Tag Archives: CP Snow

China and nanotechnology

it’s been quite a while since I’ve come across any material about Nanopolis, a scientific complex in China devoted to nanotechnology (as described in my September 26, 2014 posting titled, More on Nanopolis in China’s Suzhou Industrial Park). Note: The most recent , prior to now, information about the complex is in my June 1, 2017 posting, which mentions China’s Nanopolis and Nano-X endeavours.

Dr. Mahbube K. Siddiki’s March 12, 2022 article about China’s nanotechnology work in the Small Wars Journal provides a situation overview and an update along with a tidbit about Nanopolis, Note: Footnotes for the article have not been included here,

The Nanotechnology industry in China is moving forward, with substantially high levels of funding, a growing talent pool, and robust international collaborations. The strong state commitment to support this field of science and technology is a key advantage for China to compete with leading forces like US, EU, Japan, and Russia. The Chinese government focuses on increasing competitiveness in nanotechnology by its inclusion as strategic industry in China’s 13th Five-Year Plan, reconfirming state funding, legislative and regulatory support. Research and development (R&D) in Nanoscience and Nanotechnology is a key component of the ambitious ‘Made in China 2025’ initiative aimed at turning China into a high-tech manufacturing powerhouse [1].

A bright example of Chinese nanotech success is the world’s largest nanotech industrial zone called ‘Nanopolis’, located in the eastern city of Suzhou. This futuristic city houses several private multinationals and new Chinese startups across different fields of nanotechnology and nanoscience. Needless to say, China leads the world’s nanotech startups. Involvement of private sector opens new and unique pools of funding and talent, focusing on applied research. Thus, private sector is leading in R&D in China, where state-sponsored institutions still dominate in all other sectors of rapid industrialization and modernization. From cloning to cancer research, from sea to space exploration, this massive and highly populated nation is using nanoscience and nanotechnology innovation to drive some of the world’s biggest breakthroughs, which is raising concerns in many other competing countries [3].

China has established numerous nanotech research institutions throughout the country over the years. Prominent universities like Peking University, City University of Hong Kong, Nanjing University, Hong Kong University of Science and Technology, Soochow University, University of Science and Technology of China are the leading institutions that house state of art nanotech research labs to foster study and research of nanoscience and nanotechnology [5]. Chinese Academy of Science (CAS), National Center for Nanoscience and Technology (NCNST) and Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) are top among the state sponsored specialized nanoscience and nanotechnology research centers, which have numerous labs and prominent researchers to conduct cutting edge research in the area of nanotechnology. Public-Private collaboration along with the above mentioned research institutes gave birth to many nanotechnology companies, most notable of them are Array Nano, Times Nano, Haizisi Nano Technology, Nano Medtech, Sun Nanotech, XP nano etc. [6]. These companies are thriving on the research breakthroughs China achieved recently in this sector. 

Here are some of the notable achievements in this sector by China. In June 2020, an international team of researchers led by Chinese scientists developed a new form of synthetic and  biodegradable nanoparticle [7]. This modifiable lipid nanoparticle is capable of targeting, penetrating, and altering cells by delivering the CRISPR/Cas9 gene-editing tool into a cell. This novel nanoparticle can be used in the treatment of some gene related disorders, as well as other diseases including some forms of cancer in the brain, liver, and lungs. At the State Key Laboratory of Robotics in the northeast city of Shenyang, researchers have developed a laser that produces a tiny gas bubble[8]. This bubble can be used as a tiny “robot” to manipulate and move materials on a nanoscale with microscopic precision. The technology termed as “Bubble bot” promises new possibilities in the field of artificial tissue creation and cloning [9].

In another report [13] it was shown that China surpassed the U.S. in chemistry in 2018 and now leading the later with a significant gap, which might take years to overcome. In the meantime, the country is approaching the US in Earth & Environmental sciences as well as physical sciences. According to the trend China may take five years or less to surpass US. On the contrary, in life science research China is lagging the US quite significantly, which might be attributed to both countries’ priority of sponsorship, in terms of funding. In fact, in the time of CORONA pandemic, US can use this gap for her strategic gain over China.

Outstanding economic growth and rapid technological advances of China over the last three decades have given her an unprecedented opportunity to play a leading role in contemporary geopolitical competition. The United States, and many of her partners and allies in the west as well as in Asia, have a range of concerns about how the authoritarian leadership in Beijing maneuver [sic] its recently gained power and position on the world stage. They are warily observing this regime’s deployment of sophisticated technology like “Nano” in ways that challenge many of their core interests and values all across the world. Though the U.S. is considered the only superpower in the world and has maintained its position as the dominant power of technological innovation for decades, China has made massive investments and swiftly implemented policies that have contributed significantly to its technological innovation, economic growth, military capability, and global influence. In some areas, China has eclipsed, or is on the verge of eclipsing, the United States — particularly in the rapid deployment of certain technologies, and nanoscience and nanotechnology appears to be the leading one. …

[About Dr. Siddiki]

Dr. Siddiki is an instructor of Robotic and Autonomous System in the Department of Multi-Domain Operations at the [US] Army Management Staff College where he teaches and does research in that area. He was Assistant Teaching Professor of Electrical Engineering at the Department of Computer Science and Electrical Engineering in the School of Computing and Engineering at University of Missouri Kansas City (UMKC). In UMKC, Dr. Siddiki designed, developed and taught undergraduate and graduate level courses, and supervised research works of Ph.D., Master and undergraduate students. Dr. Siddiki’s research interests lie in the area of nano and quantum tech, Robotic and Autonomous System, Green Energy & Power, and their implications in geopolitics.

As you can see in the article, there are anxieties over China’s rising dominance with regard to scientific research and technology; these anxieties have become more visible since I started this blog in 2008.

I was piqued to see that Dr. Siddiki’s article is in the Small Wars Journal and not in a journal focused on science, research, technology, and/or economics. I found this explanation for the term, ‘small wars’ on the journal’s About page (Note: A link has been removed),

Small Wars” is an imperfect term used to describe a broad spectrum of spirited continuation of politics by other means, falling somewhere in the middle bit of the continuum between feisty diplomatic words and global thermonuclear war.  The Small Wars Journal embraces that imperfection.

Just as friendly fire isn’t, there isn’t necessarily anything small about a Small War.

The term “Small War” either encompasses or overlaps with a number of familiar terms such as counterinsurgency, foreign internal defense, support and stability operations, peacemaking, peacekeeping, and many flavors of intervention.  Operations such as noncombatant evacuation, disaster relief, and humanitarian assistance will often either be a part of a Small War, or have a Small Wars feel to them.  Small Wars involve a wide spectrum of specialized tactical, technical, social, and cultural skills and expertise, requiring great ingenuity from their practitioners.  The Small Wars Manual (a wonderful resource, unfortunately more often referred to than read) notes that:

Small Wars demand the highest type of leadership directed by intelligence, resourcefulness, and ingenuity. Small Wars are conceived in uncertainty, are conducted often with precarious responsibility and doubtful authority, under indeterminate orders lacking specific instructions.

The “three block war” construct employed by General Krulak is exceptionally useful in describing the tactical and operational challenges of a Small War and of many urban operations.  Its only shortcoming is that is so useful that it is often mistaken as a definition or as a type of operation.

Who Are Those Guys?

Small Wars Journal is NOT a government, official, or big corporate site. It is run by Small Wars Foundation, a non-profit corporation, for the benefit of the Small Wars community of interest. The site principals are Dave Dilegge (Editor-in-Chief) and Bill Nagle (Publisher), and it would not be possible without the support of myriad volunteers as well as authors who care about this field and contribute their original works to the community. We do this in our spare time, because we want to.  McDonald’s pays more.  But we’d rather work to advance our noble profession than watch TV, try to super-size your order, or interest you in a delicious hot apple pie.  If and when you’re not flipping burgers, please join us.

The overview and analysis provided by Dr. Siddiki is very interesting to me and absent any conflicting data, I’m assuming it’s solid work. As for the anxiety that permeates the article, this is standard. All countries are anxious about who’s winning the science and technology race. If memory serves, you can find an example of the anxiety in C.P. Snow’s classic lecture and book, Two Cultures (the book is “The Two Cultures and the Scientific Revolution”) given/published in 1959. The British scientific establishment was very concerned that it was being eclipsed by the US and by the Russians.

Two cultures: the open science movement and the reproducibility movement

It’s C. P. Snow who comes to mind on seeing the words ‘science and two cultures’ (for anyone unfamiliar with the lecture and/or book see The Two Cultures Wikipedia entry).

This Sept. 14, 2020 news item on phys.org puts forward an entirely different concept concerning two cultures and science (Note: Links have been removed),

In the world of scientific research today, there’s a revolution going on—over the last decade or so, scientists across many disciplines have been seeking to improve the workings of science and its methods.

To do this, scientists are largely following one of two paths: the movement for reproducibility and the movement for open science. Both movements aim to create centralized archives for data, computer code and other resources, but from there, the paths diverge. The movement for reproducibility calls on scientists to reproduce the results of past experiments to verify earlier results, while open science calls on scientists to share resources so that future research can build on what has been done, ask new questions and advance science.

A Sept. 14, 2020 Indiana University (IU) news release (also on EurekAlert), which originated the news item, explains the research findings, which unexpectedly (for me) led to some conclusions about diversity with regard to gender in particular,

Now, an international research team led by IU’s Mary Murphy, Amanda Mejia, Jorge Mejia, Yan Xiaoran, Patty Mabry, Susanne Ressl, Amanda Diekman, and Franco Pestilli, finds the two movements do more than diverge. They have very distinct cultures, with two distinct literatures produced by two groups of researchers with little crossover. Their investigation also suggests that one of the movements — open science — promotes greater equity, diversity, and inclusivity. Their findings were recently reported in the Proceedings for the National Academy of Sciences [PNAS].

The team of researchers on the study, whose fields range widely – from social psychology, network science, neuroscience, structural biology, biochemistry, statistics, business, and education, among others – were taken by surprise by the results.

“The two movements have very few crossovers, shared authors or collaborations,” said Murphy. “They operate relatively independently. And this distinction between the two approaches is replicated across all scientific fields we examined.”

In other words, whether in biology, psychology or physics, scientists working in the open science participate in a different scientific culture than those working within the reproducibility culture, even if they work in the same disciplinary field. And which culture a scientist works in determines a lot about access and participation, particularly for women.

IU cognitive scientist Richard Shiffrin, who has previously been involved in efforts to improve science but did not participate in the current study, says the new study by Murphy and her colleagues provides a remarkable look into the way that current science operates. “There are two quite distinct cultures, one more inclusive, that promotes transparency of reporting and open science, and another, less inclusive, that promotes reproducibility as a remedy to the current practice of science,” he said.

A Tale of Two Sciences

To investigate the fault lines between the two movements, the team, led by network scientists Xiaoran Yan and Patricia Mabry, first conducted a network analysis of papers published from 2010-2017 identified with one of the two movements. The analysis showed that even though both movements span widely across STEM fields, the authors within them occupy two largely distinct networks. Authors who publish open science research, in other words, rarely produce research within reproducibility, and very few reproducibility researchers conduct open science research.

Next, information systems analyst Jorge Mejia and statistician Amanda Mejia applied a semantic text analysis to the abstracts of the papers to determine the values implicit in the language used to define the research. Specifically they looked at the degree to which the research was prosocial, that is, oriented toward helping others by seeking to solve large social problems.

“This is significant,” Murphy explained, “insofar as previous studies have shown that women often gravitate toward science that has more socially oriented goals and aims to improve the health and well-being of people and society. We found that open science has more prosocial language in its abstracts than reproducibility does.”

With respect to gender, the team found that “women publish more often in high-status authorship positions in open science, and that participation in high-status authorship positions has been increasing over time in open science, while in reproducibility women’s participation in high-status authorship positions is decreasing over time,” Murphy said.

The researchers are careful to point out that the link they found between women and open science is so far a correlation, not a causal connection.

“It could be that as more women join these movements, the science becomes more prosocial. But women could also be drawn to this prosocial model because that’s what they value in science, which in turn strengthens the prosocial quality of open science,” Murphy noted. “It’s likely to be an iterative cultural cycle, which starts one way, attracts people who are attracted to that culture, and consequently further builds and supports that culture.”

Diekman, a social psychologist and senior author on the paper, noted these patterns might help open more doors to science. “What we know from previous research is that when science conveys a more prosocial culture, it tends to attract not only more women, but also people of color and prosocially oriented men,” she said.

The distinctions traced in the study are also reflected in the scientific processes employed by the research team itself. As one of the most diverse teams to publish in the pages of PNAS, the research team used open science practices.

“The initial intuition, before the project started, was that investigators have come to this debate from very different perspectives and with different intellectual interests. These interests might attract different categories of researchers.” says Pestilli, an IU neuroscientist. “Some of us are working on improving science by providing new technology and opportunities to reduce human mistakes and promote teamwork. Yet we also like to focus on the greater good science does for society, every day. We are perhaps seeing more of this now in the time of the COVID-19 pandemic.”

With a core of eight lead scientists at IU, the team also included 20 more co-authors, mostly women and people of color who are experts on how to increase the participation of underrepresented groups in science; diversity and inclusion; and the movements to improve science.

Research team leader Mary Murphy noted that in this cultural moment of examining inequality throughout our institutions, looking at who gets to participate in science can yield great benefit.

“Trying to understand inequality in science has the potential to benefit society now more than ever. Understanding how the culture of science can compound problems of inequality or mitigate them could be a real advance in this moment when long-standing inequalities are being recognized–and when there is momentum to act and create a more equitable science.”

I think someone had a little fun writing the news release. First, there’s a possible reference to C. P. Snow’s The Two Cultures and, then, a reference to Charles Dickens’ A Tale of Two Cities (Wikipedia entry here) along with, possibly, an allusion to the French Revolution (liberté, égalité, et fraternité). Going even further afield, is there also an allusion to a science revolution? Certainly the values of liberty and equality would seem to fit in with the findings.

Here’s a link to and a citation for the paper,

Open science, communal culture, and women’s participation in the movement to improve science by Mary C. Murphy, Amanda F. Mejia, Jorge Mejia, Xiaoran Yan, Sapna Cheryan, Nilanjana Dasgupta, Mesmin Destin, Stephanie A. Fryberg, Julie A. Garcia, Elizabeth L. Haines, Judith M. Harackiewicz, Alison Ledgerwood, Corinne A. Moss-Racusin, Lora E. Park, Sylvia P. Perry, Kate A. Ratliff, Aneeta Rattan, Diana T. Sanchez, Krishna Savani, Denise Sekaquaptewa, Jessi L. Smith, Valerie Jones Taylor, Dustin B. Thoman, Daryl A. Wout, Patricia L. Mabry, Susanne Ressl, Amanda B. Diekman, and Franco Pestilli PNAS DOI: https://doi.org/10.1073/pnas.1921320117 First published September 14, 2020

This paper appears to be open access.

Here’s an image representing the researchers’ findings,

Caption: Figure 1. From “I” science to team science. Moving from an ‘!’-focused, independent, lab-centric approach to science to a more collaborative team science that promotes communal values, sharing, education, and training. Teamwork is a strength for scientific work and discovery; the total is more than the sum of the individual part contributions. Credit: Indiana University

Competition, collaboration, and a smaller budget: the US nano community responds

Before getting to the competition, collaboration, and budget mentioned in the head for this posting, I’m supplying some background information.

Within the context of a May 20, 2014 ‘National Nanotechnology Initiative’ hearing before the U.S. House of Representatives Subcommittee on Research and Technology, Committee on Science, Space, and Technology, the US General Accountability Office (GAO) presented a 22 pp. précis (PDF; titled: NANOMANUFACTURING AND U.S. COMPETITIVENESS; Challenges and Opportunities) of its 125 pp. (PDF version report titled: Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health).

Having already commented on the full report itself in a Feb. 10, 2014 posting, I’m pointing you to Dexter Johnson’s May 21, 2014 post on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) where he discusses the précis from the perspective of someone who was consulted by the US GAO when they were writing the full report (Note: Links have been removed),

I was interviewed extensively by two GAO economists for the accompanying [full] report “Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health,” where I shared background information on research I helped compile and write on global government funding of nanotechnology.

While I acknowledge that the experts who were consulted for this report are more likely the source for its views than I am, I was pleased to see the report reflect many of my own opinions. Most notable among these is bridging the funding gap in the middle stages of the manufacturing-innovation process, which is placed at the top of the report’s list of challenges.

While I am in agreement with much of the report’s findings, it suffers from a fundamental misconception in seeing nanotechnology’s development as a kind of race between countries. [emphases mine]

(I encourage you to read the full text of Dexter’s comments as he offers more than a simple comment about competition.)

Carrying on from this notion of a ‘nanotechnology race’, at least one publication focused on that aspect. From the May 20, 2014 article by Ryan Abbott for CourthouseNews.com,

Nanotech Could Keep U.S. Ahead of China

WASHINGTON (CN) – Four of the nation’s leading nanotechnology scientists told a U.S. House of Representatives panel Tuesday that a little tweaking could go a long way in keeping the United States ahead of China and others in the industry.

The hearing focused on the status of the National Nanotechnology Initiative, a federal program launched in 2001 for the advancement of nanotechnology.

As I noted earlier, the hearing was focused on the National Nanotechnology Initiative (NNI) and all of its efforts. It’s quite intriguing to see what gets emphasized in media reports and, in this case, the dearth of media reports.

I have one more tidbit, the testimony from Lloyd Whitman, Interim Director of the National Nanotechnology Coordination Office and Deputy Director of the Center for Nanoscale Science and Technology, National Institute of Standards and Technology. The testimony is in a May 21, 2014 news item on insurancenewsnet.com,

Testimony by Lloyd Whitman, Interim Director of the National Nanotechnology Coordination Office and Deputy Director of the Center for Nanoscale Science and Technology, National Institute of Standards and Technology

Chairman Bucshon, Ranking Member Lipinski, and Members of the Committee, it is my distinct privilege to be here with you today to discuss nanotechnology and the role of the National Nanotechnology Initiative in promoting its development for the benefit of the United States.

Highlights of the National Nanotechnology Initiative

Our current Federal research and development program in nanotechnology is strong. The NNI agencies continue to further the NNI’s goals of (1) advancing nanotechnology R&D, (2) fostering nanotechnology commercialization, (3) developing and maintaining the U.S. workforce and infrastructure, and (4) supporting the responsible and safe development of nanotechnology. …

,,,

The sustained, strategic Federal investment in nanotechnology R&D combined with strong private sector investments in the commercialization of nanotechnology-enabled products has made the United States the global leader in nanotechnology. The most recent (2012) NNAP report analyzed a wide variety of sources and metrics and concluded that “… in large part as a result of the NNI the United States is today… the global leader in this exciting and economically promising field of research and technological development.” n10 A recent report on nanomanufacturing by Congress’s own Government Accountability Office (GAO) arrived at a similar conclusion, again drawing on a wide variety of sources and stakeholder inputs. n11 As discussed in the GAO report, nanomanufacturing and commercialization are key to capturing the value of Federal R&D investments for the benefit of the U.S. economy. The United States leads the world by one important measure of commercial activity in nanotechnology: According to one estimate, n12 U.S. companies invested $4.1 billion in nanotechnology R&D in 2012, far more than investments by companies in any other country.  …

There’s cognitive dissonance at work here as Dexter notes in his own way,

… somewhat ironically, the [GAO] report suggests that one of the ways forward is more international cooperation, at least in the development of international standards. And in fact, one of the report’s key sources of information, Mihail Roco, has made it clear that international cooperation in nanotechnology research is the way forward.

It seems to me that much of the testimony and at least some of the anxiety about being left behind can be traced to a decreased 2015 budget allotment for nanotechnology (mentioned here in a March 31, 2014 posting [US National Nanotechnology Initiative’s 2015 budget request shows a decrease of $200M]).

One can also infer a certain anxiety from a recent presentation by Barbara Herr Harthorn, head of UCSB’s [University of California at Santa Barbara) Center for Nanotechnology in Society (CNS). She was at a February 2014 meeting of the Presidential Commission for the Study of Bioethical Issues (mentioned in parts one and two [the more substantive description of the meeting which also features a Canadian academic from the genomics community] of my recent series on “Brains, prostheses, nanotechnology, and human enhancement”). II noted in part five of the series what seems to be a shift towards brain research as a likely beneficiary of the public engagement work accomplished under NNI auspices and, in the case of the Canadian academic, the genomics effort.

The Americans are not the only ones feeling competitive as this tweet from Richard Jones, Pro-Vice Chancellor for Research and Innovation at Sheffield University (UK), physicist, and author of Soft Machines, suggests,

May 18

The UK has fewer than 1% of world patents on graphene, despite it being discovered here, according to the FT –

I recall reading a report a few years back which noted that experts in China were concerned about falling behind internationally in their research efforts. These anxieties are not new, CP Snow’s book and lecture The Two Cultures (1959) also referenced concerns in the UK about scientific progress and being left behind.

Competition/collaboration is an age-old conundrum and about as ancient as anxieties of being left behind. The question now is how are we all going to resolve these issues this time?

ETA May 28, 2014: The American Institute of Physics (AIP) has produced a summary of the May 20, 2014 hearing as part of their FYI: The AIP Bulletin of Science Policy News, May 27, 2014 (no. 93).

ETA Sept. 12, 2014: My first posting about the diminished budget allocation for the US NNI was this March 31, 2014 posting.