Tag Archives: cognitive entanglement

Entanglement and biological systems

I think it was about five years ago thatI wrote a paper on something I called ‘cognitive entanglement’ (mentioned in my July 20,2012 posting) so the latest from Northwestern University (Chicago, Illinois, US) reignited my interest in entanglement. A December 5, 2017 news item on ScienceDaily describes the latest ‘entanglement’ research,

Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University’s Prem Kumar adds further evidence that the answer might be yes.

Kumar and his team have, for the first time, created quantum entanglement from a biological system. This finding could advance scientists’ fundamental understanding of biology and potentially open doors to exploit biological tools to enable new functions by harnessing quantum mechanics.

A December 5, 2017 Northwestern University news release (also on EurekAlert), which originated the news item, provides more detail,

“Can we apply quantum tools to learn about biology?” said Kumar, professor of electrical engineering and computer science in Northwestern’s McCormick School of Engineering and of physics and astronomy in the Weinberg College of Arts and Sciences. “People have asked this question for many, many years — dating back to the dawn of quantum mechanics. The reason we are interested in these new quantum states is because they allow applications that are otherwise impossible.”

Partially supported by the [US] Defense Advanced Research Projects Agency [DARPA], the research was published Dec. 5 [2017] in Nature Communications.

Quantum entanglement is one of quantum mechanics’ most mystifying phenomena. When two particles — such as atoms, photons, or electrons — are entangled, they experience an inexplicable link that is maintained even if the particles are on opposite sides of the universe. While entangled, the particles’ behavior is tied one another. If one particle is found spinning in one direction, for example, then the other particle instantaneously changes its spin in a corresponding manner dictated by the entanglement. Researchers, including Kumar, have been interested in harnessing quantum entanglement for several applications, including quantum communications. Because the particles can communicate without wires or cables, they could be used to send secure messages or help build an extremely fast “quantum Internet.”

“Researchers have been trying to entangle a larger and larger set of atoms or photons to develop substrates on which to design and build a quantum machine,” Kumar said. “My laboratory is asking if we can build these machines on a biological substrate.”

In the study, Kumar’s team used green fluorescent proteins, which are responsible for bioluminescence and commonly used in biomedical research. The team attempted to entangle the photons generated from the fluorescing molecules within the algae’s barrel-shaped protein structure by exposing them to spontaneous four-wave mixing, a process in which multiple wavelengths interact with one another to produce new wavelengths.

Through a series of these experiments, Kumar and his team successfully demonstrated a type of entanglement, called polarization entanglement, between photon pairs. The same feature used to make glasses for viewing 3D movies, polarization is the orientation of oscillations in light waves. A wave can oscillate vertically, horizontally, or at different angles. In Kumar’s entangled pairs, the photons’ polarizations are entangled, meaning that the oscillation directions of light waves are linked. Kumar also noticed that the barrel-shaped structure surrounding the fluorescing molecules protected the entanglement from being disrupted.

“When I measured the vertical polarization of one particle, we knew it would be the same in the other,” he said. “If we measured the horizontal polarization of one particle, we could predict the horizontal polarization in the other particle. We created an entangled state that correlated in all possibilities simultaneously.”

Now that they have demonstrated that it’s possible to create quantum entanglement from biological particles, next Kumar and his team plan to make a biological substrate of entangled particles, which could be used to build a quantum machine. Then, they will seek to understand if a biological substrate works more efficiently than a synthetic one.

Here’s an image accompanying the news release,

Featured in the cuvette on the left, green fluorescent proteins responsible for bioluninescence in jellyfish. Courtesy: Northwestern University

Here’s a link to and a citation for the paper,

Generation of photonic entanglement in green fluorescent proteins by Siyuan Shi, Prem Kumar & Kim Fook Lee. Nature Communications 8, Article number: 1934 (2017) doi:10.1038/s41467-017-02027-9 Published online: 05 December 2017

This paper is open access.

Zombies, brains, collapsing boundaries, and entanglements at the 4th annual S.NET conference

My proposal, Zombies, brains, collapsing boundaries, and entanglements, for the 4th annual S.NET (Society for the Study of Nanoscience and Emerging Technologies) conference was accepted. Mentioned in my Feb. 9, 2012 posting, the conference will be held at the University of Twente (Netherlands) from Oct. 22 – 25, 2012.

Here’s the abstract I provided,

The convergence between popular culture’s current fascination with zombies and their appetite for human brains (first established in the 1985 movie, Night of the Living Dead) and an extraordinarily high level of engagement in brain research by various medical and engineering groups around the world is no coincidence

Amongst other recent discoveries, the memristor (a concept from nanoelectronics) is collapsing the boundaries between humans and machines/robots and ushering in an age where humanistic discourse must grapple with cognitive entanglements.

Perceptible only at the level of molecular electronics (nanoelectronics), the memristor was a theoretical concept until 2008. Traditionally in electrical engineering, there are three circuit elements: resistors, inductors, and capacitors. The new circuit element, the memristor, was postulated in a paper by Dr. Leon Chua in 1971 to account for anomalies that had been experienced and described in the literature since the 1950s.

According to Chua’s theory and confirmed by the research team headed by R. Stanley Williams, the memristor remembers how much and when current has been flowing. The memristor is capable of an in-between state similar to certain brain states and this capacity lends itself to learning. As some have described it, the memristor is a synapse on a chip making neural computing a reality and/or the possibility of repairing brains stricken with neurological conditions. In other words, with post-human engineering exploiting discoveries such as the memristor we will have machines/robots that can learn and think and human brains that could incorporate machines.

As Jacques Derrida used the zombie to describe a state that this is neither life nor death as undecidable, the memristor can be described as an agent of transformation conferring robots with the ability to learn (a human trait) thereby rendering them as undecidable, i.e., neither machine nor life. Mirroring its transformative agency in robots, the memristor could also confer the human brain with machine/robot status and undecidability when used for repair or enhancement.

The memristor moves us past Jacques Derrida’s notion of undecidability as largely theoretical to a world where we confront this reality in a type of cognitive entanglement on a daily basis.

You can find the preliminary programme here.  My talk is scheduled for Thursday, Oct. 25, 2012 in one of the last sessions for the conference, 11 – 12:30 pm in the Tracing Transhuman Narratives strand.

I do see a few names I recognize, Wickson, Pat (Roy)  Mooney and Youtie. I believe Wickson is Fern Wickson from the University of Bergen last mentioned here in a Jul;y 7, 2010 posting about nature, nanotechnology, and metaphors. Pat Roy Mooney is from The ETC Group (an activist or civil society group) and was last mentioned here in my Oct. 7, 2011 posting), and I believe Youtie is Jan Youtie who wss mentioned in my March 29, 2012 posting about nanotechnology, economic impacts, and full life cycle assessments.

Whose Electric Brain? the video

After a few fits and starts, the video of my March 15, 2012 presentation to the Canadian Academy of Independent Scholars at Simon Fraser University has been uploaded to Vimeo. Unfortunately the original recording was fuzzy (camera issues) so we (camera operator, director, and editor, Sama Shodjai [samashodjai@gmail.com]) and I rerecorded the presentation and this second version is the one we’ve uploaded.

Whose Electric Brain? (Presentation) from Maryse de la Giroday on Vimeo.

I’ve come across a few errors; at one point, I refer to Buckminster Fuller as Buckminster Fullerene and I state that the opening image visualizes a neuron from someone with Parkinson’s disease, I should have said Huntingdon’s disease. Perhaps, you’ll come across more, please do let me know. If this should become a viral sensation (no doubt feeding a pent up demand for grey-haired women talking about memristors and brains), it’s important that corrections be added.

Finally, a big thank you to Mark Dwor who provides my introduction at the beginning, the Canadian Academy of Independent Scholars whose grant made the video possible, and Simon Fraser University.

ETA March 29, 2012: This is an updated version of the presentation I was hoping to give at ISEA (International Symposium on Electronic Arts) 2011 in Istanbul. Sadly, I was never able to raise all of the funds I needed for that venture. The funds I raised separately from the CAIS grant are being held until I can find another suitable opportunity to present my work.