Tag Archives: Communication is central to the mission of science

The physics of biology: “Nano comes to Life” by Sonia Contera

Louis Minion provides an overview of a newly published book, “Nano Comes to Life: How Nanotechnology is Transforming Medicine and the Future of Biology” by Sonia Contera, in a December 5, 2022 article for Physics World and notes this in his final paragraph,

Nano Comes to Life is aimed at both the general reader as well as scientists [emphasis mine], emphasizing and encouraging the democratization of science and its relationship to human culture. Ending on an inspiring note, Contera encourages us to throw off our fear of technology and use science to make a fairer and more prosperous future.

Minion notes elsewhere in his article (Note: Links have been removed),

Part showcase, part manifesto, Sonia Contera’s Nano Comes to Life makes the ambitious attempt to convey the wonder of recent advances in biology and nanoscience while at the same time also arguing for a new approach to biological and medical research.

Contera – a biological physicist at the University of Oxford – covers huge ground, describing with clarity a range of pioneering experiments, including building nanoscale robots and engines from self-assembled DNA strands, and the incremental but fascinating work towards artificially grown organs.

But throughout this interesting survey of nanoscience in biology, Contera weaves a complex argument for the future of biology and medicine. For me, it is here the book truly excels. In arguing for the importance of physics and engineering in biology, the author critiques the way in which the biomedical industry has typically carried out research, instead arguing that we need an approach to biology that respects its properties at all scales, not just the molecular.

This book was published in hard cover in 2019 and in paperback in 2021 (according to Sonia Contera’s University of Oxford Department of Physics profile page), so, I’m not sure why there’s an article about it in December 2022 but I’m glad to learn of the book’s existence.

Princeton University Press, which published Contera’s book, features a November 1, 2019 interview (from the Sonia Contera on Nano Comes to Life webpage),

What is the significance of the title of the book? What is the relationship between biology and nanotechnology?

SC: Nanotechnology—the capacity to visualize, manipulate, and interact with matter at the nanometer scale—has been engaged with and inspired by biology from its inception in the 1980s. This is primarily because the molecular players in biology, and the main drug and treatment targets in medicine—proteins and DNA—are nanosize. Since the early days of the field, a main mission of nanotechnologists has been to create tools that allow us to interact with key biological molecules one at a time, directly in their natural medium. They strive to understand and even mimic in their artificial nanostructures the mechanisms that underpin the function of biological nanomachines (proteins). In the last thirty years nanomicroscopies (primarily, the atomic force microscope) have unveiled the complex dynamic nature of proteins and the vast numbers of tasks that they perform. Far from being the static shapes featured in traditional biochemistry books, proteins rotate to work as nanomotors; they  literally perform walks to transport cargo around the cell. This enables an understanding of molecular biology that departs quite radically from traditional biochemical methods developed in the last fifty years. Since the main tools of nanotechnology were born in physics labs, the scientists who use them to study biomolecules interrogate those molecules within the framework of physics. Everyone should have the experience of viewing atomic force microscopy movies of proteins in action. It really changes the way we think about ourselves, as I try to convey in my book.

And how does physics change the study of biology at the nanoscale?

SC: In its widest sense the physics of life seeks to understand how the rules that govern the whole universe  led to the emergence of life on Earth and underlie biological behaviour. Central to this study are the molecules (proteins, DNA, etc.  that underpin biological processes. Nanotechnology enables the investigation of the most basic mechanisms of their functions, their engineering principles, and ultimately mathematical models that describe them. Life on Earth probably evolved from nanosize molecules that became complex enough to enable replication, and evolution on Earth over billions of years has created the incredibly sophisticated nanomachines  whose complex interactions constitute the fabric of the actions, perceptions, and senses of all living creatures. Combining the tools of nanotech with physics to study the mechanisms of biology is also inspiring the development of new materials, electronic devices, and applications in engineering and medicine.

What consequences will this have for the future of biology?

SC: The incorporation of biology (including intelligence) into the realm of physics facilitates a profound and potentially groundbreaking cultural shift, because it places the study of life within the widest possible context: the study of the rules that govern the cosmos. Nano Comes to Life seeks to reveal this new context for studying life and the potential for human advancement that it enables. The most powerful message of this book is that in the twenty-first century life can no longer be considered just the biochemical product of an algorithm written in genes (one that can potentially be modified at someone’s convenience); it must be understood as a complex and magnificent (and meaningful) realization of the laws that created the universe itself. The biochemical/genetic paradigm that dominated most of the twentieth century has been useful for understanding many biological processes, but it is insufficient to explain life in all its complexity, and to unblock existing medical bottlenecks. More broadly, as physics, engineering, computer science, and materials science merge with biology, they are actually helping to reconnect science and technology with the deep questions that humans have asked themselves from the beginning of civilization: What is life? What does it mean to be human when we can manipulate and even exploit our own biology? We have reached a point in history where these questions naturally arise from the practice of science, and this necessarily changes the sciences’ relationship with society.

We are entering a historic period of scientific convergence, feeling an urge to turn our heads to the past even as we walk toward the future, seeking to find, in the origin of the ideas that brought us here, the inspiration that will allow us to move forward. Nano Comes to Life focuses on the science but attempts to call attention to the potential for a new intellectual framework to emerge at the convergence of the sciences, one that scientists, engineers, artists, and thinkers should tap to create narratives and visions of the future that midwife our coming of age as a technological species. This might be the most important role of the physics of life that emerges from our labs: to contribute to the collective construction of a path to the preservation of human life on Earth.

You can find out more about Contera’s work and writing on her University of Oxford Department of Physics profile page, which she seems to have written herself. I found this section particularly striking,

I am also interested in the relation of physics with power, imperialism/nationalism, politics and social identities in the XIX, XX and XXI centuries, and I am starting to write about it, like in this piece for Nature Review Materials : “Communication is central to the mission of science”  which explores science comms in the context of the pandemic and global warming. In a recent talk at Fundacion Telefonica, I explored the relation of national, “East-West”, and gender identity and physics, from colonialism to the Manhattan Project and the tech companies of the Silicon Valley of today, can be watched in Spanish and English (from min 17). Here I explore the future of Spanish science and world politics at Fundacion Rafael del Pino (Spanish).

The woman has some big ideas! Good, we need them.

BTW, I’ve posted a few items that might be of interest with regard to some of her ideas.

  1. Perimeter Institute (PI) presents: The Jazz of Physics with Stephon Alexander,” this April 5, 2023 posting features physicist Stephon Alexander’s upcoming April 14, 2023 presentation (you can get on the waiting list or find a link to the livestream) and mentions his 2021 book “Fear of a Black Universe; An Outsider’s Guide to the Future of Physics.”
  2. There’s also “Scientists gain from communication with public” posted on April 6, 2023.