Tag Archives: Dalhousie University

Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more

I received (via email) a July 21, 2022 news release about the launch of a quantum science initiative in Vancouver (BTW, I have more about the Canadian quantum scene later in this post),

World’s top physicists unite to tackle one of Science’s greatest
mysteries


Vancouver-based Quantum Gravity Society leads international quest to
discover Theory of Quantum Gravity

Vancouver, B.C. (July 21, 2022): More than two dozen of the world’s
top physicists, including three Nobel Prize winners, will gather in
Vancouver this August for a Quantum Gravity Conference that will host
the launch a Vancouver-based Quantum Gravity Institute (QGI) and a
new global research collaboration that could significantly advance our
understanding of physics and gravity and profoundly change the world as
we know it.

For roughly 100 years, the world’s understanding of physics has been
based on Albert Einstein’s General Theory of Relativity (GR), which
explored the theory of space, time and gravity, and quantum mechanics
(QM), which focuses on the behaviour of matter and light on the atomic
and subatomic scale. GR has given us a deep understanding of the cosmos,
leading to space travel and technology like atomic clocks, which govern
global GPS systems. QM is responsible for most of the equipment that
runs our world today, including the electronics, lasers, computers, cell
phones, plastics, and other technologies that support modern
transportation, communications, medicine, agriculture, energy systems
and more.

While each theory has led to countless scientific breakthroughs, in many
cases, they are incompatible and seemingly contradictory. Discovering a
unifying connection between these two fundamental theories, the elusive
Theory of Quantum Gravity, could provide the world with a deeper
understanding of time, gravity and matter and how to potentially control
them. It could also lead to new technologies that would affect most
aspects of daily life, including how we communicate, grow food, deliver
health care, transport people and goods, and produce energy.

“Discovering the Theory of Quantum Gravity could lead to the
possibility of time travel, new quantum devices, or even massive new
energy resources that produce clean energy and help us address climate
change,” said Philip Stamp, Professor, Department of Physics and
Astronomy, University of British Columbia, and Visiting Associate in
Theoretical Astrophysics at Caltech [California Institute of Technology]. “The potential long-term ramifications of this discovery are so incredible that life on earth 100
years from now could look as miraculous to us now as today’s
technology would have seemed to people living 100 years ago.”

The new Quantum Gravity Institute and the conference were founded by the
Quantum Gravity Society, which was created in 2022 by a group of
Canadian technology, business and community leaders, and leading
physicists. Among its goals are to advance the science of physics and
facilitate research on the Theory of Quantum Gravity through initiatives
such as the conference and assembling the world’s leading archive of
scientific papers and lectures associated with the attempts to reconcile
these two theories over the past century.

Attending the Quantum Gravity Conference in Vancouver (August 15-19 [2022])
will be two dozen of the world’s top physicists, including Nobel
Laureates Kip Thorne, Jim Peebles and Sir Roger Penrose, as well as
physicists Baron Martin Rees, Markus Aspelmeyer, Viatcheslav Mukhanov
and Paul Steinhardt. On Wednesday, August 17, the conference will be
open to the public, providing them with a once-in-a-lifetime opportunity
to attend keynote addresses from the world’s pre-eminent physicists.
… A noon-hour discussion on the importance of the
research will be delivered by Kip Thorne, the former Feynman Professor
of physics at Caltech. Thorne is well known for his popular books, and
for developing the original idea for the 2014 film “Interstellar.” He
was also crucial to the development of the book “Contact” by Carl Sagan,
which was also made into a motion picture.

“We look forward to welcoming many of the world’s brightest minds to
Vancouver for our first Quantum Gravity Conference,” said Frank
Giustra, CEO Fiore Group and Co-Founder, Quantum Gravity Society. “One
of the goals of our Society will be to establish Vancouver as a
supportive home base for research and facilitate the scientific
collaboration that will be required to unlock this mystery that has
eluded some of the world’s most brilliant physicists for so long.”

“The format is key,” explains Terry Hui, UC Berkley Physics alumnus
and Co-Founder, Quantum Gravity Society [and CEO of Concord Pacific].
“Like the Solvay Conference nearly 100 years ago, the Quantum Gravity
Conference will bring top scientists together in salon-style gatherings. The
relaxed evening format following the conference will reduce barriers and
allow these great minds to freely exchange ideas. I hope this will help accelerate
the solution of this hundred-year bottleneck between theories relatively
soon.”

“As amazing as our journey of scientific discovery has been over the
past century, we still have so much to learn about how the universe
works on a macro, atomic and subatomic level,” added Paul Lee,
Managing Partner, Vanedge Capital, and Co-Founder, Quantum Gravity
Society. “New experiments and observations capable of advancing work
on this scientific challenge are becoming increasingly possible in
today’s physics labs and using new astronomical tools. The Quantum
Gravity Society looks forward to leveraging that growing technical
capacity with joint theory and experimental work that harnesses the
collective expertise of the world’s great physicists.”

About Quantum Gravity Society

Quantum Gravity Society was founded in Vancouver, Canada in 2020 by a
group of Canadian business, technology and community leaders, and
leading international physicists. The Society’s founding members
include Frank Giustra (Fiore Group), Terry Hui (Concord Pacific), Paul
Lee and Moe Kermani (Vanedge Capital) and Markus Frind (Frind Estate
Winery), along with renowned physicists Abhay Ashtekar, Sir Roger
Penrose, Philip Stamp, Bill Unruh and Birgitta Whaley. For more
information, visit Quantum Gravity Society.

About the Quantum Gravity Conference (Vancouver 2022)


The inaugural Quantum Gravity Conference (August 15-19 [2022]) is presented by
Quantum Gravity Society, Fiore Group, Vanedge Capital, Concord Pacific,
The Westin Bayshore, Vancouver and Frind Estate Winery. For conference
information, visit conference.quantumgravityinstitute.ca. To
register to attend the conference, visit Eventbrite.com.

The front page on the Quantum Gravity Society website is identical to the front page for the Quantum Mechanics & Gravity: Marrying Theory & Experiment conference website. It’s probable that will change with time.

This seems to be an in-person event only.

The site for the conference is in an exceptionally pretty location in Coal Harbour and it’s close to Stanley Park (a major tourist attraction),

The Westin Bayshore, Vancouver
1601 Bayshore Drive
Vancouver, BC V6G 2V4
View map

Assuming that most of my readers will be interested in the ‘public’ day, here’s more from the Wednesday, August 17, 2022 registration page on Eventbrite,

Tickets:

  • Corporate Table of 8 all day access – includes VIP Luncheon: $1,100
  • Ticket per person all day access – includes VIP Luncheon: $129
  • Ticket per person all day access (no VIP luncheon): $59
  • Student / Academia Ticket – all day access (no VIP luncheon): $30

Date:

Wednesday, August 17, 2022 @ 9:00 a.m. – 5:15 p.m. (PT)

Schedule:

  • Registration Opens: 8:00 a.m.
  • Morning Program: 9:00 a.m. – 12:30 p.m.
  • VIP Lunch: 12:30 p.m. – 2:30 p.m.
  • Afternoon Program: 2:30 p.m. – 4:20 p.m.
  • Public Discussion / Debate: 4:20 p.m. – 5:15 p.m.

Program:

9:00 a.m. Session 1: Beginning of the Universe

  • Viatcheslav Mukhanov – Theoretical Physicist and Cosmologist, University of Munich
  • Paul Steinhardt – Theoretical Physicist, Princeton University

Session 2: History of the Universe

  • Jim Peebles, 2019 Nobel Laureate, Princeton University
  • Baron Martin Rees – Cosmologist and Astrophysicist, University of Cambridge
  • Sir Roger Penrose, 2020 Nobel Laureate, University of Oxford (via zoom)

12:30 p.m. VIP Lunch Session: Quantum Gravity — Why Should We Care?

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

2:30 p.m. Session 3: What do Experiments Say?

  • Markus Aspelmeyer – Experimental Physicist, Quantum Optics and Optomechanics Leader, University of Vienna
  • Sir Roger Penrose – 2020 Nobel Laureate (via zoom)

Session 4: Time Travel

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

Event Partners

  • Quantum Gravity Society
  • Westin Bayshore
  • Fiore Group
  • Concord Pacific
  • VanEdge Capital
  • Frind Estate Winery

Marketing Partners

  • BC Business Council
  • Greater Vancouver Board of Trade

Please note that Sir Roger Penrose will be present via Zoom but all the others will be there in the room with you.

Given that Kip Thorne won his 2017 Nobel Prize in Physics (with Rainer Weiss and Barry Barish) for work on gravitational waves, it’s surprising there’s no mention of this in the publicity for a conference on quantum gravity. Finding gravitational waves in 2016 was a very big deal (see Josh Fischman’s and Steve Mirsky’s February 11, 2016 interview with Kip Thorne for Scientific American).

Some thoughts on this conference and the Canadian quantum scene

This conference has a fascinating collection of players. Even I recognized some of the names, e.g., Penrose, Rees, Thorne.

The academics were to be expected and every presenter is an academic, often with their own Wikipedia page. Weirdly, there’s no one from the Perimeter Institute Institute for Theoretical Physics or TRIUMF (a national physics laboratory and centre for particle acceleration) or from anywhere else in Canada, which may be due to their academic specialty rather than an attempt to freeze out Canadian physicists. In any event, the conference academics are largely from the US (a lot of them from CalTech and Stanford) and from the UK.

The business people are a bit of a surprise. The BC Business Council and the Greater Vancouver Board of Trade? Frank Giustra who first made his money with gold mines, then with Lionsgate Entertainment, and who continues to make a great deal of money with his equity investment company, Fiore Group? Terry Hui, Chief Executive Office of Concord Pacific, a real estate development company? VanEdge Capital, an early stage venture capital fund? A winery? Missing from this list is D-Wave Systems, Canada’s quantum calling card and local company. While their area of expertise is quantum computing, I’d still expect to see them present as sponsors.

The academics? These people are not cheap dates (flights, speaker’s fees, a room at the Bayshore, meals). This is a very expensive conference and $129 for lunch and a daypass is likely a heavily subsidized ticket.

Another surprise? No government money/sponsorship. I don’t recall seeing another academic conference held in Canada without any government participation.

Canadian quantum scene

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

Quick facts

Budget 2021 committed $360 million to build the foundation for a National Quantum Strategy, enabling the Government of Canada to build on previous investments in the sector to advance the emerging field of quantum technologies. The quantum sector is key to fuelling Canada’s economy, long-term resilience and growth, especially as technologies mature and more sectors harness quantum capabilities.

Development of quantum technologies offers job opportunities in research and science, software and hardware engineering and development, manufacturing, technical support, sales and marketing, business operations and other fields.

The Government of Canada also invested more than $1 billion in quantum research and science from 2009 to 2020—mainly through competitive granting agency programs, including Natural Sciences and Engineering Research Council of Canada programs and the Canada First Research Excellence Fund—to help establish Canada as a global leader in quantum science.

In addition, the government has invested in bringing new quantum technologies to market, including investments through Canada’s regional development agencies, the Strategic Innovation Fund and the National Research Council of Canada’s Industrial Research Assistance Program.

Bank of Canada, cryptocurrency, and quantum computing

My July 25, 2022 posting features a special project, Note: All emphases are mine,

… (from an April 14, 2022 HKA Marketing Communications news release on EurekAlert),

Multiverse Computing, a global leader in quantum computing solutions for the financial industry and beyond with offices in Toronto and Spain, today announced it has completed a proof-of-concept project with the Bank of Canada through which the parties used quantum computing to simulate the adoption of cryptocurrency as a method of payment by non-financial firms.

“We are proud to be a trusted partner of the first G7 central bank to explore modelling of complex networks and cryptocurrencies through the use of quantum computing,” said Sam Mugel, CTO [Chief Technical Officer] at Multiverse Computing. “The results of the simulation are very intriguing and insightful as stakeholders consider further research in the domain. Thanks to the algorithm we developed together with our partners at the Bank of Canada, we have been able to model a complex system reliably and accurately given the current state of quantum computing capabilities.”

Multiverse Computing conducted its innovative work related to applying quantum computing for modelling complex economic interactions in a research project with the Bank of Canada. The project explored quantum computing technology as a way to simulate complex economic behaviour that is otherwise very difficult to simulate using traditional computational techniques.

By implementing this solution using D-Wave’s annealing quantum computer, the simulation was able to tackle financial networks as large as 8-10 players, with up to 2^90 possible network configurations. Note that classical computing approaches cannot solve large networks of practical relevance as a 15-player network requires as many resources as there are atoms in the universe.

Quantum Technologies and the Council of Canadian Academies (CCA)

In a May 26, 2022 blog posting the CCA announced its Expert Panel on Quantum Technologies (they will be issuing a Quantum Technologies report),

The emergence of quantum technologies will impact all sectors of the Canadian economy, presenting significant opportunities but also risks. At the request of the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED), the Council of Canadian Academies (CCA) has formed an Expert Panel to examine the impacts, opportunities, and challenges quantum technologies present for Canadian industry, governments, and Canadians. Raymond Laflamme, O.C., FRSC, Canada Research Chair in Quantum Information and Professor in the Department of Physics and Astronomy at the University of Waterloo, will serve as Chair of the Expert Panel.

“Quantum technologies have the potential to transform computing, sensing, communications, healthcare, navigation and many other areas,” said Dr. Laflamme. “But a close examination of the risks and vulnerabilities of these technologies is critical, and I look forward to undertaking this crucial work with the panel.”

As Chair, Dr. Laflamme will lead a multidisciplinary group with expertise in quantum technologies, economics, innovation, ethics, and legal and regulatory frameworks. The Panel will answer the following question:

In light of current trends affecting the evolution of quantum technologies, what impacts, opportunities and challenges do these present for Canadian industry, governments and Canadians more broadly?

The Expert Panel on Quantum Technologies:

Raymond Laflamme, O.C., FRSC (Chair), Canada Research Chair in Quantum Information; the Mike and Ophelia Lazaridis John von Neumann Chair in Quantum Information; Professor, Department of Physics and Astronomy, University of Waterloo

Sally Daub, Founder and Managing Partner, Pool Global Partners

Shohini Ghose, Professor, Physics and Computer Science, Wilfrid Laurier University; NSERC Chair for Women in Science and Engineering

Paul Gulyas, Senior Innovation Executive, IBM Canada

Mark W. Johnson, Senior Vice-President, Quantum Technologies and Systems Products, D-Wave Systems

Elham Kashefi, Professor of Quantum Computing, School of Informatics, University of Edinburgh; Directeur de recherche au CNRS, LIP6 Sorbonne Université

Mauritz Kop, Fellow and Visiting Scholar, Stanford Law School, Stanford University

Dominic Martin, Professor, Département d’organisation et de ressources humaines, École des sciences de la gestion, Université du Québec à Montréal

Darius Ornston, Associate Professor, Munk School of Global Affairs and Public Policy, University of Toronto

Barry Sanders, FRSC, Director, Institute for Quantum Science and Technology, University of Calgary

Eric Santor, Advisor to the Governor, Bank of Canada

Christian Sarra-Bournet, Quantum Strategy Director and Executive Director, Institut quantique, Université de Sherbrooke

Stephanie Simmons, Associate Professor, Canada Research Chair in Quantum Nanoelectronics, and CIFAR Quantum Information Science Fellow, Department of Physics, Simon Fraser University

Jacqueline Walsh, Instructor; Director, initio Technology & Innovation Law Clinic, Dalhousie University

You’ll note that both the Bank of Canada and D-Wave Systems are represented on this expert panel.

The CCA Quantum Technologies report (in progress) page can be found here.

Does it mean anything?

Since I only skim the top layer of information (disparagingly described as ‘high level’ by the technology types I used to work with), all I can say is there’s a remarkable level of interest from various groups who are self-organizing. (The interest is international as well. I found the International Society for Quantum Gravity [ISQG], which had its first meeting in 2021.)

I don’t know what the purpose is other than it seems the Canadian focus seems to be on money. The board of trade and business council have no interest in primary research and the federal government’s national quantum strategy is part of Innovation, Science and Economic Development (ISED) Canada’s mandate. You’ll notice ‘science’ is sandwiched between ‘innovation’, which is often code for business, and economic development.

The Bank of Canada’s monetary interests are quite obvious.

The Perimeter Institute mentioned earlier was founded by Mike Lazaridis (from his Wikipedia entry) Note: Links have been removed,

… a Canadian businessman [emphasis mine], investor in quantum computing technologies, and founder of BlackBerry, which created and manufactured the BlackBerry wireless handheld device. With an estimated net worth of US$800 million (as of June 2011), Lazaridis was ranked by Forbes as the 17th wealthiest Canadian and 651st in the world.[4]

In 2000, Lazaridis founded and donated more than $170 million to the Perimeter Institute for Theoretical Physics.[11][12] He and his wife Ophelia founded and donated more than $100 million to the Institute for Quantum Computing at the University of Waterloo in 2002.[8]

That Institute for Quantum Computing? There’s an interesting connection. Raymond Laflamme, the chair for the CCA expert panel, was its director for a number of years and he’s closely affiliated with the Perimeter Institute. (I’m not suggesting anything nefarious or dodgy. It’s a small community in Canada and relationships tend to be tightly interlaced.) I’m surprised he’s not part of the quantum mechanics and gravity conference but that could have something to do with scheduling.

One last interesting bit about Laflamme, from his Wikipedia entry, Note: Links have been removed)

As Stephen Hawking’s PhD student, he first became famous for convincing Hawking that time does not reverse in a contracting universe, along with Don Page. Hawking told the story of how this happened in his famous book A Brief History of Time in the chapter The Arrow of Time.[3] Later on Laflamme made a name for himself in quantum computing and quantum information theory, which is what he is famous for today.

Getting back to the Quantum Mechanics & Gravity: Marrying Theory & Experiment, the public day looks pretty interesting and when is the next time you’ll have a chance to hobnob with all those Nobel Laureates?

Use Gene Editing to Make Better Babies (a February 17, 2022 livestreamed debate from 05:00 PM − 06:30 PM EST)

I have high hopes for this debate on gene edited babies. Intelligence Squared US convenes good debates. (I watched their ‘de-extinction’ debate back in 2019, which coincidentally, featured George Church, one of the debaters in this event.) Not ‘good’ in that I necessarily agree or am interested in the topics but good as in thoughtful. Here’s more from the organization’s mission on their What is IQ2US? webpage,

A nonpartisan, nonprofit organization, Intelligence Squared U.S. addresses a fundamental problem in America: the extreme polarization of our nation and our politics.

Our mission is to restore critical thinking, facts, reason, and civility to American public discourse.

More about the upcoming debate can be found on the Use Gene Editing to Make Better Babies event page,

Use Gene Editing to Make Better Babies
Hosted By John Donvan

Thursday, February 17, 2022
05:00 PM − 06:30 PM EST

A genetic disease runs in your family. Your doctor tells you that, should you wish to have a child, that child is likely to also carry the disease. But a new gene-editing technology could change your fate. It could ensure that your baby is — and remains — healthy. Even more, it could potentially make sure your grandchildren are also free of the disease. What do you do? Now, imagine it’s not a rare genetic disorder, but general illness, or eye color, or cognitive ability, or athleticism. Do you opt into this new world of genetically edited humans? And what if it’s not just you. What your friends, neighbors, and colleagues are also embracing this genetic revolution? Right now, science doesn’t give you that choice. But huge advancements in CRISPR [clustered regularly interspaced short palindromic repeats] technology are making human gene editing a reality. In fact, in 2018, a Chinese scientist announced the first genetically modified babies; twin girls made to resist HIV, smallpox, and malaria. The promise of this technology is clear. But gene editing is not without its perils. Its critics say the technology is destined to exacerbate inequality, pressure all parents (and nations) into editing their children to stay competitive, and meddling with the most basic aspect of our humanity. In this context, we ask the question: Should we use gene editing to make better babies?

Main Points

The use of gene editing allows for couples to have children when they might otherwise have that option unavailable for them. It also allows for less to be left to chance during the pregnancy.

Gene editing will allow for babies to be born with reduced or eliminated chances of inheriting and passing on genes linked to diseases. We have a moral imperative to use technology that will improve the quality of life.

It is only a matter of time before gene editing becomes a widespread technology, potentially used by competitors and rivals on the international stage. If we have the technology, we should use it to our advantage to remain competitive.

The use of gene editing to create “better” outcomes in children will inherently create social stratification based on any gene editing, likely reflecting existing socioeconomic status. Additionally, the term ‘better’ is arbitrary and potentially short-sighted and dangerous.

Currently, there exist reasonable alternatives to gene editing for every condition for which gene editing can be used. 

The technology is still developing, and the long-term effects of any gene-editing could be potentially dangerous with consequences echoing throughout the gene environment. 

A February 8, 2022 Intelligence Squared U.S. news release about the upcoming debate (received via email) provides details about the debaters,

FOR THE MOTION – BIOS

* George Church, Geneticist & Founder, Personal Genome Project 
George Church is one of the nation’s leading geneticists and scholars. He is a professor of genetics at Harvard Medical School and MIT. In 1984, he developed the first direct genomic sequencing method, which resulted in the first genome sequence. He also helped initiate the Human Genome Project in 1984 and the Personal Genome Project in 2005. Church also serves as the director of the National Institutes of Health Center of Excellence in Genomic Science.  

* Amy Webb, Futurist & Author, “The Genesis Machine”  
Amy Webb is an award-winning author and futurist. She is the founder and CEO of the Future Today Institute and was named one of five women changing the world by Forbes. Her new book, “The Genesis Machine,” explores the future of synthetic biology, including human gene editing. Webb is a professor of strategic foresight at New York University’s Stern School of Business and has been elected a life member of the Council on Foreign Relations.  

AGAINST THE MOTION – BIOS

* Marcy Darnovsky, Policy Advocate & Executive Director, Center for Genetics and Society 
Marcy Darnovsky is a policy advocate and one of the most prominent voices on the politics of human biotechnology. As executive director of the Center for Genetics and Society, Darnovsky is focused on the social justice and public interest implications of gene editing. This work is informed by her background as an organizer and advocate in a range of environmental and progressive political movements.    

* Françoise Baylis, Philosopher & Author, “Altered Inheritance”  
Françoise Baylis is a philosopher whose innovative work in bioethics, at the intersection of policy and practice, has stretched the very boundaries of the field. She is the author of “Altered Inheritance: CRISPR and the Ethics of Human Genome Editing,” which explores the scientific, ethical, and political implications of human genome editing. Baylis is a research professor at Dalhousie University and a fellow of the Canadian Academy of Health Sciences. In 2017, she was awarded the Canadian Bioethics Society Lifetime Achievement Award. 

Getting back to the Use Gene Editing to Make Better Babies event page, there are a few options,

Request a Ticket

Have a question? Ask us

There’s also an option to Vote For or Against the Motion but you’ll have to go to the Use Gene Editing to Make Better Babies event page.

Two of the debaters have been mentioned on this blog before, George Church and Françoise Baylis. There are several references to Church including this mention with regard to Dr. He Jiankui and his CRISPR twins (July 28, 2020 posting). Françoise Baylis features in four 2019 postings with the most recent being this October 17, 2019 piece.

For anyone curious about the ‘de-extinction’ debate, it was described here in a January 18, 2019 posting prior to the event.

Genes, intelligence, Chinese CRISPR (clustered regularly interspaced short palindromic repeats) babies, and other children

This started out as an update and now it’s something else. What follows is a brief introduction to the Chinese CRISPR twins; a brief examination of parents, children, and competitiveness; and, finally, a suggestion that genes may not be what we thought. I also include a discussion about how some think scientists should respond when they know beforehand that one of their kin is crossing an ethical line. Basically, this is a complex topic and I am attempting to interweave a number of competing lines of query into one narrative about human nature and the latest genetics obsession.

Introduction to the Chinese CRISPR twins

Back in November 2018 I covered the story about the Chinese scientist, He Jiankui , who had used CRISPR technology to edit genes in embryos that were subsequently implanted in a waiting mother (apparently there could be as many as eight mothers) with the babies being brought to term despite an international agreement (of sorts) not to do that kind of work. At this time, we know of the twins, Lulu and Nana but, by now, there may be more babies. (I have much more detail about the initial controversies in my November 28, 2018 posting.)

It seems the drama has yet to finish unfolding. There may be another consequence of He’s genetic tinkering.

Could the CRISPR babies, Lulu and Nana, have enhanced cognitive abilities?

Yes, according to Antonio Regalado’s February 21, 2019 article (behind a paywall) for MIT’s (Massachusetts Institute of Technology) Technology Review, those engineered babies may have enhanced abilities for learning and remembering.

For those of us who can’t get beyond the paywall, others have been successful. Josh Gabbatiss in his February 22, 2019 article for independent.co.uk provides some detail,

The world’s first gene edited babies may have had their brains unintentionally altered – and perhaps cognitively enhanced – as a result of the controversial treatment undertaken by a team of Chinese scientists.

Dr He Jiankui and his team allegedly deleted a gene from a number of human embryos before implanting them in their mothers, a move greeted with horror by the global scientific community. The only known successful birth so far is the case of twin girls Nana and Lulu.

The now disgraced scientist claimed that he removed a gene called CCR5 [emphasis mine] from their embroyos in an effort to make the twins resistant to infection by HIV.

But another twist in the saga has now emerged after a new paper provided more evidence that the impact of CCR5 deletion reaches far beyond protection against dangerous viruses – people who naturally lack this gene appear to recover more quickly from strokes, and even go further in school. [emphasis mine]

Dr Alcino Silva, a neurobiologist at the University of California, Los Angeles, who helped identify this role for CCR5 said the work undertaken by Dr Jiankui likely did change the girls’ brains.

“The simplest interpretation is that those mutations will probably have an impact on cognitive function in the twins,” he told the MIT Technology Review.

The connection immediately raised concerns that the gene was targeted due to its known links with intelligence, which Dr Silva said was his immediate response when he heard the news.

… there is no evidence that this was Dr Jiankui’s goal and at a press conference organised after the initial news broke, he said he was aware of the work but was “against using genome editing for enhancement”.

..

Claire Maldarelli’s February 22, 2019 article for Popular Science provides more information about the CCR5 gene/protein (Note: Links have been removed),

CCR5 is a protein that sits on the surface of white blood cells, a major component of the human immune system. There, it allows HIV to enter and infect a cell. A chunk of the human population naturally carries a mutation that makes CCR5 nonfunctional (one study found that 10 percent of Europeans have this mutation), which often results in a smaller protein size and one that isn’t located on the outside of the cell, preventing HIV from ever entering and infecting the human immune system.

The goal of the Chinese researchers’ work, led by He Jiankui of the Southern University of Science and Technology located in Shenzhen, was to tweak the embryos’ genome to lack CCR5, ensuring the babies would be immune to HIV.

But genetics is rarely that simple.

In recent years, the CCR5 gene has been a target of ongoing research, and not just for its relationship to HIV. In an attempt to understand what influences memory formation and learning in the brain, a group of researchers at UCLA found that lowering the levels of CCR5 production enhanced both learning and memory formation. This connection led those researchers to think that CCR5 could be a good drug target for helping stroke victims recover: Relearning how to move, walk, and talk is a key component to stroke rehabilitation.

… promising research, but it begs the question: What does that mean for the babies who had their CCR5 genes edited via CRISPR prior to their birth? Researchers speculate that the alternation will have effects on the children’s cognitive functioning. …

John Loeffler’s February 22, 2019 article for interestingengineering.com notes that there are still many questions about He’s (scientist’s name) research including, did he (pronoun) do what he claimed? (Note: Links have been removed),

Considering that no one knows for sure whether He has actually done as he and his team claim, the swiftness of the condemnation of his work—unproven as it is—shows the sensitivity around this issue.

Whether He did in fact edit Lulu and Nana’s genes, it appears he didn’t intend to impact their cognitive capacities. According to MIT Technology Review, not a single researcher studying CCR5’s role in intelligence was contacted by He, even as other doctors and scientists were sought out for advice about his project.

This further adds to the alarm as there is every expectation that He should have known about the connection between CCR5 and cognition.

At a gathering of gene-editing researchers in Hong Kong two days after the birth of the potentially genetically-altered twins was announced, He was asked about the potential impact of erasing CCR5 from the twins DNA on their mental capacity.

He responded that he knew about the potential cognitive link shown in Silva’s 2016 research. “I saw that paper, it needs more independent verification,” He said, before adding that “I am against using genome editing for enhancement.”

The problem, as Silva sees it, is that He may be blazing the trail for exactly that outcome, whether He intends to or not. Silva says that after his 2016 research was published, he received an uncomfortable amount of attention from some unnamed, elite Silicon Valley leaders who seem to be expressing serious interest in using CRISPR to give their children’s brains a boost through gene editing. [emphasis mine]

As such, Silva can be forgiven for not quite believing He’s claims that he wasn’t intending to alter the human genome for enhancement. …

The idea of designer babies isn’t new. As far back as Plato, the thought of using science to “engineer” a better human has been tossed about, but other than selective breeding, there really hasn’t been a path forward.

In the late 1800s, early 1900s, Eugenics made a real push to accomplish something along these lines, and the results were horrifying, even before Nazism. After eugenics mid-wifed the Holocaust in World War II, the concept of designer children has largely been left as fodder for science fiction since few reputable scientists would openly declare their intention to dabble in something once championed and pioneered by the greatest monsters of the 20th century.

Memories have faded though, and CRISPR significantly changes this decades-old calculus. CRISPR makes it easier than ever to target specific traits in order to add or subtract them from an embryos genetic code. Embryonic research is also a diverse enough field that some scientist could see pioneering designer babies as a way to establish their star power in academia while getting their names in the history books, [emphasis mine] all while working in relative isolation. They only need to reveal their results after the fact and there is little the scientific community can do to stop them, unfortunately.

When He revealed his research and data two days after announcing the births of Lulu and Nana, the gene-scientists at the Hong Kong conference were not all that impressed with the quality of He’s work. He has not provided access for fellow researchers to either his data on Lulu, Nana, and their family’s genetic data so that others can verify that Lulu and Nana’s CCR5 genes were in fact eliminated.

This almost rudimentary verification and validation would normally accompany a major announcement such as this. Neither has He’s work undergone a peer-review process and it hasn’t been formally published in any scientific journal—possibly for good reason.

Researchers such as Eric Topol, a geneticist at the Scripps Research Institute, have been finding several troubling signs in what little data He has released. Topol says that the editing itself was not precise and show “all kinds of glitches.”

Gaetan Burgio, a geneticist at the Australian National University, is likewise unimpressed with the quality of He’s work. Speaking of the slides He showed at the conference to support his claim, Burgio calls it amateurish, “I can believe that he did it because it’s so bad.”

Worse of all, its entirely possible that He actually succeeded in editing Lulu and Nana’s genetic code in an ad hoc, unethical, and medically substandard way. Sadly, there is no shortage of families with means who would be willing to spend a lot of money to design their idea of a perfect child, so there is certainly demand for such a “service.”

It’s nice to know (sarcasm icon) that the ‘Silicon Valley elite’ are willing to volunteer their babies for scientific experimentation in a bid to enhance intelligence.

The ethics of not saying anything

Natalie Kofler, a molecular biologist, wrote a February 26, 2019 Nature opinion piece and call to action on the subject of why scientists who were ‘in the know’ remained silent about He’s work prior to his announcements,

Millions [?] were shocked to learn of the birth of gene-edited babies last year, but apparently several scientists were already in the know. Chinese researcher He Jiankui had spoken with them about his plans to genetically modify human embryos intended for pregnancy. His work was done before adequate animal studies and in direct violation of the international scientific consensus that CRISPR–Cas9 gene-editing technology is not ready or appropriate for making changes to humans that could be passed on through generations.

Scholars who have spoken publicly about their discussions with He described feeling unease. They have defended their silence by pointing to uncertainty over He’s intentions (or reassurance that he had been dissuaded), a sense of obligation to preserve confidentiality and, perhaps most consistently, the absence of a global oversight body. Others who have not come forward probably had similar rationales. But He’s experiments put human health at risk; anyone with enough knowledge and concern could have posted to blogs or reached out to their deans, the US National Institutes of Health or relevant scientific societies, such as the Association for Responsible Research and Innovation in Genome Editing (see page 440). Unfortunately, I think that few highly established scientists would have recognized an obligation to speak up.

I am convinced that this silence is a symptom of a broader scientific cultural crisis: a growing divide between the values upheld by the scientific community and the mission of science itself.

A fundamental goal of the scientific endeavour is to advance society through knowledge and innovation. As scientists, we strive to cure disease, improve environmental health and understand our place in the Universe. And yet the dominant values ingrained in scientists centre on the virtues of independence, ambition and objectivity. That is a grossly inadequate set of skills with which to support a mission of advancing society.

Editing the genes of embryos could change our species’ evolutionary trajectory. Perhaps one day, the technology will eliminate heritable diseases such as sickle-cell anaemia and cystic fibrosis. But it might also eliminate deafness or even brown eyes. In this quest to improve the human race, the strengths of our diversity could be lost, and the rights of already vulnerable populations could be jeopardized.

Decisions about how and whether this technology should be used will require an expanded set of scientific virtues: compassion to ensure its applications are designed to be just, humility to ensure its risks are heeded and altruism to ensure its benefits are equitably distributed.

Calls for improved global oversight and robust ethical frameworks are being heeded. Some researchers who apparently knew of He’s experiments are under review by their universities. Chinese investigators have said He skirted regulations and will be punished. But punishment is an imperfect motivator. We must foster researchers’ sense of societal values.

Fortunately, initiatives popping up throughout the scientific community are cultivating a scientific culture informed by a broader set of values and considerations. The Scientific Citizenship Initiative at Harvard University in Cambridge, Massachusetts, trains scientists to align their research with societal needs. The Summer Internship for Indigenous Peoples in Genomics offers genomics training that also focuses on integrating indigenous cultural perspectives into gene studies. The AI Now Institute at New York University has initiated a holistic approach to artificial-intelligence research that incorporates inclusion, bias and justice. And Editing Nature, a programme that I founded, provides platforms that integrate scientific knowledge with diverse cultural world views to foster the responsible development of environmental genetic technologies.

Initiatives such as these are proof [emphasis mine] that science is becoming more socially aware, equitable and just. …

I’m glad to see there’s work being done on introducing a broader set of values into the scientific endeavour. That said, these programmes seem to be voluntary, i.e., people self-select, and those most likely to participate in these programmes are the ones who might be inclined to integrate social values into their work in the first place.

This doesn’t address the issue of how to deal with unscrupulous governments pressuring scientists to create designer babies along with hypercompetitive and possibly unscrupulous individuals such as the members of the ‘Silicon Valley insiders mentioned in Loeffler’s article, teaming up with scientists who will stop at nothing to get their place in the history books.

Like Kofler, I’m encouraged to see these programmes but I’m a little less convinced that they will be enough. What form it might take I don’t know but I think something a little more punitive is also called for.

CCR5 and freedom from HIV

I’ve added this piece about the Berlin and London patients because, back in November 2018, I failed to realize how compelling the idea of eradicating susceptibility to AIDS/HIV might be. Reading about some real life remissions helped me to understand some of He’s stated motivations a bit better. Unfortunately, there’s a major drawback described here in a March 5, 2019 news item on CBC (Canadian Broadcasting Corporation) online news attributed to Reuters,

An HIV-positive man in Britain has become the second known adult worldwide to be cleared of the virus that causes AIDS after he received a bone marrow transplant from an HIV-resistant donor, his doctors said.

The therapy had an early success with a man known as “the Berlin patient,” Timothy Ray Brown, a U.S. man treated in Germany who is 12 years post-transplant and still free of HIV. Until now, Brown was the only person thought to have been cured of infection with HIV, the virus that causes AIDS.

Such transplants are dangerous and have failed in other patients. They’re also impractical to try to cure the millions already infected.

In the latest case, the man known as “the London patient” has no trace of HIV infection, almost three years after he received bone marrow stem cells from a donor with a rare genetic mutation that resists HIV infection — and more than 18 months after he came off antiretroviral drugs.

“There is no virus there that we can measure. We can’t detect anything,” said Ravindra Gupta, a professor and HIV biologist who co-led a team of doctors treating the man.

Gupta described his patient as “functionally cured” and “in remission,” but cautioned: “It’s too early to say he’s cured.”

Gupta, now at Cambridge University, treated the London patient when he was working at University College London. The man, who has asked to remain anonymous, had contracted HIV in 2003, Gupta said, and in 2012 was also diagnosed with a type of blood cancer called Hodgkin’s lymphoma.

In 2016, when he was very sick with cancer, doctors decided to seek a transplant match for him.

“This was really his last chance of survival,” Gupta told Reuters.

Doctors found a donor with a gene mutation known as CCR5 delta 32, which confers resistance to HIV. About one per cent of people descended from northern Europeans have inherited the mutation from both parents and are immune to most HIV. The donor had this double copy of the mutation.

That was “an improbable event,” Gupta said. “That’s why this has not been observed more frequently.”

Most experts say it is inconceivable such treatments could be a way of curing all patients. The procedure is expensive, complex and risky. To do this in others, exact match donors would have to be found in the tiny proportion of people who have the CCR5 mutation.

Specialists said it is also not yet clear whether the CCR5 resistance is the only key [emphasis mine] — or whether the graft-versus-host disease may have been just as important. Both the Berlin and London patients had this complication, which may have played a role in the loss of HIV-infected cells, Gupta said.

Not only is there some question as to what role the CCR5 gene plays, there’s also a question as to whether or not we know what role genes play.

A big question: are genes what we thought?

Ken Richardson’s January 3, 2019 article for Nautilus (I stumbled across it on May 14, 2019 so I’m late to the party) makes and supports a startling statement, It’s the End of the Gene As We Know It We are not nearly as determined by our genes as once thought (Note: A link has been removed),

We’ve all seen the stark headlines: “Being Rich and Successful Is in Your DNA” (Guardian, July 12); “A New Genetic Test Could Help Determine Children’s Success” (Newsweek, July 10); “Our Fortunetelling Genes” make us (Wall Street Journal, Nov. 16); and so on.

The problem is, many of these headlines are not discussing real genes at all, but a crude statistical model of them, involving dozens of unlikely assumptions. Now, slowly but surely, that whole conceptual model of the gene is being challenged.

We have reached peak gene, and passed it.

The preferred dogma started to appear in different versions in the 1920s. It was aptly summarized by renowned physicist Erwin Schrödinger in a famous lecture in Dublin in 1943. He told his audience that chromosomes “contain, in some kind of code-script, the entire pattern of the individual’s future development and of its functioning in the mature state.”

Around that image of the code a whole world order of rank and privilege soon became reinforced. These genes, we were told, come in different “strengths,” different permutations forming ranks that determine the worth of different “races” and of different classes in a class-structured society. A whole intelligence testing movement was built around that preconception, with the tests constructed accordingly.

The image fostered the eugenics and Nazi movements of the 1930s, with tragic consequences. Governments followed a famous 1938 United Kingdom education commission in decreeing that, “The facts of genetic inequality are something that we cannot escape,” and that, “different children … require types of education varying in certain important respects.”

Today, 1930s-style policy implications are being drawn once again. Proposals include gene-testing at birth for educational intervention, embryo selection for desired traits, identifying which classes or “races” are fitter than others, and so on. And clever marketizing now sees millions of people scampering to learn their genetic horoscopes in DNA self-testing kits.[emphasis mine]

So the hype now pouring out of the mass media is popularizing what has been lurking in the science all along: a gene-god as an entity with almost supernatural powers. Today it’s the gene that, in the words of the Anglican hymn, “makes us high and lowly and orders our estate.”

… at the same time, a counter-narrative is building, not from the media but from inside science itself.

So it has been dawning on us is that there is no prior plan or blueprint for development: Instructions are created on the hoof, far more intelligently than is possible from dumb DNA. That is why today’s molecular biologists are reporting “cognitive resources” in cells; “bio-information intelligence”; “cell intelligence”; “metabolic memory”; and “cell knowledge”—all terms appearing in recent literature.1,2 “Do cells think?” is the title of a 2007 paper in the journal Cellular and Molecular Life Sciences.3 On the other hand the assumed developmental “program” coded in a genotype has never been described.


It is such discoveries that are turning our ideas of genetic causation inside out. We have traditionally thought of cell contents as servants to the DNA instructions. But, as the British biologist Denis Noble insists in an interview with the writer Suzan Mazur,1 “The modern synthesis has got causality in biology wrong … DNA on its own does absolutely nothing [ emphasis mine] until activated by the rest of the system … DNA is not a cause in an active sense. I think it is better described as a passive data base which is used by the organism to enable it to make the proteins that it requires.”

I highly recommend reading Richardson’s article in its entirety. As well, you may want to read his book, ” Genes, Brains and Human Potential: The Science and Ideology of Intelligence .”

As for “DNA on its own doing absolutely nothing,” that might be a bit of a eye-opener for the Silicon Valley elite types investigating cognitive advantages attributed to the lack of a CCR5 gene. Meanwhile, there are scientists inserting a human gene associated with brain development into monkeys,

Transgenic monkeys and human intelligence

An April 2, 2019 news item on chinadaily.com describes research into transgenic monkeys,

Researchers from China and the United States have created transgenic monkeys carrying a human gene that is important for brain development, and the monkeys showed human-like brain development.

Scientists have identified several genes that are linked to primate brain size. MCPH1 is a gene that is expressed during fetal brain development. Mutations in MCPH1 can lead to microcephaly, a developmental disorder characterized by a small brain.

In the study published in the Beijing-based National Science Review, researchers from the Kunming Institute of Zoology, Chinese Academy of Sciences, the University of North Carolina in the United States and other research institutions reported that they successfully created 11 transgenic rhesus monkeys (eight first-generation and three second-generation) carrying human copies of MCPH1.

According to the research article, brain imaging and tissue section analysis showed an altered pattern of neuron differentiation and a delayed maturation of the neural system, which is similar to the developmental delay (neoteny) in humans.

Neoteny in humans is the retention of juvenile features into adulthood. One key difference between humans and nonhuman primates is that humans require a much longer time to shape their neuro-networks during development, greatly elongating childhood, which is the so-called “neoteny.”

Here’s a link to and a citation for the paper,

Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development by Lei Shi, Xin Luo, Jin Jiang, Yongchang Chen, Cirong Liu, Ting Hu, Min Li, Qiang Lin, Yanjiao Li, Jun Huang Hong Wang, Yuyu Niu, Yundi Shi, Martin Styner, Jianhong Wang, Yi Lu, Xuejin Sun, Hualin Yu, Weizhi Ji, Bing Su. National Science Review, nwz043, https://doi.org/10.1093/nsr/nwz043 Published: 27 March 2019

This appears to be an open access paper,

Transgenic monkeys and an ethical uproar

Predictably, this research set off alarms as Sharon Kirkey’s April 12, 2019 article for the National Post describes in detail (Note: A link has been removed)l,

Their brains may not be bigger than normal, but monkeys created with human brain genes are exhibiting cognitive changes that suggest they might be smarter — and the experiments have ethicists shuddering.

In the wake of the genetically modified human babies scandal, Chinese scientists [as a scientist from the US] are drawing fresh condemnation from philosophers and ethicists, this time over the announcement they’ve created transgenic monkeys with elements of a human brain.

Six of the monkeys died, however the five survivors “exhibited better short-term memory and shorter reaction time” compared to their wild-type controls, the researchers report in the journa.

According to the researchers, the experiments represent the first attempt to study the genetic basis of human brain origin using transgenic monkeys. The findings, they insist, “have the potential to provide important — and potentially unique — insights into basic questions of what actually makes humans unique.”

For others, the work provokes a profoundly moral and visceral uneasiness. Even one of the collaborators — University of North Carolina computer scientist Martin Styner — told MIT Technology Review he considered removing his name from the paper, which he said was unable to find a publisher in the West.

“Now we have created this animal which is different than it is supposed to be,” Styner said. “When we do experiments, we have to have a good understanding of what we are trying to learn, to help society, and that is not the case here.” l

In an email to the National Post, Styner said he has an expertise in medical image analysis and was approached by the researchers back in 2011. He said he had no input on the science in the project, beyond how to best do the analysis of their MRI data. “At the time, I did not think deeply enough about the ethical consideration.”

….

When it comes to the scientific use of nonhuman primates, ethicists say the moral compass is skewed in cases like this.

Given the kind of beings monkeys are, “I certainly would have thought you would have had to have a reasonable expectation of high benefit to human beings to justify the harms that you are going to have for intensely social, cognitively complex, emotional animals like monkeys,” said Letitia Meynell, an associate professor in the department of philosophy at Dalhousie University in Halifax.

“It’s not clear that this kind of research has any reasonable expectation of having any useful application for human beings,” she said.

The science itself is also highly dubious and fundamentally flawed in its logic, she said.
“If you took Einstein as a baby and you raised him in the lab he wouldn’t turn out to be Einstein,” Meynell said. “If you’re actually interested in studying the cognitive complexity of these animals, you’re not going to get a good representation of that by raising them in labs, because they can’t develop the kind of cognitive and social skills they would in their normal environment.”

The Chinese said the MCPH1 gene is one of the strongest candidates for human brain evolution. But looking at a single gene is just bad genetics, Meynell said. Multiple genes and their interactions affect the vast majority of traits.

My point is that there’s a lot of research focused on intelligence and genes when we don’t really know what role genes actually play and when there doesn’t seem to be any serious oversight.

Global plea for moratorium on heritable genome editing

A March 13, 2019 University of Otago (New Zealand) press release (also on EurekAlert) describes a global plea for a moratorium,

A University of Otago bioethicist has added his voice to a global plea for a moratorium on heritable genome editing from a group of international scientists and ethicists in the wake of the recent Chinese experiment aiming to produce HIV immune children.

In an article in the latest issue of international scientific journal Nature, Professor Jing-Bao Nie together with another 16 [17] academics from seven countries, call for a global moratorium on all clinical uses of human germline editing to make genetically modified children.

They would like an international governance framework – in which nations voluntarily commit to not approve any use of clinical germline editing unless certain conditions are met – to be created potentially for a five-year period.

Professor Nie says the scientific scandal of the experiment that led to the world’s first genetically modified babies raises many intriguing ethical, social and transcultural/transglobal issues. His main personal concerns include what he describes as the “inadequacy” of the Chinese and international responses to the experiment.

“The Chinese authorities have conducted a preliminary investigation into the scientist’s genetic misadventure and issued a draft new regulation on the related biotechnologies. These are welcome moves. Yet, by putting blame completely on the rogue scientist individually, the institutional failings are overlooked,” Professor Nie explains.

“In the international discourse, partly due to the mentality of dichotomising China and the West, a tendency exists to characterise the scandal as just a Chinese problem. As a result, the global context of the experiment and Chinese science schemes have been far from sufficiently examined.”

The group of 17 [18] scientists and bioethicists say it is imperative that extensive public discussions about the technical, scientific, medical, societal, ethical and moral issues must be considered before germline editing is permitted. A moratorium would provide time to establish broad societal consensus and an international framework.

“For germline editing to even be considered for a clinical application, its safety and efficacy must be sufficient – taking into account the unmet medical need, the risks and potential benefits and the existence of alternative approaches,” the opinion article states.

Although techniques have improved in recent years, germline editing is not yet safe or effective enough to justify any use in the clinic with the risk of failing to make the desired change or of introducing unintended mutations still unacceptably high, the scientists and ethicists say.

“No clinical application of germline editing should be considered unless its long-term biological consequences are sufficiently understood – both for individuals and for the human species.”

The proposed moratorium does not however, apply to germline editing for research uses or in human somatic (non-reproductive) cells to treat diseases.

Professor Nie considers it significant that current presidents of the UK Royal Society, the US National Academy of Medicine and the Director and Associate Director of the US National Institute of Health have expressed their strong support for such a proposed global moratorium in two correspondences published in the same issue of Nature. The editorial in the issue also argues that the right decision can be reached “only through engaging more communities in the debate”.

“The most challenging questions are whether international organisations and different countries will adopt a moratorium and if yes, whether it will be effective at all,” Professor Nie says.

A March 14, 2019 news item on phys.org provides a précis of the Comment in Nature. Or, you ,can access the Comment with this link

Adopt a moratorium on heritable genome editing; Eric Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, Paul Berg and specialists from seven countries call for an international governance framework.signed by: Eric S. Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, Paul Berg, Catherine Bourgain, Bärbel Friedrich, J. Keith Joung, Jinsong Li, David Liu, Luigi Naldini, Jing-Bao Nie, Renzong Qiu, Bettina Schoene-Seifert, Feng Shao, Sharon Terry, Wensheng Wei, & Ernst-Ludwig Winnacker. Nature 567, 165-168 (2019) doi: 10.1038/d41586-019-00726-5

This Comment in Nature is open access.

World Health Organization (WHO) chimes in

Better late than never, eh? The World Health Organization has called heritable gene editing of humans ‘irresponsible’ and made recommendations. From a March 19, 2019 news item on the Canadian Broadcasting Corporation’s Online news webpage,

A panel convened by the World Health Organization said it would be “irresponsible” for scientists to use gene editing for reproductive purposes, but stopped short of calling for a ban.

The experts also called for the U.N. health agency to create a database of scientists working on gene editing. The recommendation was announced Tuesday after a two-day meeting in Geneva to examine the scientific, ethical, social and legal challenges of such research.

“At this time, it is irresponsible for anyone to proceed” with making gene-edited babies since DNA changes could be passed down to future generations, the experts said in a statement.

Germline editing has been on my radar since 2015 (see my May 14, 2015 posting) and the probability that someone would experiment with viable embryos and bring them to term shouldn’t be that much of a surprise.

Slow science from Canada

Canada has banned germline editing but there is pressure to lift that ban. (I touched on the specifics of the campaign in an April 26, 2019 posting.) This March 17, 2019 essay on The Conversation by Landon J Getz and Graham Dellaire, both of Dalhousie University (Nova Scotia, Canada) elucidates some of the discussion about whether research into germline editing should be slowed down.

Naughty (or Haughty, if you prefer) scientists

There was scoffing from some, if not all, members of the scientific community about the potential for ‘designer babies’ that can be seen in an excerpt from an article by Ed Yong for The Atlantic (originally published in my ,August 15, 2017 posting titled: CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?),

Ed Yong in an Aug. 2, 2017 article for The Atlantic offered a comprehensive overview of the research and its implications (unusually for Yong, there seems to be mildly condescending note but it’s worth ignoring for the wealth of information in the article; Note: Links have been removed),

” … the full details of the experiment, which are released today, show that the study is scientifically important but much less of a social inflection point than has been suggested. “This has been widely reported as the dawn of the era of the designer baby, making it probably the fifth or sixth time people have reported that dawn,” says Alta Charo, an expert on law and bioethics at the University of Wisconsin-Madison. “And it’s not.”

Then about 15 months later, the possibility seemed to be realized.

Interesting that scientists scoffed at the public’s concerns (you can find similar arguments about robots and artificial intelligence not being a potentially catastrophic problem), yes? Often, nonscientists’ concerns are dismissed as being founded in science fiction.

To be fair, there are times when concerns are overblown, the difficulty is that it seems the scientific community’s default position is to uniformly dismiss concerns rather than approaching them in a nuanced fashion. If the scoffers had taken the time to think about it, germline editing on viable embryos seems like an obvious and inevitable next step (as I’ve noted previously).

At this point, no one seems to know if He actually succeeded at removing CCR5 from Lulu’s and Nana’s genomes. In November 2018, scientists were guessing that at least one of the twins was a ‘mosaic’. In other words, some of her cells did not include CCR5 while others did.

Parents, children, competition

A recent college admissions scandal in the US has highlighted the intense competition to get into high profile educational institutions. (This scandal brought to mind the Silicon Valey elite who wanted to know more about gene editing that might result in improved cognitive skills.)

Since it can be easy to point the finger at people in other countries, I’d like to note that there was a Canadian parent among these wealthy US parents attempting to give their children advantages by any means, legal or not. (Note: These are alleged illegalities.) From a March 12, 2019 news article by Scott Brown, Kevin Griffin, and Keith Fraser for the Vancouver Sun,

Vancouver businessman and former CFL [Canadian Football League] player David Sidoo has been charged with conspiracy to commit mail and wire fraud in connection with a far-reaching FBI investigation into a criminal conspiracy that sought to help privileged kids with middling grades gain admission to elite U.S. universities.

In a 12-page indictment filed March 5 [2019] in the U.S. District Court of Massachusetts, Sidoo is accused of making two separate US$100,000 payments to have others take college entrance exams in place of his two sons.

Sidoo is also accused of providing documents for the purpose of creating falsified identification cards for the people taking the tests.

In what is being called the biggest college-admissions scam ever prosecuted by the U.S. Justice Department, Sidoo has been charged with nearly 50 other people. Nine athletic coaches and 33 parents including Hollywood actresses Felicity Huffman and Lori Loughlin. are among those charged in the investigation, dubbed Operation Varsity Blues.

According to the indictment, an unidentified person flew from Tampa, Fla., to Vancouver in 2011 to take the Scholastic Aptitude Test (SAT) in place of Sidoo’s older son and was directed not to obtain too high a score since the older son had previously taken the exam, obtaining a score of 1460 out of a possible 2400.

A copy of the resulting SAT score — 1670 out of 2400 — was mailed to Chapman University, a private university in Orange, Calif., on behalf of the older son, who was admitted to and ultimately enrolled in the university in January 2012, according to the indictment.

It’s also alleged that Sidoo arranged to have someone secretly take the older boy’s Canadian high school graduation exam, with the person posing as the boy taking the exam in June 2012.

The Vancouver businessman is also alleged to have paid another $100,000 to have someone take the SAT in place of his younger son.

Sidoo, an investment banker currently serving as CEO of Advantage Lithium, was awarded the Order of B.C. in 2016 for his philanthropic efforts.

He is a former star with the UBC [University of British Columbia] Thunderbirds football team and helped the school win its first Vanier Cup in 1982. He went on to play five seasons in the CFL with the Saskatchewan Roughriders and B.C. Lions.

Sidoo is a prominent donor to UBC and is credited with spearheading an alumni fundraising campaign, 13th Man Foundation, that resuscitated the school’s once struggling football team. He reportedly donated $2 million of his own money to support the program.

Sidoo Field at UBC’s Thunderbird Stadium is named in his honour.

In 2016, he received the B.C. [British Columbia] Sports Hall of Fame’s W.A.C. Bennett Award for his contributions to the sporting life of the province.

The question of whether or not these people like the ‘Silicon Valley elite’ (mentioned in John Loeffler’s February 22, 2019 article) would choose to tinker with their children’s genome if it gave them an advantage, is still hypothetical but it’s easy to believe that at least some might seriously consider the possibility especially if the researcher or doctor didn’t fully explain just how little is known about the impact of tinkering with the genome. For example, there’s a big question about whether those parents in China fully understood what they signed up for.

By the way, cheating scandals aren’t new (see Vanity Fair’s Schools For Scandal; The Inside Dramas at 16 of America’s Most Elite Campuses—Plus Oxford! Edited by Graydon Carter, published in August 2018 and covering 25 years of the magazine’s reporting). On a similar line, there’s this March13, 2019 essay which picks apart some of the hierarchical and power issues at play in the US higher educational system which led to this latest (but likely not last) scandal.

Scientists under pressure

While Kofler’s February 26, 2019 Nature opinion piece and call to action seems to address the concerns regarding germline editing by advocating that scientists become more conscious of how their choices impact society, as I noted earlier, the ideas expressed seem a little ungrounded in harsh realities. Perhaps it’s time to give some recognition to the various pressures put on scientists from their own governments and from an academic environment that fosters ‘success’ at any cost to peer pressure, etc. (For more about the costs of a science culture focused on success, read this March 2, 2019 blog posting by Jon Tennant on digital-science.com for a breakdown.)

One other thing I should mention, for some scientists getting into the history books, winning Nobel prizes, etc. is a very important goal. Scientists are people too.

Some thoughts

There seems to be a great disjunction between what Richardson presents as an alternative narrative to the ‘gene-god’ and how genetic research is being performed and reported on. What is clear to me is that no one really understands genetics and this business of inserting and deleting genes is essentially research designed to satisfy curiosity and/or allay fears about being left behind in a great scientific race to a an unknown destination.

I’d like to see some better reporting and a more agile response by the scientific community, the various governments, and international agencies. What shape or form a more agile response might take, I don’t know but I’d like to see some efforts.

Back to the regular programme

There’s a lot about CRISPR here on this blog. A simple search of ‘CRISPR ‘in the blog’s search engine should get you more than enough information about the technology and the various issues ranging from intellectual property to risks and more.

The three part series (CRISPR and editing the germline in the US …), mentioned previously, was occasioned by the publication of a study on germline editing research with nonviable embryos in the US. The 2017 research was done at the Oregon Health and Science University by Shoukhrat Mitalipov following similar research published by Chinese scientists in 2015. The series gives relatively complete coverage of the issues along with an introduction to CRISPR and embedded video describing the technique. Here’s part 1 to get you started..

Dalhousie University’s (Halifax, Nova Scotia, Canada) 200th anniversary with Axel Becke whose discoveries apply to nanotechnology and pharmaceuticals

To celebrate its 200th, Dalhousie University has developed the Dalhousie Originals 200th anniversary storytelling project featuring a number of prominent intellectuals and scientists associated with the university. Axel Becke, whose work has had an impact on nanotechnology and more, is one of them (from the Dalhousie Originals Axel Becke webpage),

Though he didn’t know it at the time, Axel Becke’s (1953 – present) career took a turn for the stratosphere during a 1991 lunch on the French Riviera with Dr. John Pople.

Over the previous decade, Dr. Becke had developed a formula to vastly improve the accuracy of chemical calculations using Density Functional Theory (DFT). But few were listening to him. Now, at a conference lunch, he had the ear of a true titan of theoretical chemistry and future Nobel Prize winner. And it didn’t take long for Dr. Pople to be convinced — certainly before the cheque arrived.

That conversation “turned the tide,” says Dr. Becke, and a year later Dr. Pople, who had discovered the most ubiquitous computational chemistry code in the world, was using Dr. Becke’s ideas.

Today those ideas have made DFT the most-used computational method in electronic structure theory. Its applications allow us to do everything from developing nanotechnology to designing better drugs to making stronger concrete. “At a fundamental level, DFT can be used to describe all of chemistry, biochemistry, biology, nanosystems and materials,” Dr. Becke told Nature in 2014. “Everything in our terrestrial world depends on the motions of electrons — therefore, DFT literally underlies everything.”

No wonder, then, Dr. Becke is one of the most cited scientists in the world. Two of his papers landed on Nature’s 2014 list of the top 100 most-referenced science articles ever — one at number 25, the other at number eight, both with Becke as the sole author.

A big credit for his success goes to Russell Boyd, he says, a mentor and his supervisor during his postdoctoral fellowship at Dal from 1981 to 1984. Dr. Boyd was a young, talented theoretical chemist in his own right, and he was smart enough to let a 28-year-old Dr. Becke explore. “The three years that I was here, he basically just left me alone. And that’s where I came up with my ideas, and those ideas have served me for the rest of my career, and they serve me now.”

After a couple of decades as a chemistry professor at Queen’s University, Becke returned to Dal in 2006 to serve as the Killam Chair in Computational Science. From then until he retired from teaching and became Professor Emeritus in 2015, the accolades started pouring in: Fellow of the Royal Society of London (2006), Theoretical Chemistry Award of the American Chemical Society (2014), Medal of the Chemical Institute of Canada (2015), the Canada Council Killam Prize (2016) and Canada’s most prestigious science prize: the $1 million NSERC Herzberg Gold Medal (2015).

And to think it all hinged on a lunch beside the Mediterranean.

“When I look back on things, I’m enjoying the ride,” says Dr. Becke. “But if it hadn’t been for that conversation with Sir John Pople in 1991, it might not have happened. Of course we don’t know, but it might not have happened.”

There is a very short video,

You are seeing Axel Becke in the still but it’s actor, Brandon Liddard  (BA’17 Theatre, Fountain School of Performing Arts, Dalhousie) in a re-enactment.

Enjoy!

Cosmopolitanism and the Local in Science and Nature (a three year Canadian project nearing its end date)

Working on a grant from Canada’s Social Sciences and Humanities Research Council (SSHRC), the  Cosmopolitanism and the Local in Science and Nature project has been establishing a ‘cosmopolitanism’ research network that critiques the eurocentric approach so beloved of Canadian academics and has set up nodes across Canada and in India and Southeast Asia.

I first wrote about the project in a Dec. 12, 2014 posting which also featured a job listing. It seems I was there for the beginning and now for the end. For one of the project’s blog postings in its final months, they’re profiling one of their researchers (Dr. Letitia Meynell, Sept. 6, 2017 posting),

1. What is your current place of research?

I am an associate professor in philosophy at Dalhousie University, cross appointed with gender and women studies.

2. Could you give us some details about your education background?

My 1st degree was in Theater, which I did at York University. I did, however, minor in Philosophy and I have always had a particular interest in philosophy of science. So, my minor was perhaps a little anomalous, comprising courses on philosophy of physics, philosophy of nature, and the philosophy of Karl Popper along with courses on aesthetics and existentialism. After taking a few more courses in philosophy at the University of Calgary, I enrolled there for a Master’s degree, writing a thesis on conceptualization, with a view to its role in aesthetics and epistemology. From there I moved to the University of Western Ontario where I brought these three interests together, writing a thesis on the epistemology of pictures in science. Throughout these studies I maintained a keen interest in feminist philosophy, especially the politics of knowledge, and I have always seen my work on pictures in science as fitting into broader feminist commitments.

3. What projects are you currently working on and what are some projects you’ve worked on in the past?

4. What’s one thing you particularly enjoy about working in your field?

5. How do you relate your work to the broader topic of ‘cosmopolitanism and the local’?

As feminist philosophers have long realized, having perspectives on a topic that are quite different to your own is incredibly powerful for critically assessing both your own views and those of others. So, for instance, if you want to address the exploitation of nonhuman animals in our society it is incredibly powerful to consider how people from, say, South Asian traditions have thought about the differences, similarities, and relationships between humans and other animals. Keeping non-western perspectives in mind, even as one works in a western philosophical tradition, helps one to be both more rigorous in one’s analyses and less dogmatic. Rigor and critical openness are, in my opinion, central virtues of philosophy and, indeed, science.

Dr. Maynell will be speaking at the ‘Bridging the Gap: Scientific Imagination Meets Aesthetic Imagination‘ conference Oct. 5-6, 2017 at the London School of Economics,

On 5–6 October, this 2-day conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play.

Why, how, and when do scientists imagine, and what epistemological roles does the imagination play in scientific progress? Over the past few years, many philosophical accounts have emerged that are relevant to these questions. Roman Frigg, Arnon Levy, and Adam Toon have developed theories of scientific models that place imagination at the heart of modelling practice. And James R. Brown, Tamar Gendler, James McAllister, Letitia Meynell, and Nancy Nersessian have developed theories that recognize the indispensable role of the imagination in the performance of thought experiments. On the other hand, philosophers like Michael Weisberg dismiss imagination-based views of scientific modelling as mere “folk ontology”, and John D. Norton seems to claim that thought experiments are arguments whose imaginary components are epistemologically irrelevant.

In this conference we turn to aesthetics for help in addressing issues concerning scientific imagination-use. Aesthetics is said to have begun in 1717 with an essay called “The Pleasures of the Imagination” by Joseph Addison, and ever since imagination has been what Michael Polyani called “the cornerstone of aesthetic theory”. In recent years Kendall Walton has fruitfully explored the fundamental relevance of imagination for understanding literary, visual and auditory fictions. And many others have been inspired to do the same, including Greg Currie, David Davies, Peter Lamarque, Stein Olsen, and Kathleen Stock.

This conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play. Specific topics may include:

  • What kinds of imagination are involved in science?
  • What is the relation between scientific imagination and aesthetic imagination?
  • What are the structure and limits of knowledge and understanding acquired through imagination?
  • From a methodological point of view, how can aesthetic considerations about imagination play a role in philosophical accounts of scientific reasoning?
  • What can considerations about scientific imagination contribute to our understanding of aesthetic imagination?

The conference will include eight invited talks and four contributed papers. Two of the four slots for contributed papers are being reserved for graduate students, each of whom will receive a travel bursary of £100.

Invited speakers

Margherita Arcangeli (Humboldt University, Berlin)

Andrej Bicanski (Institute of Cognitive Neuroscience, University College London)

Gregory Currie (University of York)

Jim Faeder (University of Pittsburgh School of Medicine)

Tim de Mey (Erasmus University of Rotterdam)

Laetitia Meynell (Dalhousie University, Canada)

Adam Toon (University of Exeter)

Margot Strohminger (Humboldt University, Berlin)

This event is organised by LSE’s Centre for Philosophy of Natural and Social Science and it is co-sponsored by the British Society of Aesthetics, the Mind Association, the Aristotelian Society and the Marie Skłodowska-Curie grant agreement No 654034.

I wonder if they’ll be rubbing shoulders with Angelina Jolie? She is slated to be teaching there in Fall 2017 according to a May 23, 2016 news item in the Guardian (Note: Links have been removed),

The Hollywood actor and director has been appointed a visiting professor at the London School of Economics, teaching a course on the impact of war on women.

From 2017, Jolie will join the former foreign secretary William Hague as a “professor in practice”, the university announced on Monday, as part of a new MSc course on women, peace and security, which LSE says is the first of its kind in the world.

The course, it says, is intended to “[develop] strategies to promote gender equality and enhance women’s economic, social and political participation and security”, with visiting professors playing an active part in giving lectures, participating in workshops and undertaking their own research.

Getting back to ‘Cosmopolitanism’, some of the principals organized a summer 2017 event (from a Sept. 6, 2017 posting titled: Summer Events – 25th International Congress of History of Science and Technology),

CosmoLocal partners Lesley Cormack (University of Alberta, Canada), Gordon McOuat (University of King’s College, Halifax, Canada), and Dhruv Raina (Jawaharlal Nehru University, India) organized a symposium “Cosmopolitanism and the Local in Science and Nature” as part of the 25th International Congress of History of Science and Technology.  The conference was held July 23-29, 2017, in Rio de Janeiro, Brazil.  The abstract of the CosmoLocal symposium is below, and a pdf version can be found here.

Science, and its associated technologies, is typically viewed as “universal”. At the same time we were also assured that science can trace its genealogy to Europe in a period of rising European intellectual and imperial global force, ‘going outwards’ towards the periphery. As such, it is strikingly parochial. In a kind of sad irony, the ‘subaltern’ was left to retell that tale as one of centre-universalism dominating a traditionalist periphery. Self-described ‘modernity’ and ‘the west’ (two intertwined concepts of recent and mutually self-supporting origin) have erased much of the local engagement and as such represent science as emerging sui generis, moving in one direction. This story is now being challenged within sociology, political theory and history.

… Significantly, scholars who study the history of science in Asia and India have been examining different trajectories for the origin and meaning of science. It is now time for a dialogue between these approaches. Grounding the dialogue is the notion of a “cosmopolitical” science. “Cosmopolitics” is a term borrowed from Kant’s notion of perpetual peace and modern civil society, imagining shared political, moral and economic spaces within which trade, politics and reason get conducted.  …

The abstract is a little ‘high falutin’ but I’m glad to see more efforts being made in  Canada to understand science and its history as a global affair.

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

This sucker (INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research, also known as, Canada’s Fundamental Science Review 2017 or the Naylor report) is a 280 pp. (PDF) and was released on Monday, April 10, 2017. I didn’t intend that this commentary should stretch out into three parts (sigh). Them’s the breaks. This first part provides an introduction to the panel and the report as well as some ‘first thoughts’. Part 2 offers more detailed thoughts and Part 3 offers ‘special cases’ and sums up some of the ideas first introduced in part 1.

I first wrote about this review in a June 15, 2017 posting where amongst other comments I made this one,

Getting back to the review and more specifically, the panel, it’s good to see that four of the nine participants are women but other than that there doesn’t seem to be much diversity, i.e.,the majority (five) spring from the Ontario/Québec nexus of power and all the Canadians are from the southern part of country. Back to diversity, there is one business man, Mike Laziridis known primarily as the founder of Research in Motion (RIM or more popularly as the Blackberry company) making the panel not a wholly ivory tower affair. Still, I hope one day these panels will have members from the Canadian North and international members who come from somewhere other than the US, Great Britain, and/or if they’re having a particularly wild day, Germany. Here are some candidate countries for other places to look for panel members: Japan, Israel, China, South Korea, and India. Other possibilities include one of the South American countries, African countries, and/or the Middle Eastern countries.

Take the continent of Africa for example, where many countries seem to have successfully tackled one of the issues as we face. Specifically, the problem of encouraging young researchers. …

Here’s a quick summary about the newly released report from the April 10, 2017 federal government news release on Canada’s Public Policy Forum,

Today [April 10, 2017], the Government of Canada published the final report of the expert panel on Canada’s Fundamental Science Review. Commissioned by the Honourable Kirsty Duncan, Minister of Science, the report by the blue-ribbon panel offers a comprehensive review of the mechanisms for federal funding that supports research undertaken at academic institutions and research institutes across Canada, as well as the levels of that funding. It provides a multi-year blueprint for improving the oversight and governance of what the panelists call the “research ecosystem.” The report also recommends making major new investments to restore support for front-line research and strengthen the foundations of Canadian science and research at this pivotal point in global history.

The review is the first of its type in more than 40 years. While it focused most closely on the four major federal agencies that support science and scholarly inquiry across all disciplines, the report also takes a wide-angle view of governance mechanisms ranging from smaller agencies to big science facilities. Another issue closely examined by the panel was the effect of the current configuration of funding on the prospects of early career researchers—a group that includes a higher proportion of women and is more diverse than previous generations of scientists and scholars.

The panel’s deliberations were informed by a broad consultative process. The panel received 1,275 written submissions [emphasis mine] from individuals, associations and organizations. It also held a dozen round tables in five cities, engaging some 230 researchers [emphasis mine] at different career stages.

Among the findings:

  • Basic research worldwide has led to most of the technological, medical and social advances that make our quality of life today so much better than a century ago. Canadian scientists and scholars have contributed meaningfully to these advances through the decades; however, by various measures, Canada’s research competitiveness has eroded in recent years.
  • This trend emerged during a period when there was a drop of more than 30 percent in real per capita funding for independent or investigator-led research by front-line scientists and scholars in universities, colleges, institutes and research hospitals. This drop occurred as a result of caps on federal funding to the granting councils and a dramatic change in the balance of funding toward priority-driven and partnership-oriented research.
  • Canada is an international outlier in that funding from federal government sources accounts for less than 25 percent of total spending on research and development in the higher education sector. While governments sometimes highlight that, relative to GDP, Canada leads the G7 in total spending by this sector, institutions themselves now underwrite 50 percent of these costs—with adverse effects on both research and education.
  • Coordination and collaboration among the four key federal research agencies [Canada Foundation for Innovation {CFI}; Social Sciences and Humanities Research Council {SSHRC}; Natural Sciences and Engineering Research Council {NSERC}; Canadian Institutes of Health Research {CIHR}] is suboptimal, with poor alignment of supports for different aspects of research such as infrastructure, operating costs and personnel awards. Governance and administrative practices vary inexplicably, and support for areas such as international partnerships or multidisciplinary research is uneven.
  • Early career researchers are struggling in some disciplines, and Canada lacks a career-spanning strategy for supporting both research operations and staff.
  • Flagship personnel programs such as the Canada Research Chairs have had the same value since 2000. Levels of funding and numbers of awards for students and post-doctoral fellows have not kept pace with inflation, peer nations or the size of applicant pools.

The report also outlines a comprehensive agenda to strengthen the foundations of Canadian extramural research. Recommended improvements in oversight include:

  • legislation to create an independent National Advisory Council on Research and Innovation (NACRI) that would work closely with Canada’s new Chief Science Advisor (CSA) to raise the bar in terms of ongoing evaluations of all research programming;
  • wide-ranging improvements to oversight and governance of the four agencies, including the appointment of a coordinating board chaired by the CSA; and
  • lifecycle governance of national-scale research facilities as well as improved methods for overseeing and containing the growth in ad-hoc funding of smaller non-profit research entities.

With regard to funding, the panel recommends a major multi-year reinvestment in front-line research, targeting several areas of identified need. Each recommendation is benchmarked and is focused on making long-term improvements in Canada’s research capacity. The panel’s recommendations, to be phased in over four years, would raise annual spending across the four major federal agencies and other key entities from approximately $3.5 billion today to $4.8 billion in 2022. The goal is to ensure that Canada benefits from an outsized concentration of world-leading scientists and scholars who can make exciting discoveries and generate novel insights while educating and inspiring the next generation of researchers, innovators and leaders.

Given global competition, the current conditions in the ecosystem, the role of research in underpinning innovation and educating innovators, and the need for research to inform evidence-based policy-making, the panel concludes that this is among the highest-yield investments in Canada’s future that any government could make.

The full report is posted on www.sciencereview.ca.

Quotes

“In response to the request from Prime Minister Trudeau and Minister Duncan, the Science Review panel has put together a comprehensive roadmap for Canadian pre-eminence in science and innovation far into the future. The report provides creative pathways for optimizing Canada’s investments in fundamental research in the physical, life and social sciences as well as the humanities in a cost effective way. Implementation of the panel’s recommendations will make Canada the destination of choice for the world’s best talent. It will also guarantee that young Canadian researchers can fulfill their dreams in their own country, bringing both Nobel Prizes and a thriving economy to Canada. American scientists will look north with envy.”

– Robert J. Birgeneau, Silverman Professor of Physics and Public Policy, University of California, Berkeley

“We have paid close attention not only to hard data on performance and funding but also to the many issues raised by the science community in our consultations. I sincerely hope the report will serve as a useful guide to policy-makers for years to come.”

– Martha Crago, Vice-President, Research and Professor of Human Communication Disorders, Dalhousie University

“Science is the bedrock of modern civilization. Our report’s recommendations to increase and optimize government investments in fundamental scientific research will help ensure that Canada’s world-class researchers can continue to make their critically important contributions to science, industry and society in Canada while educating and inspiring future generations. At the same time, such investments will enable Canada to attract top researchers from around the world. Canada must strategically build critical density in our researcher communities to elevate its global competitiveness. This is the path to new technologies, new businesses, new jobs and new value creation for Canada.”

– Mike Lazaridis, Founder and Managing Partner, Quantum Valley Investments

“This was a very comprehensive review. We heard from a wide range of researchers—from the newest to those with ambitious, established and far-reaching research careers. At all these levels, researchers spoke of their gratitude for federal funding, but they also described enormous barriers to their success. These ranged from personal career issues like gaps in parental leave to a failure to take gender, age, geographic location and ethnicity into account. They also included mechanical and economic issues like gaps between provincial and federal granting timelines and priorities, as well as a lack of money for operating and maintaining critical equipment.”

– Claudia Malacrida, Associate Vice-President, Research and Professor of Sociology, University of Lethbridge

“We would like to thank the community for its extensive participation in this review. We reflect that community perspective in recommending improvements to funding and governance for fundamental science programs to restore the balance with recent industry-oriented programs and improve both science and innovation in Canada.”

– Arthur B. McDonald, Professor Emeritus, Queen’s University

“This report sets out a multi-year agenda that, if implemented, could transform Canadian research capacity and have enormous long-term impacts across the nation. It proffers a legacy-building opportunity for a new government that has boldly nailed its colours to the mast of science and evidence-informed policy-making. I urge the Prime Minister to act decisively on our recommendations.”

– C. David Naylor, Professor of Medicine, University of Toronto (Chair)

“This report outlines all the necessary ingredients to advance basic research, thereby positioning Canada as a leading ‘knowledge’ nation. Rarely does a country have such a unique opportunity to transform the research landscape and lay the foundation for a future of innovation, prosperity and well-being.”

– Martha C. Piper, President Emeritus, University of British Columbia

“Our report shows a clear path forward. Now it is up to the government to make sure that Canada truly becomes a world leader in how it both organizes and financially supports fundamental research.”

– Rémi Quirion, Le scientifique en chef du Québec

“The government’s decision to initiate this review reflected a welcome commitment to fundamental research. I am hopeful that the release of our report will energize the government and research community to take the next steps needed to strengthen Canada’s capacity for discovery and research excellence. A research ecosystem that supports a diversity of scholars at every career stage conducting research in every discipline will best serve Canada and the next generation of students and citizens as we move forward to meet social, technological, economic and ecological challenges.”

– Anne Wilson, Professor of Psychology, Wilfrid Laurier University

Quick facts

  • The Fundamental Science Review Advisory Panel is an independent and non-partisan body whose mandate was to provide advice and recommendations to the Minister of Science on how to improve federal science programs and initiatives.
  • The panel was asked to consider whether there are gaps in the federal system of support for fundamental research and recommend how to address them.
  • The scope of the review included the federal granting councils along with some federally funded organizations such as the Canada Foundation for Innovation.

First thoughts

Getting to the report itself, I have quickly skimmed through it  but before getting to that and for full disclosure purposes, please note, I made a submission to the panel. That said, I’m a little disappointed. I would have liked to have seen a little more imagination in the recommendations which set forth future directions. Albeit the questions themselves would not seem to encourage any creativity,

Our mandate was summarized in two broad questions:

1. Are there any overall program gaps in Canada’s fundamental research funding ecosystem that need to be addressed?

2. Are there elements or programming features in other countries that could provide a useful example for the Government of Canada in addressing these gaps? (p. 1 print; p. 35 PDF)

A new agency to replace the STIC (Science, Technology and Innovation Council)

There are no big surprises. Of course they’ve recommended another organization, NACRI [National Advisory Council on Research and Innovation], most likely to replace the Conservative government’s advisory group, the Science, Technology and Innovation Council (STIC) which seems to have died as of Nov. 2015, one month after the Liberals won. There was no Chief Science Advisor under the Conservatives. As I recall, the STIC replaced a previous Liberal government’s advisory group and Chief Science Advisor (Arthur Carty, now the executive director of the Waterloo [as in University of Waterloo] Institute of Nanotechnology).

Describing the NACRI as peopled by volunteers doesn’t exactly describe the situation. This is the sort of ‘volunteer opportunity’ a dedicated careerist salivates over because it’s a career builder where you rub shoulders with movers and shakers in other academic institutions, in government, and in business. BTW, flights to meetings will be paid for along with per diems (accommodations and meals). These volunteers will also have a staff. Admittedly, it will be unpaid extra time for the ‘volunteer’ but the payoff promises to be considerable.

Canada’s eroding science position

There is considerable concern evinced over Canada’s eroding position although we still have bragging rights in some areas (regenerative medicine, artificial intelligence for two areas). As for erosion, the OECD (Organization for Economic Cooperation and Development) dates the erosion back to 2001 (from my June 2, 2014 posting),

Interestingly, the OECD (Organization for Economic Cooperation and Development) Science, Technology and Industry Scoreboard 2013 dates the decline to 2001. From my Oct. 30, 2013 posting (excerpted from the scorecard),

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

It should be noted, the Liberals have introduced another budget with flat funding for science (if you want to see a scathing review see Nassif Ghoussoub’s (professor of mathematics at the University of British Columbia April 10, 2017 posting) on his Piece of Mind blog). Although the funding isn’t quite so flat as it might seem at first glance (see my March 24, 2017 posting about the 2017 budget). The government explained that the science funding agencies didn’t receive increased funding as the government was waiting on this report which was released only weeks later (couldn’t they have a sneak preview?). In any event, it seems it will be at least a year before the funding issues described in the report can be addressed through another budget unless there’s some ‘surprise’ funding ahead.

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 2

Part 3

Canada and its review of fundamental science

Big thanks to David Bruggeman’s June 14, 2016 post (on his Pasco Phronesis blog) for news of Canada’s Fundamental Science Review, which was launched on June 13, 2016 (Note: Links have been removed),

The panel’s mandate focuses on support for fundamental research, research facilities, and platform technologies.  This will include the three granting councils as well as other research organisations such as the Canada Foundation for Innovation. But it does not preclude the panel from considering and providing advice and recommendations on research matters outside of the mandate.  The plan is to make the panel’s work and recommendations readily accessible to the public, either online or through any report or reports the panel produces.  The panel’s recommendations to Minister Duncan are non-binding. …

As Ivan Semeniuk notes at The Globe and Mail [Canadian ‘national’ newspaper], the recent Nurse Review in the U.K., which led to the notable changes underway in the organization of that country’s research councils, seems comparable to this effort.  But I think it worth noting the differences in the research systems of the two countries, and the different political pressures in play.  It is not at all obvious to this writer that the Canadian review would necessarily lead to similar recommendations for a streamlining and reorganization of the Canadian research councils.

Longtime observers of the Canadian science funding scene may recall an earlier review held under the auspices of the Steven Harper Conservative government known as the ‘Review of Federal Support to R&D’. In fact it was focused on streamlining government funding for innovation and commercialization of science. The result was the 2011 report, ‘Innovation Canada: A Call to Action’, known popularly as the ‘Jenkins report’ after the panel chair, Tom Jenkins. (More about the report and responses to it can be found in my Oct. 21, 2011 post).

It’s nice to see that fundamental science is being given its turn for attention.

A June 13, 2016 Innovation, Science and Economic Development Canada news release provides more detail about the review and the panel guiding the review,

The Government of Canada understands the role of science in maintaining a thriving, clean economy and in providing the evidence for sound policy decisions. To deliver on this role however, federal programs that support Canada’s research efforts must be aligned in such a way as to ensure they are strategic, effective and focused on meeting the needs of scientists first.

That is why the Honourable Kirsty Duncan, Minister of Science, today launched an independent review of federal funding for fundamental science. The review will assess the program machinery that is currently in place to support science and scientists in Canada. The scope of the review includes the three granting councils [Social Sciences and Humanities Research Council {SSHRC}, Natural Sciences and Engineering Research Council {NSERC}, Canadian Institutes of Health Research {CIHR}] along with certain federally funded organizations such as the Canada Foundation for Innovation [CFI].

The review will be led by an independent panel of distinguished research leaders and innovators including Dr. David Naylor, former president of the University of Toronto and chair of the panel. Other panelists include:

  • Dr. Robert Birgeneau, former chancellor, University of California, Berkeley
  • Dr. Martha Crago, Vice-President, Research, Dalhousie University
  • Mike Lazaridis, co-founder, Quantum Valley Investments
  • Dr. Claudia Malacrida, Associate Vice-President, Research, University of Lethbridge
  • Dr. Art McDonald, former director of the Sudbury Neutrino Laboratory, Nobel Laureate
  • Dr. Martha Piper, interim president, University of British Columbia
  • Dr. Rémi Quirion, Chief Scientist, Quebec
  • Dr. Anne Wilson, Canadian Institute for Advanced Research Successful Societies Fellow and professor of psychology, Wilfrid Laurier University

The panel will spend the next six months seeking input from the research community and Canadians on how to optimize support for fundamental science in Canada. The panel will also survey international best practices for funding science and examine whether emerging researchers face barriers that prevent them from achieving career goals. It will look at what must be done to address these barriers and what more can be done to encourage Canada’s scientists to take on bold new research challenges. In addition to collecting input from the research community, the panel will also invite Canadians to participate in the review [emphasis mine] through an online consultation.

Ivan Semeniuk in his June 13, 2016 article for The Globe and Mail provides some interesting commentary about the possible outcomes of this review,

Depending on how its recommendations are taken on board, the panel could trigger anything from minor tweaks to a major rebuild of Ottawa’s science-funding apparatus, which this year is expected to funnel more than $3-billion to Canadian researchers and their labs.

Asked what she most wanted the panel to address, Ms. Duncan cited, as an example, the plight of younger researchers who, in many cases, must wait until they are in their 40s to get federal support.

Another is the risk of losing the benefits of previous investments when funding rules become restrictive, such as a 14-year limit on how long the government can support one of its existing networks of centres of excellence, or the dependence of research projects that are in the national interest on funding streams that require support from provincial governments or private sources.

The current system for proposing and reviewing research grants has been criticized as cumbersome and fraught with biases that mean the best science is not always supported.

In a paper published on Friday in the research journal PLOS One, Trent University biologist Dennis Murray and colleagues combed through 13,526 grant proposals to the Natural Sciences and Engineering Research Council between 2011 and 2014 and found significant evidence that researchers at smaller universities have consistently lower success rates.

Dr. Murray advocates for a more quantitative and impartial system of review to keep such biases at bay.

“There are too many opportunities for human impressions — conscious or unconscious — to make their way into the current evaluation process,” Dr. Murray said.

More broadly, researchers say the time is right for a look at a system that has grown convoluted and less suited to a world in which science is increasingly cross-disciplinary, and international research collaborations are more important.

If you have time, I encourage you to take a look at Semeniuk’s entire article as for the paper he mentions, here’s a link to and a citation for it,

Bias in Research Grant Evaluation Has Dire Consequences for Small Universities by Dennis L. Murray, Douglas Morris, Claude Lavoie, Peter R. Leavitt, Hugh MacIsaac,  Michael E. J. Masson, & Marc-Andre Villard. PLOS http://dx.doi.org/10.1371/journal.pone.0155876  Published: June 3, 2016

This paper is open access.

Getting back to the review and more specifically, the panel, it’s good to see that four of the nine participants are women but other than that there doesn’t seem to be much diversity, i.e.,the majority (five) spring from the Ontario/Québec nexus of power and all the Canadians are from the southern part of country. Back to diversity, there is one business man, Mike Laziridis known primarily as the founder of Research in Motion (RIM or more popularly as the Blackberry company) making the panel not a wholly ivory tower affair. Still, I hope one day these panels will have members from the Canadian North and international members who come from somewhere other than the US, Great Britain, and/or if they’re having a particularly wild day, Germany. Here are some candidate countries for other places to look for panel members: Japan, Israel, China, South Korea, and India. Other possibilities include one of the South American countries, African countries, and/or the Middle Eastern countries.

Take the continent of Africa for example, where many countries seem to have successfully tackled one of the issues as we face. Specifically, the problem of encouraging young researchers. James Wilsdon notes some success in his April 9, 2016 post about Africa and science advice for the Guardian science blogs (Note: Links have been removed),

… some of the brightest talents and most exciting advances in African science were on display at the Next Einstein Forum. This landmark meeting, initiated by the African Institute of Mathematical Sciences, and held in Senegal, brought together almost 1000 researchers, entrepreneurs, businesses and policymakers from across Africa to celebrate and support the continent’s most promising early-career researchers.

A new cadre of fifteen Next Einstein Fellows and fifty-four ambassadors was announced, and the forum ended with an upbeat declaration of commitment to Africa’s role in world-leading, locally-relevant science. …

… UNESCO’s latest global audit of science, published at the end of 2015, concludes that African science is firmly on the rise. The number of journal articles published on the continent rose by sixty per cent from 2008 to 2014. Research investment rose from $12.9 billion in 2007 to $19.9 billion (US dollars) in 2013. Over the same period, R&D expenditure as a percentage of GDP nudged upwards from 0.36 per cent to 0.45 per cent, and the population of active researchers expanded from 150,000 to 190,000.

If you have the time, do read Wilsdon’s piece which covers some of the more difficult aspects facing the science communities in Africa and more.

In any event, it’s a bit late to bemoan the panel’s makeup but hopefully the government will take note for the future as I’m planning to include some of my critique in my comments to the panel in answer to their request for public comments.

You can find out more about Canada’s Fundamental Science Review here and you can easily participate here and/or go here to subscribe for updates.

Research into nanosilver’s antibiotic properties and nanogold’s detection skills

There is a puzzling and exciting announcement from the Canadian Light Source in a May 27, 2015 news item on Nanowerk,

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the patient and the environment?

These are the questions that researchers from Dalhousie University and the Canadian Light Source are trying to find out.

Perhaps I’m misreading the announcement but the statement that nanosilver and nanogold don’t contaminate the patient or the environment is a bit exuberant. There are published studies examining questions about whether or not nanosilver may affect the environment and health and the answer is that no one is certain yet. You can read more about two studies highlighted in my February 28, 2013 posting titled:  Silver nanoparticles, water, the environment, and toxicity. As for nanosilver and nanogold not contaminating patients, that too is a problematic statement. For example, I have this paper which cites several studies on nanogold and possible toxicity. The paper itself is a plea to standardize testing and protocols so researchers can do a better job of establishing toxicity issues with nanogold.

GoldNP_ToxicityMar2015

Reservations aside, it’s good to learn of some Canadian research in this area. From a May 26, 2015 Canadian Light Source news release, which originated the news item, provides more details about the research and its current focus on nanosilver,

“Gold and silver are both exciting materials,” said Peng Zhang, Associate Professor of Chemistry at Dalhousie. “We can use gold to either detect or kill cancer cells. Silver is also excited and a very promising material as an antibacterial agents.”

Zhang said that if you compare silver to current antibiotics, silver does not show drug-resistant behaviour. “But with silver, so far, we are not finding that,” he added.

Finding out why silver is such a great antibacterial agent is the focus of Zhang’s research, recently published in the journal Langmuir.

“We want to understand the relationship between the atomic structure and bioactivity of nanosilver as to why it is so efficient at inhibiting bacterial activity. It’s a big puzzle.”

Zhang said it is very hard to understand what is happening at the atomic level. Using small nanosilver particles is the most effective way, because when you make silver small, you can expect higher activity because of the increased surface area.

This poses another problem however, as the nanosilver needs to be stabilized with a coating or the silver particles will bond together forming large pieces of silver that do not efficiently interact with the bacteria.

Zhang’s group used two different coatings to compare the effectiveness of the silver as an antibacterial agent. The first was a small amino acid coating and the other was a larger polymer coating. And after testing the interactions between the nanosilver and the bacteria, and looking at the atomic structure of nanosilver using the CLS and the Advanced Photon Source, the researchers were surprised to find that the thicker, larger polymer coating actually created a better delivery method for sliver to inhibit the bacteria.

“We proposed that the small amino acid coating would bind so tightly to the silver surface that it would be difficult for  the silver atoms to interact with the bacteria, whereas the polymers are actually very good at staying in place and still releasing sufficient amount of silver with the bacteria.”

Zhang said the next steps will be to find out if the nanosilver is actually attacking good cells in living systems before they can make any further progress on determining whether nanosilver is an effective and efficient antibactieral agent that could be used to cure human and animal diseases.

Here’s an illustration provided by the researchers,

The atomic structure of nanosilver, revealed by synchrotron X-ray spectroscopy, is proving to be a determinant of silver’s antibacterial activity. Padmos, J. Daniel, et al. "Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles." Langmuir 31.12 (2015): 3745-3752.

The atomic structure of nanosilver, revealed by synchrotron X-ray spectroscopy, is proving to be a determinant of silver’s antibacterial activity.
Padmos, J. Daniel, et al. “Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles.” Langmuir 31.12 (2015): 3745-3752.

Here’s a link to and a citation for the paper,

Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles by J. Daniel Padmos, Robert T. M. Boudreau, Donald F. Weaver, and Peng Zhang. Langmuir, 2015, 31 (12), pp 3745–3752
DOI: 10.1021/acs.langmuir.5b00049 Publication Date (Web): March 15, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Canadian ‘studies of science’ news: career opportunity for postdoc (2nd call), summer school in India, and a Situating Science update

The deadline for a posdoctoral fellowship with Atlantic Canada’s Cosmoplitanism group (which morphed out of the Situating Science group) is coming up shortly (March 2, 2015). I wrote about this opportunity in a Dec. 12, 2014 post part of which I will reproduce here,

Postdoctoral Fellowship

Science and Technology Studies (STS) / History and Philosophy of Science, Technology, Medicine (HPSTM)

University of King’s College / Dalhousie University, Halifax, NS
Duration: 1 year, with option to renew for second year pending budget and project restrictions and requirements
Application Deadline: Monday March 2 2015

The University of King’s College and Dalhousie University announce a postdoctoral fellowship award in Science and Technology Studies (STS)/ History and Philosophy of Science, Technology and Medicine (HPSTM), associated with the SSHRC [Canada Social Sciences and Humanities Research Council] Partnership Development Grant, “Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership,” a partnership development between institutions in Canada, India and Southeast Asia aimed at establishing an East/West research network on “Cosmopolitanism” in science. The project closely examines the ideas, processes and negotiations that inform the development of science and scientific cultures within an increasingly globalized landscape. A detailed description of the project can be found at: www.CosmoLocal.org.

Funding and Duration:
The position provides a base salary equivalent to $35,220 plus benefits (EI, CPP, Medical and Dental), and with the possibility of augmenting the salary through teaching or other awards, depending on the host department. The fellow would be entitled to benefits offered by University of King’s College or Dalhousie University. The successful applicant will begin their 12-month appointment between April 1st and July 1st, 2015, subject to negotiation and candidate’s schedule. Contingent on budget and project requirements, the fellowship may be extended for a second year with an annual increase as per institutional standards.

Eligibility:
The appointment will be housed at University of King’s College and/or in one of the departments of the Faculty of Arts and Social Sciences at Dalhousie University. The successful applicant is expected to have completed a Ph.D. in STS, HPS or a cognate field, within the last five years and before taking up the fellowship. Please note that the Postdoctoral Fellowship can only be held at Dalhousie University in the six years following completion of his or her PhD. For example a person who finished his or her PhD in 2010 is eligible to be a Postdoctoral Fellow until December 2016.

In addition to carrying out independent or collaborative research under the supervision of one or more of the Cosmopolitanism co-applicants, the successful candidate will be expected to take a leadership role in the Cosmopolitanism project, to actively coordinate the development of the project, and participate in its activities as well as support networking and outreach.International candidates need a work permit and SIN.

Research:
While the research topic is open and we encourage applications from a wide range of subfields, we particularly welcome candidates with expertise and interest in the topics addressed in the Cosmopolitanism project. The candidate will be expected to work under the supervision of one of the Cosmopolitanism co-applicants. Information on each is available on the “About” page of the project’s website (www.CosmoLocal.org).

Good luck! You can find more application information here.

Now for the summer school opportunity in India, (from a Feb. 18, 2015 Cosmopolitanism announcement).

Call for applications:
“Scientific Objects and Digital Cosmopolitanism” Summer School

Manipal Centre for Philosophy and Humanities,
Manipal, India
July 20-24, 2015

Please spread the word in your communities.

 

Scientific Objects and Digital Cosmopolitanism

Co-organized by the Manipal Centre for Philosophy and Humanities and Cosmopolitanism and the Local in Science and Nature.

Dates
July 20-24, 2015

Deadline for applications
Monday March 23, 2015

Organizers
Sundar Sarukkai, Manipal Centre for Philosophy and Humanities
Gordon McOuat, University of King’s College

Coordinator
Varun Bhatta, Manipal Centre for Philosophy and Humanities

Description:
Applications from post-graduate and doctoral students in the fields of philosophy, philosophy of science and social sciences, history and philosophy of science, science and technology studies, and cognate fields are invited to a five-day summer school in India, made possible by collaborations between institutions and scholars in Canada, India and Southeast Asia. This will be an excellent opportunity for graduate students interested in receiving advanced training in the philosophy of science and science and technology studies, with a focus on scientific objects and their relation to cosmopolitanism.

The paradigm of scientific objects has undergone a major transformation in recent times. Today, scientific objects are not limited to microscopic or major astronomical objects. A new category of objects involves ontological modes of data, grids, simulation, visualization, etc. Such modes of objects are not merely peripheral props or outcomes of scientific endeavour. They actively constitute scientific theorizing, experimentation and instrumentation, and catalyze notions of cosmopolitanism in the digital world. Cosmopolitanism in this context is defined as a model of cultural and political engagement based on multidirectional exchange and contact across borders. A cosmopolitan approach treats science as a contingent, multifaceted and multicultural network of exchange. The summer school will engage with philosophical themes around the nature of new scientific objects and digital cosmopolitanism.

“The event is organized by the Manipal Centre for Philosophy and Humanities (Manipal University) and by the Social Sciences and Humanities Research Council of Canada-funded Cosmopolitanism and the Local in Science and Nature, a three-year project to establish a research network on cosmopolitanism in science with partners in Canada, India, and Southeast Asia. The project closely examines the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape.

Program and Faculty:
Each of the days will be split among:
(a) Background sessions led by Arun Bala, Gordon McOuat and Sundar Sarukkai,
(b) Sessions led by other faculty members with recognized expertise in the theme, and
(c) Sessions devoted to student research projects.

There will be plenty of opportunities for interaction and participation. The seminar will be held in English and readings will be circulated in advance. Special events will be organized to complement session content. There also will be opportunities for exploring the incredible richness and diversity of the region.

Selection Criteria:
We seek outstanding graduate students from Canada, India and Southeast Asia. We will prioritize applications from graduate students in disciplines or with experience in philosophy, philosophy of science, social studies, the history and philosophy of science, or science and technology studies.

Location and Accommodations:
The event will be hosted by the Manipal Centre for Philosophy and Humanities in the picturesque ocean-side state of Karnataka in south-western India. Students will be housed in student residences. The space is wheelchair accessible.

Fees:
A registration fee of Rs 1500 for Indian students and $100 CAD for international students will be charged. This fee will include accommodations and some meals.

Financial Coverage:

Students from India:
Travel for India-based students will be covered by the summer school sponsors.

Students from Canada and Southeast Asia:
Pending government funding, travel costs may be defrayed for students from Canada or Southeast Asia. Students should indicate in their applications whether they have access to travel support (confirmed or unconfirmed) from home institutions or funding agencies. This will not affect the selection process. Acceptance letters will include more information on travel support.

Students from outside Canada, India and Southeast Asia:
Students from outside Canada, India and Southeast Asia will be expected to provide their own funding.

Students at home institutions of “Cosmopolitanism and the Local in Science and Nature” team members are strongly encouraged to contact the local team member to discuss funding options. Information on the project’s partners and team members is available on the project’s “About Us” page: www.CosmoLocal.org/about-us.

Any travel support will be considered as co-sponsorship to this international training event and acknowledged accordingly. Further information on funding will be included with acceptance letters.

Timeline:
Deadline for applications: March 23, 2015
Notification of acceptance: Week of April 6, 2015
Deadline for registration forms: May 11, 2015

Procedure:
Applications should include the following, preferably sent as PDFs:
1. Description of research interests and their relevance to the school (max. 300 words)
2. Brief Curriculum Vitae / resume highlighting relevant skills, experience and training,
3. One signed letter of recommendation from a supervisor, director of graduate studies, or other faculty member familiar with applicant’s research interests.

Applications should be sent to:
MCPH Office, mcphoffice@gmail.com
with a copy to
Varun Bhatta, varunsbhatta@gmail.com

For more information, please contact :
Greta Regan
Project Manager
Cosmopolitanism and the Local
University of King’s College
situsci@dal.ca

and/or

Dr. Gordon McOuat, History of Science and Technology Programme,
University of King’s College
gmcouat@dal.ca

The last bit of information for this post concerns the Situating Science research cluster mentioned here many times. Situating Science was a seven-year project funded by the Social Sciences and Humanities Research Council (SSHRC) which has become the Canadian Consortium for Situating Science and Technology (CCSST) and has some sort of a relationship (some of the Situating Science organizers have moved over) to the Cosmopolitanism project. The consortium seems to be a somewhat diminished version of the cluster so you may want to check it out now while some of the information is still current.

Postdoctoral position for Cosmopolitanism in Science project in Halifax, Nova Scotia, Canada)

It seems to be the week for job postings. After months and months with nothing, I stumble across two in one week. The latest comes from the Situating Science research cluster (more about the research cluster after the job posting). From a Dec. 10, 2014 Situating Science announcement,

Postdoctoral Fellowship

Science and Technology Studies (STS) / History and Philosophy of Science, Technology, Medicine (HPSTM)

University of King’s College / Dalhousie University, Halifax, NS
Duration: 1 year, with option to renew for second year pending budget and project restrictions and requirements
Application Deadline: Monday March 2 2015

The University of King’s College and Dalhousie University announce a postdoctoral fellowship award in Science and Technology Studies (STS)/ History and Philosophy of Science, Technology and Medicine (HPSTM), associated with the SSHRC [Canada Social Sciences and Humanities Research Council] Partnership Development Grant, “Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership,” a partnership development between institutions in Canada, India and Southeast Asia aimed at establishing an East/West research network on “Cosmopolitanism” in science. The project closely examines the ideas, processes and negotiations that inform the development of science and scientific cultures within an increasingly globalized landscape. A detailed description of the project can be found at: www.CosmoLocal.org.

Funding and Duration:
The position provides a base salary equivalent to $35,220 plus benefits (EI, CPP, Medical and Dental), and with the possibility of augmenting the salary through teaching or other awards, depending on the host department. The fellow would be entitled to benefits offered by University of King’s College or Dalhousie University. The successful applicant will begin their 12-month appointment between April 1st and July 1st, 2015, subject to negotiation and candidate’s schedule. Contingent on budget and project requirements, the fellowship may be extended for a second year with an annual increase as per institutional standards.

Eligibility:
The appointment will be housed at University of King’s College and/or in one of the departments of the Faculty of Arts and Social Sciences at Dalhousie University. The successful applicant is expected to have completed a Ph.D. in STS, HPS or a cognate field, within the last five years and before taking up the fellowship. Please note that the Postdoctoral Fellowship can only be held at Dalhousie University in the six years following completion of his or her PhD. For example a person who finished his or her PhD in 2010 is eligible to be a Postdoctoral Fellow until December 2016.

In addition to carrying out independent or collaborative research under the supervision of one or more of the Cosmopolitanism co-applicants, the successful candidate will be expected to take a leadership role in the Cosmopolitanism project, to actively coordinate the development of the project, and participate in its activities as well as support networking and outreach.International candidates need a work permit and SIN.

Research:
While the research topic is open and we encourage applications from a wide range of subfields, we particularly welcome candidates with expertise and interest in the topics addressed in the Cosmopolitanism project. The candidate will be expected to work under the supervision of one of the Cosmopolitanism co-applicants. Information on each is available on the “About” page of the project’s website (www.CosmoLocal.org).

Application:

Full applications will contain:
1.     Cover letter that includes a description of current research projects,
2.     Research plan for post-doctoral work. Include how the proposed research fits within the Cosmopolitanism project’s scope, and which co-applicant with whom you wish to work.
3.     Academic CV,
4.     Writing sample,
5.     Names and contact information of three referees.

Applications can be submitted in either hardcopy or emailed as PDF documents:

Hardcopy:
Dr. Gordon McOuat
Cosmopolitanism and the Local Project
University of King’s College
6350 Coburg Road
Halifax, NS.  B3H 2A1
CANADA

News of this partnership is exciting especially in light of the objectives as described on the Cosmopolitanism & the Local in Science & Nature website’s About Us page,

Specifically, the project will:

  1. Expose a hitherto largely Eurocentric scholarly community in Canada to widening international perspectives and methods, [emphasis mine]
  2. Build on past successes at border-crossings and exchanges between the participants,
  3. Facilitate a much needed nation-wide organization and exchange amongst Indian and South East Asian scholars, in concert with their Canadian counterparts, by integrating into an international network,
  4. Open up new perspectives on the genesis and place of globalized science, and thereby
  5. Offer alternative ways to conceptualize and engage globalization itself, and especially the globalization of knowledge and science.
  6. Bring the managerial team together for joint discussion, research exchange, leveraging and planning – all in the aid of laying the grounds of a sustainable partnership

I’m not sure ‘expose’ is the verb I’d use here since it’s perfectly obvious that the Canadian scholarly community is eurocentric. For confirmation all you have to do is look at the expert panels convened by the Council of Canadian Academies for their various assessments (e.g. The Expert Panel on the State of Canada’s Science Culture). Instead of ‘expose’, I’d use ‘Shift conscious and unconscious assumptions within a largely eurocentric Canadian scholarly community to widening perspectives’.

As for Situating Science, there is this (from its About Us page; Note: Links have been removed),

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

At the end of our 7 years, we can boast a number of collaborative successes. We helped organize and support over 20 conferences and workshops, 4 national lecture series, 6 summer schools, and dozens of other events. Our network helped facilitate the development of 4 new programs of study at partner institutions. We leveraged more than one million dollars from Nodal partner universities plus more than one million dollars from over 200 supporting and partnering organizations. We hired over 30 students and 9 postdoctoral fellows. The events resulted in over 60 videos and podcasts as well as dozens of student blogs and over 50 publications.

I see the Situating Science project is coming to an end and I’m sorry to see it go. I think I will write more about Situating Science in one of my end-of-year posts. Getting back to the postdoc position, good luck to all the applicants!