Tag Archives: Cynthia Graber

The CRISPR yogurt story and a hornless cattle update

Clustered regularly interspaced short palindromic repeats (CRISPR) does not and never has made much sense to me. I understand each word individually it’s just that I’ve never thought they made much sense strung together that way. It’s taken years but I’ve finally found out what the words (when strung together that way) mean and the origins for the phrase. Hint: it’s all about the phages.

Apparently, it all started with yogurt as Cynthia Graber and Nicola Twilley of Gastropod discuss on their podcast, “4 CRISPR experts on how gene editing is changing the future of food.” During the course of the podcast they explain the ‘phraseology’ issue, mention hornless cattle (I have an update to the information in the podcast later in this posting), and so much more.

CRISPR started with yogurt

You’ll find the podcast (almost 50 minutes long) here on an Oct. 11, 2019 posting on the Genetic Literacy Project. If you need a little more encouragement, here’s how the podcast is described,

To understand how CRISPR will transform our food, we begin our episode at Dupont’s yoghurt culture facility in Madison, Wisconsin. Senior scientist Dennis Romero tells us the story of CRISPR’s accidental discovery—and its undercover but ubiquitous presence in the dairy aisles today.

Jennifer Kuzma and Yiping Qi help us understand the technology’s potential, both good and bad, as well as how it might be regulated and labeled. And Joyce Van Eck, a plant geneticist at the Boyce Thompson Institute in Ithaca, New York, tells us the story of how she is using CRISPR, combined with her understanding of tomato genetics, to fast-track the domestication of one of the Americas’ most delicious orphan crops [groundcherries].

I featured Van Eck’s work with groundcherries last year in a November 28, 2018 posting and I don’t think she’s published any new work about the fruit since. As for Kuzma’s point that there should be more transparency where genetically modified food is concerned, Canadian consumers were surprised (shocked) in 2017 to find out that genetically modified Atlantic salmon had been introduced into the food market without any notification (my September 13, 2017 posting; scroll down to the Fish subheading; Note: The WordPress ‘updated version from Hell’ has affected some of the formatting on the page).

The earliest article on CRISPR and yogurt that I’ve found is a January 1, 2015 article by Kerry Grens for The Scientist,

Two years ago, a genome-editing tool referred to as CRISPR (clustered regularly interspaced short palindromic repeats) burst onto the scene and swept through laboratories faster than you can say “adaptive immunity.” Bacteria and archaea evolved CRISPR eons before clever researchers harnessed the system to make very precise changes to pretty much any sequence in just about any genome.

But life scientists weren’t the first to get hip to CRISPR’s potential. For nearly a decade, cheese and yogurt makers have been relying on CRISPR to produce starter cultures that are better able to fend off bacteriophage attacks. “It’s a very efficient way to get rid of viruses for bacteria,” says Martin Kullen, the global R&D technology leader of Health and Protection at DuPont Nutrition & Health. “CRISPR’s been an important part of our solution to avoid food waste.”

Phage infection of starter cultures is a widespread and significant problem in the dairy-product business, one that’s been around as long as people have been making cheese. Patrick Derkx, senior director of innovation at Denmark-based Chr. Hansen, one of the world’s largest culture suppliers, estimates that the quality of about two percent of cheese production worldwide suffers from phage attacks. Infection can also slow the acidification of milk starter cultures, thereby reducing creameries’ capacity by up to about 10 percent, Derkx estimates.
In the early 2000s, Philippe Horvath and Rodolphe Barrangou of Danisco (later acquired by DuPont) and their colleagues were first introduced to CRISPR while sequencing Streptococcus thermophilus, a workhorse of yogurt and cheese production. Initially, says Barrangou, they had no idea of the purpose of the CRISPR sequences. But as his group sequenced different strains of the bacteria, they began to realize that CRISPR might be related to phage infection and subsequent immune defense. “That was an eye-opening moment when we first thought of the link between CRISPR sequencing content and phage resistance,” says Barrangou, who joined the faculty of North Carolina State University in 2013.

One last bit before getting to the hornless cattle, scientist Yi Li has a November 15, 2018 posting on the GLP website about his work with gene editing and food crops,

I’m a plant geneticist and one of my top priorities is developing tools to engineer woody plants such as citrus trees that can resist the greening disease, Huanglongbing (HLB), which has devastated these trees around the world. First detected in Florida in 2005, the disease has decimated the state’s US$9 billion citrus crop, leading to a 75 percent decline in its orange production in 2017. Because citrus trees take five to 10 years before they produce fruits, our new technique – which has been nominated by many editors-in-chief as one of the groundbreaking approaches of 2017 that has the potential to change the world – may accelerate the development of non-GMO citrus trees that are HLB-resistant.

Genetically modified vs. gene edited

You may wonder why the plants we create with our new DNA editing technique are not considered GMO? It’s a good question.

Genetically modified refers to plants and animals that have been altered in a way that wouldn’t have arisen naturally through evolution. A very obvious example of this involves transferring a gene from one species to another to endow the organism with a new trait – like pest resistance or drought tolerance.

But in our work, we are not cutting and pasting genes from animals or bacteria into plants. We are using genome editing technologies to introduce new plant traits by directly rewriting the plants’ genetic code.

This is faster and more precise than conventional breeding, is less controversial than GMO techniques, and can shave years or even decades off the time it takes to develop new crop varieties for farmers.

There is also another incentive to opt for using gene editing to create designer crops. On March 28, 2018, U.S. Secretary of Agriculture Sonny Perdue announced that the USDA wouldn’t regulate new plant varieties developed with new technologies like genome editing that would yield plants indistinguishable from those developed through traditional breeding methods. By contrast, a plant that includes a gene or genes from another organism, such as bacteria, is considered a GMO. This is another reason why many researchers and companies prefer using CRISPR in agriculture whenever it is possible.

As the Gatropod’casters note, there’s more than one side to the gene editing story and not everyone is comfortable with the notion of cavalierly changing genetic codes when so much is still unknown.

Hornless cattle update

First mentioned here in a November 28, 2018 posting, hornless cattle have been in the news again. From an October 7, 2019 news item on ScienceDaily,

For the past two years, researchers at the University of California, Davis, have been studying six offspring of a dairy bull, genome-edited to prevent it from growing horns. This technology has been proposed as an alternative to dehorning, a common management practice performed to protect other cattle and human handlers from injuries.

UC Davis scientists have just published their findings in the journal Nature Biotechnology. They report that none of the bull’s offspring developed horns, as expected, and blood work and physical exams of the calves found they were all healthy. The researchers also sequenced the genomes of the calves and their parents and analyzed these genomic sequences, looking for any unexpected changes.

An October 7, 2019 UC Davis news release (also on EurekAlert), which originated the news item, provides more detail about the research (I have checked the UC Davis website here and the October 2019 update appears to be the latest available publicly as of February 5, 2020),

All data were shared with the U.S. Food and Drug Administration. Analysis by FDA scientists revealed a fragment of bacterial DNA, used to deliver the hornless trait to the bull, had integrated alongside one of the two hornless genetic variants, or alleles, that were generated by genome-editing in the bull. UC Davis researchers further validated this finding.

“Our study found that two calves inherited the naturally-occurring hornless allele and four calves additionally inherited a fragment of bacterial DNA, known as a plasmid,” said corresponding author Alison Van Eenennaam, with the UC Davis Department of Animal Science.

Plasmid integration can be addressed by screening and selection, in this case, selecting the two offspring of the genome-edited hornless bull that inherited only the naturally occurring allele.

“This type of screening is routinely done in plant breeding where genome editing frequently involves a step that includes a plasmid integration,” said Van Eenennaam.

Van Eenennaam said the plasmid does not harm the animals, but the integration technically made the genome-edited bull a GMO, because it contained foreign DNA from another species, in this case a bacterial plasmid.

“We’ve demonstrated that healthy hornless calves with only the intended edit can be produced, and we provided data to help inform the process for evaluating genome-edited animals,” said Van Eenennaam. “Our data indicates the need to screen for plasmid integration when they’re used in the editing process.”

Since the original work in 2013, initiated by the Minnesota-based company Recombinetics, new methods have been developed that no longer use donor template plasmid or other extraneous DNA sequence to bring about introgression of the hornless allele.

Scientists did not observe any other unintended genomic alterations in the calves, and all animals remained healthy during the study period. Neither the bull, nor the calves, entered the food supply as per FDA guidance for genome-edited livestock.

WHY THE NEED FOR HORNLESS COWS?

Many dairy breeds naturally grow horns. But on dairy farms, the horns are typically removed, or the calves “disbudded” at a young age. Animals that don’t have horns are less likely to harm animals or dairy workers and have fewer aggressive behaviors. The dehorning process is unpleasant and has implications for animal welfare. Van Eenennaam said genome-editing offers a pain-free genetic alternative to removing horns by introducing a naturally occurring genetic variant, or allele, that is present in some breeds of beef cattle such as Angus.

Here’s a link to and a citation for the paper,

Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull by Amy E. Young, Tamer A. Mansour, Bret R. McNabb, Joseph R. Owen, Josephine F. Trott, C. Titus Brown & Alison L. Van Eenennaam. Nature Biotechnology (2019) DOI: https://doi.org/10.1038/s41587-019-0266-0 Published 07 October 2019

This paper is open access.

The greatest intellectual theft in history? Tea!

Following my green tea and sensitive teeth story (August 4, 2017 posting), I stumbled on this August 2, 2017 story by Nicola Twilley and Cynthia Graber for The Atlantic,

… The Chinese domesticated tea over thousands of years, but they lost their near monopoly on international trade when a Scottish botanist, disguised as a Chinese nobleman, smuggled it out of China in the 1800s, in order to secure Britain’s favorite beverage and prop up its empire for another century. The story involves pirates, ponytails, and hard drugs—and, to help tell the tale, Cynthia and Nicky visit Britain’s one and only commercial tea plantation, tucked away in a secret garden on an aristocratic estate on the Cornish coast. While harvesting and processing tea leaves, we learn the difference between green and black tea, as well as which is better for your health. Put the kettle on, and settle in for the science and history of tea!

A podcast from Gastropod (Nicola Twilley’s and Cynthia Graber’s blog) is embedded into The Atlantic story but you can also find it here on the Gastropod website along with more details in the accompanying text (Note: Links have been removed),

It seemed so simple in the mid-1700s: China had tea, Britain wanted tea. First introduced by Portuguese princess Catherine de Braganza in 1662, tea soon overtook beer as Britain’s favorite brew. The only problem, according to Sarah Rose, author of For All the Tea in China: How England Stole the World’s Favorite Drink and Changed History, was that the Chinese weren’t purchasing any British goods in return. Britain was simply dumping its silver into China, creating a serious balance of payments problem. Britain’s solution? Trade drugs for drugs—specifically, the caffeine fix in tea for the poppies that grow abundantly on the Afghan-Pakistan border, which at the time was part of the British empire. “They just start dumping opium into China,” explained Rose. But drug-dealing proved to be an expensive headache, and so, in 1848, Britain embarked on the biggest botanical heist in history, as well as one of the biggest thefts of intellectual property to date: stealing Chinese tea plants, as well as Chinese tea-processing expertise, in order to create a tea industry in India.

I first wrote about Robert Fortune, master thief and scientist and Sarah Rose, author of ‘For All the Tea in China: How England Stole the World’s Favorite Drink and Changed History‘ (2011) in the context of computer chips, US and China relations, and piracy fears (my Aug. 11, 2010 posting).

In the Gastropod podcast, Rose seems to be willing to give more details from her book now that it’s no longer fresh off the press. Amongst other gems, you’ll find out that Fortune was six feet* or more in height, had shaved himself bald and had a queue sewn into his scalp, couldn’t speak any Chinese languages, and was a white Scotsman. How did he pass? It had to do with how the Chinese in that period viewed ‘foreigness’; for more details you’ll need to listed to the podcast. Rose also mentions the British East India Company, a quasi-government (they had their own army) , in some jurisdictions, and pirates.

As regular readers know, I have often featured intellectual property stories here and while this doesn’t seem to fit into my emerging technologies focus, arguably, tea could be described as an emerging technology (albeit stolen from China) for the British Empire at that time.

I strongly suggest listening to and/or reading the July 31, 2017 Gastropod posting in its entirety.

*One quick comment, I had a professor some years ago who was involved with various Chinese ethnic groups who were to be displaced by the massive ‘Three Gorges Project’ and learned this. The Han people are dominant in China but my professor noted there are others including are least one ethnic group where males are six feet and taller and the females five foot 10 inches and taller due to their preference for eating buckwheat rather than white rice as their main grain. Robert Fortune’s height may not have been quite as unusual as I would have believed prior to that lecture.