the first year of a separate $5.81-million, five-year grant from the Department of Energy. As part of that research, Pilla and his team are developing ultra-lightweight doors expected to help automakers in their race to meet federal fuel economy standards.

Zoran Filipi, chair of Clemson’s automotive engineering, said that Pilla is playing a key role in making Clemson the premiere place for automotive research.

“Dr. Pilla is doing research that helps Clemson and the auto industry stay a step ahead,” Filipi said. “He is anticipating needs automakers will face in the future and seeking solutions that could be put into place very quickly. His research with the USDA Forest Service is another example of that.”

Congratulations also came from Anand Gramopadhye, dean of Clemson’s College of Engineering, Computing and Applied Sciences.

“Dr. Pilla’s work continues to have an impact on automotive engineering, especially in the area of manufacturing,” Gramopadhye said. “His innovations are positioning Clemson, the state, and the nation for strength into the future.”

This search for applications is a worldwide competition. Cellulose is one of the most abundant materials on earth and can be derived from carrots, bananas, pineapples, and more. It just so happens that much of the research in the northern hemisphere focuses on cellulose derived from trees in an attempt to prop up or reinvigorate the failing forest products industry.

In Canada we have three production facilities for cellulosic nanomaterials. There’s a plant in Alberta (I’ve never seen a name for it), CelluForce in Windsor, Québec, and Blue Goose Biorefineries in Saskatchewan. I believe Blue Goose derives their cellulosic from trees and other plant materials while the Alberta and CelluForce plants use trees only.

CelluForce Update

CelluForce represents a big investment by the Canadian federal government. The other companies and production facilities have received federal funds but my understanding is that CelluForce has enjoyed significantly more. As well, the company has had a stockpile of cellulose nanocrystals (CNC) that I first mentioned here in an Oct. 3, 2013 post (scroll down about 75% of the way). A June 8, 2016 CelluForce news release provides more information about CelluForce activities and its stockpile,

  •  In the first half of 2016, Cellulose nanocrystals (CNC) shipments to industrial partners have reached their highest level since company inception.
  • Recent application developments in the oil & gas, the electronics and plastics sectors are expected to lead to commercial sales towards year end.
  • New website to enhance understanding of CelluForce NCCTM core properties and scope of performance in industrial applications is launched.

Montreal, Québec – June 8th 2016 – CelluForce, a clean technology company, is seeing growing interest in its innovative green chemistry product called cellulose nanocrystals (CNC) and has recorded, over the first half of 2016, the largest CNC shipment volumes since the company’s inception.

“Over the past year, we have been actively developing several industry-specific applications featuring CelluForce NCCTM, a form of cellulose nanocrystals which is produced in our Windsor plant.   Three of these applications have now reached a high level of technical and commercial maturity and have been proven to provide cost benefits and sustained performance in the oil & gas, electronics and plastics segments,” said Sebastien Corbeil [emphasis mine], President and CEO of CelluForce. “Our product development teams are extremely pleased to see CelluForce NCCTM [nanocrystalline cellulose; this is a trade name for CNC] now being used in full scale trials for final customer acceptance tests”.

With the current shipment volumes forecast, the company expects to deplete its CelluForce NCCTM inventory by mid-2017 [emphasis mine]. The inventory depletion will pave the way for the company to start commercial production of CNC at its Windsor plant next year.

CelluForce has built a strong network of researchers with academic and industrial partners and continues to invest time and resources to develop, refine and expand applications for CNC in key priority industrial markets. Beyond oil & gas, electronics and plastics, some of these markets are adhesives, cement, paints and coatings, as well as personal and healthcare.

Furthermore, as it progressively prepares for commercial production, CelluForce has revamped its digital platform and presence, with the underlying objective of developing a better understanding of its product, applications and its innovative green technology capabilities.  Its new brand image is meant to convey the innovative, versatile and sustainable properties of CNC.

Nice to see that there is sufficient demand that the stockpile can be eliminated soon. In my last piece about CelluForce (a March 30, 2015 post), I noted an interim president, René Goguen. An April 27, 2015 CelluForce news release announced Sebastien Corbeil’s then new appointment as company president.

One final note, nanocrystalline cellulose (NCC) was the generic name coined by Canadian scientists for a specific cellulose nanomaterial. Over time, cellulose nanocrystals (CNC) became the preferred term for the generic material and CelluForce decided to trademark NCC (nanocrystalline cellulose) as their commercial brand name for cellulose nanocrystals.

$5.2M in nanotechnology grants from the US Department of Agriculture (USDA)

A March 30, 2016 news item on Nanowerk announces the 2016 nanotechnology grants from the US Dept. of Agriculture (USDA),

Agriculture Secretary Tom Vilsack today [March 30, 2016] announced an investment of more than $5.2 million to support nanotechnology research at 11 universities. The universities will research ways nanotechnology can be used to improve food safety, enhance renewable fuels, increase crop yields, manage agricultural pests, and more. The awards were made through the Agriculture and Food Research Initiative (AFRI), the nation’s premier competitive, peer-reviewed grants program for fundamental and applied agricultural sciences.

A March 30, 2016 USDA news release provides more detail,

“In the seven years since the Agriculture and Food Research Initiative was established, the program has led to true innovations and ground-breaking discoveries in agriculture to combat childhood obesity, improve and sustain rural economic growth, address water availability issues, increase food production, find new sources of energy, mitigate the impacts of climate variability and enhance resiliency of our food systems, and ensure food safety. Nanoscale science, engineering, and technology are key pieces of our investment in innovation to ensure an adequate and safe food supply for a growing global population,” said Vilsack. “The President’s 2017 Budget calls for full funding of the Agriculture and Food Research Initiative so that USDA can continue to support important projects like these.”

Universities receiving funding include Auburn University in Auburn, Ala.; Connecticut Agricultural Experiment Station in New Haven, Conn.; University of Central Florida in Orlando, Fla; University of Georgia in Athens, Ga.; Iowa State University in Ames, Iowa; University of Massachusetts in Amherst, Mass.; Mississippi State University in Starkville, Miss.; Lincoln University in Jefferson City, Mo.; Clemson University in Clemson, S.C.; Virginia Polytechnic Institute and State University in Blacksburg, Va.; and University of Wisconsin in Madison, Wis.

With this funding, Auburn University proposes to improve pathogen monitoring throughout the food supply chain by creating a user-friendly system that can detect multiple foodborne pathogens simultaneously, accurately, cost effectively, and rapidly. Mississippi State University will research ways nanochitosan can be used as a combined fire-retardant and antifungal wood treatment that is also environmentally safe. Experts in nanotechnology, molecular biology, vaccines and poultry diseases at the University of Wisconsin will work to develop nanoparticle-based poultry vaccines to prevent emerging poultry infections. USDA has a full list of projects and longer descriptions available online.

Past projects include a University of Georgia project developing a bio-nanocomposites-based, disease-specific, electrochemical sensors for detecting fungal pathogen induced volatiles in selected crops; and a University of Massachusetts project creating a platform for pathogen detection in foods that is superior to the current detection method in terms of analytical time, sensitivity, and accuracy using a novel, label-free, surface-enhanced Raman scattering (SERS) mapping technique.

The purpose of AFRI is to support research, education, and extension work by awarding grants that address key problems of national, regional, and multi-state importance in sustaining all components of food and agriculture. AFRI is the flagship competitive grant program administered by USDA’s National Institute of Food and Agriculture [NIFA]. Established under the 2008 Farm Bill, AFRI supports work in six priority areas: plant health and production and plant products; animal health and production and animal products; food safety, nutrition and health; bioenergy, natural resources and environment; agriculture systems and technology; and agriculture economics and rural communities. Since AFRI’s creation, NIFA has awarded more than $89 million to solve challenges related to plant health and production; $22 million of this has been dedicated to nanotechnology research. The President’s 2017 budget request proposes to fully fund AFRI for $700 million; this amount is the full funding level authorized by Congress when it established AFRI in the 2008 Farm Bill.

Each day, the work of USDA scientists and researchers touches the lives of all Americans: from the farm field to the kitchen table and from the air we breathe to the energy that powers our country. USDA science is on the cutting edge, helping to protect, secure, and improve our food, agricultural and natural resources systems. USDA research develops and transfers solutions to agricultural problems, supporting America’s farmers and ranchers in their work to produce a safe and abundant food supply for more than 100 years. This work has helped feed the nation and sustain an agricultural trade surplus since the 1960s. Since 2009, USDA has invested $4.32 billion in research and development grants. Studies have shown that every dollar invested in agricultural research now returns over $20 to our economy.

Since 2009, NIFA has invested in and advanced innovative and transformative initiatives to solve societal challenges and ensure the long-term viability of agriculture. NIFA’s integrated research, education, and extension programs, supporting the best and brightest scientists and extension personnel, have resulted in user-inspired, groundbreaking discoveries that are combating childhood obesity, improving and sustaining rural economic growth, addressing water availability issues, increasing food production, finding new sources of energy, mitigating climate variability, and ensuring food safety.

A butterfly kind of day: changing structural colour in six generations and developing fluidic devices

I have two items concerning butterflies. The first is a bioengineering project at Yale University where they changed the colour of a butterfly’s wings from brown to violet (from an Aug. 5, 2014 news item on ScienceDaily),

Yale University scientists have chosen the most fleeting of mediums for their groundbreaking work on biomimicry: They’ve changed the color of butterfly wings.

In so doing, they produced the first structural color change in an animal by influencing evolution. The discovery may have implications for physicists and engineers trying to use evolutionary principles in the design of new materials and devices.

An Aug.5, 2014 Yale University news release (also on EurekAlert), which originated the news item,

“What we did was to imagine a new target color for the wings of a butterfly, without any knowledge of whether this color was achievable, and selected for it gradually using populations of live butterflies,” said Antónia Monteiro, a former professor of ecology and evolutionary biology at Yale, now at the National University of Singapore.

In this case, Monteiro and her team changed the wing color of the butterfly Bicyclus anynana from brown to violet. They needed only six generations of selection.

The news release goes on to explain the interest in structural colour,

Little is known about how structural colors in nature evolved, although researchers have studied such mechanisms extensively in recent years. Most attempts at biomimicry involve finding a desirable outcome in nature and simply trying to copy it in the laboratory.

“Today, materials engineers are making complex materials to perform multiple functions. The parameter space for the design of such materials is huge, so it is not easy to search for the optimal design,” said Hui Cao, chair of Yale’s Department of Applied Physics, who also worked on the study. “This is why we can learn from nature, which has obtained the optimal solutions in many cases via natural evolution over millions of years.”

Indeed, the scientists explained, natural selection algorithms can select for multiple characteristics simultaneously — which is standard operating procedure in the natural world.

A bit of technical information is also included in the news release,

The desired color for the butterfly wings was achieved by changing the relative thickness of the wing scales — specifically, those of the lower lamina. It took less than a year of selective breeding to produce the color change from brown to violet.

One reason Bicyclus anynana was chosen for the experiment, Monteiro said, was because it has cousin species that have evolved violet colors on their wings twice independently. By reproducing such a change in the lab, the Yale team showed that butterfly populations harbor high levels of genetic variation regulating scale thickness that lets them react quickly to new selective conditions.

“We just thought if natural selection has been able to modify wing colors in members of this genus of butterfly, perhaps so can we,” Monteiro said.

Here’s a link to and a citation for the paper,

Artificial selection for structural color on butterfly wings and comparison with natural evolution by Bethany R. Wasik, Seng Fatt Liew, David A. Lilien, April J. Dinwiddie, Heeso Noh, Hui Cao, and Antónia Monteiro. PNAS doi: 10.1073/pnas.1402770111 Published online August 4, 2014

This seems to be an open access paper (I was able to access the six page paper, albeit in a small font, by clicking on an Adobe reader icon).

I have not been able to find an image of the newly violet-coloured Bicyclus anynana butterfly but Yale University has provided an image of the pre-bioengineered version,

This image shows a male Bicyclus anynana, prior to the wing color change. (Below) This image shows the color change from brown to violet, over six generations of breeding. (Photographs courtesy of Antónia Monteiro)

This image shows a male Bicyclus anynana, prior to the wing color change. (Below) This image shows the color change from brown to violet, over six generations of breeding. (Photographs courtesy of Antónia Monteiro)

One of my favourite pieces on structural colour was written for The Scientist and was featured here in a Feb. 7, 2013 posting. Interestingly, Yale University is mentioned in that posting too.

This second butterfly piece focuses on its feeding habits and possible medical applications. From an Aug. 5, 2014 news item on ScienceDaily,

New discoveries about how butterflies feed could help engineers develop tiny probes that siphon liquid out of single cells for a wide range of medical tests and treatments, according to Clemson University researchers.

The National Science Foundation recently awarded the project $696,514. It was the foundation’s third grant to the project, bringing the total since 2009 to more than $3 million.

The research has brought together Clemson’s materials scientists and biologists who have been focusing on the proboscis, the mouthpart that many insects used for feeding.

For materials scientists, the goal is to develop what they call “fiber-based fluidic devices,” among them probes that could eventually allow doctors to pluck a single defective gene out of a cell and replace it with a good one, said Konstantin Kornev, a Clemson materials physics professor. “If someone were programmed to have an illness, it would be eliminated,” he said.

An Aug. 5, 2014 Clemson University media release by Paul Alongi (also on EurekAlert), which originated the news item, explains that this latest research is one of the first steps in a long journey,

… Much remains unknown about how insects use tiny pores and channels in the proboscis to sample and handle fluid.

“It’s like the proverbial magic well,” said Clemson entomology professor Peter Adler. “The more we learn about the butterfly proboscis, the more it has for us to learn about it.”

Kornev said he was attracted to butterflies for their ability to draw various kinds of liquids.

“It can be very thick like nectar and honey or very thin like water,” he said. “They do that easily. That’s a challenge for engineers.”

Researchers want the probe to be able to take fluid out of a single cell, which is 10 times smaller than the diameter of a human hair, Kornev said. The probe also will need to differentiate between different types of fluids, he said.

The technology could be used for medical devices, nanobioreactors that make complex materials and flying “micro-air vehicles” the size of an insect.

“It opens up a huge number of applications,” Kornev said. “We are actively seeking collaboration with cell biologists, medical doctors and other professionals who might find this research exciting and helpful in their applications.”

The study also is breaking new ground in biology. While scientists had a fundamental idea of how butterflies feed, it was less complete than it is now, Adler said.

Scientists have long known that butterflies use the proboscis to suck up fluid, similar to how humans use a drinking straw, Adler said. But the study found that the butterfly proboscis also acts as a sponge, he said.

“It’s a dual mechanism,” Adler said. “As they move the proboscis around, it can help sponge up the liquid and then facilitate the delivery of the liquid so that it can then be sucked up.”

As part of the study, researchers observed butterflies on flowers at the Cherry Farm Insectary just south of the main campus on the shore of Hartwell Lake. Butterflies were raised in the lab and recorded on video as they fed.

Researchers are turning their attention to smaller insects, such as flies, moths and mosquitoes, but the focus will remain on the proboscis.

In the next phase of the study, researchers would like to understand how the proboscis forms.

Larvae enter the pupa without a proboscis and emerge as a butterfly with one. Understanding what happens in the pupa could help develop the probes, Adler said.

Another challenge is figuring out how to keep the probe from getting covered with organic material when it’s inserted into the body, he said.

That’s why researchers are beginning to turn their focus to an insect almost everyone else shoos away.

“It seems the flies are able to pierce an animal’s tissue, take up the blood and not get the proboscis gummed up and covered with bacteria,” Adler said.

Tanju Karanfil, associate dean of research and graduate studies in the College of Engineering and Science, said the study has underscored the importance of breaking down silos that separate researchers from different departments so they can work for the common good.

“The most interesting work happens at the intersection of disciplines,” he said. “In this case, biologists and engineers have come together with different perspectives to answer common questions.

I have a link (which takes you to a correction for the text) and a citation for the paper,

Paradox of the drinking-straw model of the butterfly proboscis by Chen-Chih Tsai, Daria Monaenkova, Charles Beard, Peter Adler, and Konstantin Kornev. J. Exp. Biol. 217, 2130-2138. Original article: doi: 10.1242/​jeb.097998 June 15, 2014 J Exp Biol 217, 2130-2138 Correction: doi: 10.1242/​jeb.109447 July 1, 2014

The article is behind a paywall but you can view the correction in its entirety.

Nanoremediation techniques from Iran and from South Carolina

Researchers in Iran have announced a method of removing mercury from water. From the Aug. 6, 2012 news item on Nanowerk,

A research team from Martyr Chamran University of Ahvaz [Iran] succeeded in the elimination of mercury from aqueous media by using 2-mercaptobenzothiazole and by coating it on the magnetic iron oxide nanoparticles. Removal of mercury from water at lower concentrations was carried out by using the same compound successfully.

… According to the results of the experiments, the nano adsorbent is able to rapidly adsorb mercury at low concentrations. It causes the amount of mercury remaining in the environment to be less than the amount announced by WHO.

You can find the study (Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole) behind a paywall in the Journal of Hazardous Materials.

Moving onto the work at Clemson University in South Carolina (US), researchers there have developed a dendrimer-fullerenol which could be used for cleaning up the environment and/or drug delivery. From the Aug. 6, 2012 news item on Nanowerk (Note: This seems to have been written by the study’s lead author, Priyanka Bhattacharya),

Our recent paper, “Dendrimer-fullerenol soft-condensed nanoassembly” [behind a paywall] published in The Journal of Physical Chemistry C, showed how the soft nanomaterial dendrimer can be used to remediate the environment from potentially toxic nanomaterials. Here, we used fullerenol – a 60 carbon molecule in the shape of a buckyball and functionalized with hydroxyl groups – as a model system. Such an assembly also has implications for drug delivery.

Here’s an image the researchers included with their published study,

Here we show that poly(amidoamine) (PAMAM) dendrimers of both generations 1 (G1) and 4 (G4) can host 1 fullerenol per 2 dendrimer primary amines as evidenced by isothermal titration calorimetry, dynamic light scattering, and spectrofluorometry. (downloaded from http://pubs.acs.org/doi/abs/10.1021/jp3036692)

Here’s a little more about the dendrimers,

Dendrimers are highly branched, polymeric macromolecules with a high degree of surface functionalities. Their branching determines their generation number (G) – the higher the generation, the greater the degree of surface functionalities. We used both G1 and G4 poly(amidoamine) (PAMAM) dendrimers and found that both these dendrimers hosted one fullerenol per primary amine on the dendrimer surfaces. However, G4 PAMAM dendrimers hosted fullerenols 40 times better than G1, simply because of their higher degree of surface functionalities. Based on our findings, we recommended proper loading capacities of fullerenols for G1 and G4 dendrimers in drug delivery and environmental remediation.

You can also find this news item in an Aug. 6, 2012 postingfeaturing images of the lead author (Priyanka Bhattacharya is a Ph.D. student at Clemson University’s College of Engineering and Science) on the ScienceCodex website,

Our group, led by my advisor Dr. Pu-Chun Ke and funded by the National Science Foundation, has delved into a crucial topic of frontier research termed “nanoparticle-protein corona”. In short, nanoparticles do not interact directly with living systems but are often coated with biological fluids in the form of a protein corona. Another direction in our group, through collaboration between Dr. Ke and Dr. David Ladner in Clemson’s Department of Environmental Engineering and Earth Sciences and funded by the U.S. Environmental Protection Agency is to employ dendritic polymers for remediating oil spills.

(It’s unusual to see a news release written in the first person.)

I’m glad to see more research about exploiting nanotechnology for environmental cleanups.