Tag Archives: David Chalmers

A question of consciousness: Facebotlish (a new language); a July 5, 2017 rap guide performance in Vancouver, Canada; Tom Stoppard’s play; and a little more

This would usually be a simple event announcement but with the advent of a new, related (in my mind if no one else’s) development on Facebook, this has become a roundup of sorts.

Facebotlish (Facebook’s chatbots create their own language)

The language created by Facebook’s chatbots, Facebotlish, was an unintended consequence—that’s right Facebook’s developers did not design a language for the chatbots or anticipate its independent development, apparently.  Adrienne LaFrance’s June 20, 2017 article for theatlantic.com explores the development and the question further,

Something unexpected happened recently at the Facebook Artificial Intelligence Research lab. Researchers who had been training bots to negotiate with one another realized that the bots, left to their own devices, started communicating in a non-human language.

In order to actually follow what the bots were saying, the researchers had to tweak their model, limiting the machines to a conversation humans could understand. (They want bots to stick to human languages because eventually they want those bots to be able to converse with human Facebook users.) …

Here’s what the language looks like (from LaFrance article),

Here’s an example of one of the bot negotiations that Facebook observed:Bob: i can i i everything else . . . . . . . . . . . . . .
Alice: balls have zero to me to me to me to me to me to me to me to me to
Bob: you i everything else . . . . . . . . . . . . . .
Alice: balls have a ball to me to me to me to me to me to me to me
Bob: i i can i i i everything else . . . . . . . . . . . . . .
Alice: balls have a ball to me to me to me to me to me to me to me
Bob: i . . . . . . . . . . . . . . . . . . .
Alice: balls have zero to me to me to me to me to me to me to me to me to
Bob: you i i i i i everything else . . . . . . . . . . . . . .
Alice: balls have 0 to me to me to me to me to me to me to me to me to
Bob: you i i i everything else . . . . . . . . . . . . . .
Alice: balls have zero to me to me to me to me to me to me to me to me to

It is incomprehensible to humans even after being tweaked, even so, some successful negotiations can ensue.

Facebook’s researchers aren’t the only one to come across the phenomenon (from LaFrance’s article; Note: Links have been removed),

Other AI researchers, too, say they’ve observed machines that can develop their own languages, including languages with a coherent structure, and defined vocabulary and syntax—though not always actual meaningful, by human standards.

In one preprint paper added earlier this year [2017] to the research repository arXiv, a pair of computer scientists from the non-profit AI research firm OpenAI wrote about how bots learned to communicate in an abstract language—and how those bots turned to non-verbal communication, the equivalent of human gesturing or pointing, when language communication was unavailable. (Bots don’t need to have corporeal form to engage in non-verbal communication; they just engage with what’s called a visual sensory modality.) Another recent preprint paper, from researchers at the Georgia Institute of Technology, Carnegie Mellon, and Virginia Tech, describes an experiment in which two bots invent their own communication protocol by discussing and assigning values to colors and shapes—in other words, the researchers write, they witnessed the “automatic emergence of grounded language and communication … no human supervision!”

The implications of this kind of work are dizzying. Not only are researchers beginning to see how bots could communicate with one another, they may be scratching the surface of how syntax and compositional structure emerged among humans in the first place.

LaFrance’s article is well worth reading in its entirety especially since the speculation is focused on whether or not the chatbots’ creation is in fact language. There is no mention of consciousness and perhaps this is just a crazy idea but is it possible that these chatbots have consciousness? The question is particularly intriguing in light of some of philosopher David Chalmers’ work (see his 2014 TED talk in Vancouver, Canada: https://www.ted.com/talks/david_chalmers_how_do_you_explain_consciousness/transcript?language=en runs roughly 18 mins.); a text transcript is also featured. There’s a condensed version of Chalmers’ TED talk offered in a roughly 9 minute NPR (US National Public Radio) interview by Gus Raz. Here are some highlights from the text transcript,

So we’ve been hearing from brain scientists who are asking how a bunch of neurons and synaptic connections in the brain add up to us, to who we are. But it’s consciousness, the subjective experience of the mind, that allows us to ask the question in the first place. And where consciousness comes from – that is an entirely separate question.

DAVID CHALMERS: Well, I like to distinguish between the easy problems of consciousness and the hard problem.

RAZ: This is David Chalmers. He’s a philosopher who coined this term, the hard problem of consciousness.

CHALMERS: Well, the easy problems are ultimately a matter of explaining behavior – things we do. And I think brain science is great at problems like that. It can isolate a neural circuit and show how it enables you to see a red object, to respondent and say, that’s red. But the hard problem of consciousness is subjective experience. Why, when all that happens in this circuit, does it feel like something? How does a bunch of – 86 billion neurons interacting inside the brain, coming together – how does that produce the subjective experience of a mind and of the world?

RAZ: Here’s how David Chalmers begins his TED Talk.

(SOUNDBITE OF TED TALK)

CHALMERS: Right now, you have a movie playing inside your head. It has 3-D vision and surround sound for what you’re seeing and hearing right now. Your movie has smell and taste and touch. It has a sense of your body, pain, hunger, orgasms. It has emotions, anger and happiness. It has memories, like scenes from your childhood, playing before you. This movie is your stream of consciousness. If we weren’t conscious, nothing in our lives would have meaning or value. But at the same time, it’s the most mysterious phenomenon in the universe. Why are we conscious?

RAZ: Why is consciousness more than just the sum of the brain’s parts?

CHALMERS: Well, the question is, you know, what is the brain? It’s this giant complex computer, a bunch of interacting parts with great complexity. What does all that explain? That explains objective mechanism. Consciousness is subjective by its nature. It’s a matter of subjective experience. And it seems that we can imagine all of that stuff going on in the brain without consciousness. And the question is, where is the consciousness from there? It’s like, if someone could do that, they’d get a Nobel Prize, you know?

RAZ: Right.

CHALMERS: So here’s the mapping from this circuit to this state of consciousness. But underneath that is always going be the question, why and how does the brain give you consciousness in the first place?

(SOUNDBITE OF TED TALK)

CHALMERS: Right now, nobody knows the answers to those questions. So we may need one or two ideas that initially seem crazy before we can come to grips with consciousness, scientifically. The first crazy idea is that consciousness is fundamental. Physicists sometimes take some aspects of the universe as fundamental building blocks – space and time and mass – and you build up the world from there. Well, I think that’s the situation we’re in. If you can’t explain consciousness in terms of the existing fundamentals – space, time – the natural thing to do is to postulate consciousness itself as something fundamental – a fundamental building block of nature. The second crazy idea is that consciousness might be universal. This view is sometimes called panpsychism – pan, for all – psych, for mind. Every system is conscious. Not just humans, dogs, mice, flies, but even microbes. Even a photon has some degree of consciousness. The idea is not that photons are intelligent or thinking. You know, it’s not that a photon is wracked with angst because it’s thinking, oh, I’m always buzzing around near the speed of light. I never get to slow down and smell the roses. No, not like that. But the thought is, maybe photons might have some element of raw subjective feeling, some primitive precursor to consciousness.

RAZ: So this is a pretty big idea – right? – like, that not just flies, but microbes or photons all have consciousness. And I mean we, like, as humans, we want to believe that our consciousness is what makes us special, right – like, different from anything else.

CHALMERS: Well, I would say yes and no. I’d say the fact of consciousness does not make us special. But maybe we’ve a special type of consciousness ’cause you know, consciousness is not on and off. It comes in all these rich and amazing varieties. There’s vision. There’s hearing. There’s thinking. There’s emotion and so on. So our consciousness is far richer, I think, than the consciousness, say, of a mouse or a fly. But if you want to look for what makes us distinct, don’t look for just our being conscious, look for the kind of consciousness we have. …

Intriguing, non?

Vancouver premiere of Baba Brinkman’s Rap Guide to Consciousness

Baba Brinkman, former Vancouverite and current denizen of New York City, is back in town offering a new performance at the Rio Theatre (1680 E. Broadway, near Commercial Drive). From a July 5, 2017 Rio Theatre event page and ticket portal,

Baba Brinkman’s Rap Guide to Consciousness

Wednesday, July 5 [2017] at 6:30pm PDT

Baba Brinkman’s new hip-hop theatre show “Rap Guide to Consciousness” is all about the neuroscience of consciousness. See it in Vancouver at the Rio Theatre before it goes to the Edinburgh Fringe Festival in August [2017].

This event also features a performance of “Off the Top” with Dr. Heather Berlin (cognitive neuroscientist, TV host, and Baba’s wife), which is also going to Edinburgh.

Wednesday, July 5
Doors 6:00 pm | Show 6:30 pm

Advance tickets $12 | $15 at the door

*All ages welcome!
*Sorry, Groupons and passes not accepted for this event.

“Utterly unique… both brilliantly entertaining and hugely informative” ★ ★ ★ ★ ★ – Broadway Baby

“An education, inspiring, and wonderfully entertaining show from beginning to end” ★ ★ ★ ★ ★ – Mumble Comedy

There’s quite the poster for this rap guide performance,

In addition to  the Vancouver and Edinburgh performance (the show was premiered at the Brighton Fringe Festival in May 2017; see Simon Topping’s very brief review in this May 10, 2017 posting on the reviewshub.com), Brinkman is raising money (goal is $12,000US; he has raised a little over $3,000 with approximately one month before the deadline) to produce a CD. Here’s more from the Rap Guide to Consciousness campaign page on Indiegogo,

Brinkman has been working with neuroscientists, Dr. Anil Seth (professor and co-director of Sackler Centre for Consciousness Science) and Dr. Heather Berlin (Brinkman’s wife as noted earlier; see her Wikipedia entry or her website).

There’s a bit more information about the rap project and Anil Seth in a May 3, 2017 news item by James Hakner for the University of Sussex,

The research frontiers of consciousness science find an unusual outlet in an exciting new Rap Guide to Consciousness, premiering at this year’s Brighton Fringe Festival.

Professor Anil Seth, Co-Director of the Sackler Centre for Consciousness Science at the University of Sussex, has teamed up with New York-based ‘peer-reviewed rapper’ Baba Brinkman, to explore the latest findings from the neuroscience and cognitive psychology of subjective experience.

What is it like to be a baby? We might have to take LSD to find out. What is it like to be an octopus? Imagine most of your brain was actually built into your fingertips. What is it like to be a rapper kicking some of the world’s most complex lyrics for amused fringe audiences? Surreal.

In this new production, Baba brings his signature mix of rap comedy storytelling to the how and why behind your thoughts and perceptions. Mixing cutting-edge research with lyrical performance and projected visuals, Baba takes you through the twists and turns of the only organ it’s better to donate than receive: the human brain. Discover how the various subsystems of your brain come together to create your own rich experience of the world, including the sights and sounds of a scientifically peer-reviewed rapper dropping knowledge.

The result is a truly mind-blowing multimedia hip-hop theatre performance – the perfect meta-medium through which to communicate the dazzling science of consciousness.

Baba comments: “This topic is endlessly fascinating because it underlies everything we do pretty much all the time, which is probably why it remains one of the toughest ideas to get your head around. The first challenge with this show is just to get people to accept the (scientifically uncontroversial) idea that their brains and minds are actually the same thing viewed from different angles. But that’s just the starting point, after that the details get truly amazing.”

Baba Brinkman is a Canadian rap artist and award-winning playwright, best known for his “Rap Guide” series of plays and albums. Baba has toured the world and enjoyed successful runs at the Edinburgh Fringe Festival and off-Broadway in New York. The Rap Guide to Religion was nominated for a 2015 Drama Desk Award for “Unique Theatrical Experience” and The Rap Guide to Evolution (“Astonishing and brilliant” NY Times), won a Scotsman Fringe First Award and a Drama Desk Award nomination for “Outstanding Solo Performance”. The Rap Guide to Climate Chaos premiered in Edinburgh in 2015, followed by a six-month off-Broadway run in 2016.

Baba is also a pioneer in the genre of “lit-hop” or literary hip-hop, known for his adaptations of The Canterbury Tales, Beowulf, and Gilgamesh. He is a recent recipient of the National Center for Science Education’s “Friend of Darwin Award” for his efforts to improve the public understanding of evolutionary biology.

Anil Seth is an internationally renowned researcher into the biological basis of consciousness, with more than 100 (peer-reviewed!) academic journal papers on the subject. Alongside science he is equally committed to innovative public communication. A Wellcome Trust Engagement Fellow (from 2016) and the 2017 British Science Association President (Psychology), Professor Seth has co-conceived and consulted on many science-art projects including drama (Donmar Warehouse), dance (Siobhan Davies dance company), and the visual arts (with artist Lindsay Seers). He has also given popular public talks on consciousness at the Royal Institution (Friday Discourse) and at the main TED conference in Vancouver. He is a regular presence in print and on the radio and is the recipient of awards including the BBC Audio Award for Best Single Drama (for ‘The Sky is Wider’) and the Royal Society Young People’s Book Prize (for EyeBenders). This is his first venture into rap.

Professor Seth said: “There is nothing more familiar, and at the same time more mysterious than consciousness, but research is finally starting to shed light on this most central aspect of human existence. Modern neuroscience can be incredibly arcane and complex, posing challenges to us as public communicators.

“It’s been a real pleasure and privilege to work with Baba on this project over the last year. I never thought I’d get involved with a rap artist – but hearing Baba perform his ‘peer reviewed’ breakdowns of other scientific topics I realized here was an opportunity not to be missed.”

Interestingly, Seth has another Canadian connection; he’s a Senior Fellow of the Azrieli Program in Brain, Mind & Consciousness at the Canadian Institute for Advanced Research (CIFAR; Wikipedia entry). By the way, the institute  was promised $93.7M in the 2017 Canadian federal government budget for the establishment of a Pan-Canadian Artificial Intelligence Strategy (see my March 24, 2017 posting; scroll down about 25% of the way and look for the highlighted dollar amount). You can find out more about the Azrieli programme here and about CIFAR on its website.

The Hard Problem (a Tom Stoppard play)

Brinkman isn’t the only performance-based artist to be querying the concept of consciousness, Tom Stoppard has written a play about consciousness titled ‘The Hard Problem’, which debuted at the National Theatre (UK) in January 2015 (see BBC [British Broadcasting Corporation] news online’s Jan. 29, 2015 roundup of reviews). A May 25, 2017 commentary by Andrew Brown for the Guardian offers some insight into the play and the issues (Note: Links have been removed),

There is a lovely exchange in Tom Stoppard’s play about consciousness, The Hard Problem, when an atheist has been sneering at his girlfriend for praying. It is, he says, an utterly meaningless activity. Right, she says, then do one thing for me: pray! I can’t do that, he replies. It would betray all I believe in.

So prayer can have meanings, and enormously important ones, even for people who are certain that it doesn’t have the meaning it is meant to have. In that sense, your really convinced atheist is much more religious than someone who goes along with all the prayers just because that’s what everyone does, without for a moment supposing the action means anything more than asking about the weather.

The Hard Problem of the play’s title is a phrase coined by the Australian philosopher David Chalmers to describe the way in which consciousness arises from a physical world. What makes it hard is that we don’t understand it. What makes it a problem is slightly different. It isn’t the fact of consciousness, but our representations of consciousness, that give rise to most of the difficulties. We don’t know how to fit the first-person perspective into the third-person world that science describes and explores. But this isn’t because they don’t fit: it’s because we don’t understand how they fit. For some people, this becomes a question of consuming interest.

There are also a couple of video of Tom Stoppard, the playwright, discussing his play with various interested parties, the first being the director at the National Theatre who tackled the debut run, Nicolas Hytner: https://www.youtube.com/watch?v=s7J8rWu6HJg (it runs approximately 40 mins.). Then, there’s the chat Stoppard has with previously mentioned philosopher, David Chalmers: https://www.youtube.com/watch?v=4BPY2c_CiwA (this runs approximately 1 hr. 32 mins.).

I gather ‘consciousness’ is a hot topic these days and, in the venacular of the 1960s, I guess you could describe all of this as ‘expanding our consciousness’. Have a nice weekend!

Nanotechnology at the movies: Transcendence opens April 18, 2014 in the US & Canada

Screenwriter Jack Paglen has an intriguing interpretation of nanotechnology, one he (along with the director) shares in an April 13, 2014 article by Larry Getlen for the NY Post and in his movie, Transcendence. which is opening in the US and Canada on April 18, 2014. First, here are a few of the more general ideas underlying his screenplay,

In “Transcendence” — out Friday [April 18, 2014] and directed by Oscar-winning cinematographer Wally Pfister (“Inception,” “The Dark Knight”) — Johnny Depp plays Dr. Will Caster, an artificial-intelligence researcher who has spent his career trying to design a sentient computer that can hold, and even exceed, the world’s collective intelligence.

After he’s shot by antitechnology activists, his consciousness is uploaded to a computer network just before his body dies.

“The theories associated with the film say that when a strong artificial intelligence wakes up, it will quickly become more intelligent than a human being,” screenwriter Jack Paglen says, referring to a concept known as “the singularity.”

It should be noted that there are anti-technology terrorists. I don’t think I’ve covered that topic in a while so an Aug. 31, 2012 posting is the most recent and, despite the title, “In depth and one year later—the nanotechnology bombings in Mexico” provides an overview of sorts. For a more up-to-date view, you can read Eric Markowitz’s April 9, 2014 article for Vocative.com. I do have one observation about the article where Markowitz has linked some recent protests in San Francisco to the bombings in Mexico. Those protests in San Francisco seem more like a ‘poor vs. the rich’ situation where the rich happen to come from the technology sector.

Getting back to “Transcendence” and singularity, there’s a good Wikipedia entry describing the ideas and some of the thinkers behind the notion of a singularity or technological singularity, as it’s sometimes called (Note: Links have been removed),

The technological singularity, or simply the singularity, is a hypothetical moment in time when artificial intelligence will have progressed to the point of a greater-than-human intelligence, radically changing civilization, and perhaps human nature.[1] Because the capabilities of such an intelligence may be difficult for a human to comprehend, the technological singularity is often seen as an occurrence (akin to a gravitational singularity) beyond which the future course of human history is unpredictable or even unfathomable.

The first use of the term “singularity” in this context was by mathematician John von Neumann. In 1958, regarding a summary of a conversation with von Neumann, Stanislaw Ulam described “ever accelerating progress of technology and changes in the mode of human life, which gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue”.[2] The term was popularized by science fiction writer Vernor Vinge, who argues that artificial intelligence, human biological enhancement, or brain-computer interfaces could be possible causes of the singularity.[3] Futurist Ray Kurzweil cited von Neumann’s use of the term in a foreword to von Neumann’s classic The Computer and the Brain.

Proponents of the singularity typically postulate an “intelligence explosion”,[4][5] where superintelligences design successive generations of increasingly powerful minds, that might occur very quickly and might not stop until the agent’s cognitive abilities greatly surpass that of any human.

Kurzweil predicts the singularity to occur around 2045[6] whereas Vinge predicts some time before 2030.[7] At the 2012 Singularity Summit, Stuart Armstrong did a study of artificial generalized intelligence (AGI) predictions by experts and found a wide range of predicted dates, with a median value of 2040. His own prediction on reviewing the data is that there is an 80% probability that the singularity will occur between 2017 and 2112.[8]

The ‘technological singularity’ is controversial and contested (from the Wikipedia entry).

In addition to general criticisms of the singularity concept, several critics have raised issues with Kurzweil’s iconic chart. One line of criticism is that a log-log chart of this nature is inherently biased toward a straight-line result. Others identify selection bias in the points that Kurzweil chooses to use. For example, biologist PZ Myers points out that many of the early evolutionary “events” were picked arbitrarily.[104] Kurzweil has rebutted this by charting evolutionary events from 15 neutral sources, and showing that they fit a straight line on a log-log chart. The Economist mocked the concept with a graph extrapolating that the number of blades on a razor, which has increased over the years from one to as many as five, will increase ever-faster to infinity.[105]

By the way, this movie is mentioned briefly in the pop culture portion of the Wikipedia entry.

Getting back to Paglen and his screenplay, here’s more from Getlen’s article,

… as Will’s powers grow, he begins to pull off fantastic achievements, including giving a blind man sight, regenerating his own body and spreading his power to the water and the air.

This conjecture was influenced by nanotechnology, the field of manipulating matter at the scale of a nanometer, or one-billionth of a meter. (By comparison, a human hair is around 70,000-100,000 nanometers wide.)

“In some circles, nanotechnology is the holy grail,” says Paglen, “where we could have microscopic, networked machines [emphasis mine] that would be capable of miracles.”

The potential uses of, and implications for, nanotechnology are vast and widely debated, but many believe the effects could be life-changing.

“When I visited MIT,” says Pfister, “I visited a cancer research institute. They’re talking about the ability of nanotechnology to be injected inside a human body, travel immediately to a cancer cell, and deliver a payload of medicine directly to that cell, eliminating [the need to] poison the whole body with chemo.”

“Nanotechnology could help us live longer, move faster and be stronger. It can possibly cure cancer, and help with all human ailments.”

I find the ‘golly gee wizness’ of Paglen’s and Pfister’s take on nanotechnology disconcerting but they can’t be dismissed. There are projects where people are testing retinal implants which allow them to see again. There is a lot of work in the field of medicine designed to make therapeutic procedures that are gentler on the body by making their actions specific to diseased tissue while ignoring healthy tissue (sadly, this is still not possible). As for human enhancement, I have so many pieces that it has its own category on this blog. I first wrote about it in a four-part series starting with this one: Nanotechnology enables robots and human enhancement: part 1, (You can read the series by scrolling past the end of the posting and clicking on the next part or search the category and pick through the more recent pieces.)

I’m not sure if this error is Paglen’s or Getlen’s but nanotechnology is not “microscopic, networked machines” as Paglen’s quote strongly suggests. Some nanoscale devices could be described as machines (often called nanobots) but there are also nanoparticles, nanotubes, nanowires, and more that cannot be described as machines or devices, for that matter. More importantly, it seems Paglen’s main concern is this,

“One of [science-fiction author] Arthur C. Clarke’s laws is that any sufficiently advanced technology is indistinguishable from magic. That very quickly would become the case if this happened, because this artificial intelligence would be evolving technologies that we do not understand, and it would be capable of miracles by that definition,” says Paglen. [emphasis mine]

This notion of “evolving technologies that we do not understand” brings to mind a  project that was announced at the University of Cambridge (from my Nov. 26, 2012 posting),

The idea that robots of one kind or another (e.g. nanobots eating up the world and leaving grey goo, Cylons in both versions of Battlestar Galactica trying to exterminate humans, etc.) will take over the world and find humans unnecessary  isn’t especially new in works of fiction. It’s not always mentioned directly but the underlying anxiety often has to do with intelligence and concerns over an ‘explosion of intelligence’. The question it raises,’ what if our machines/creations become more intelligent than humans?’ has been described as existential risk. According to a Nov. 25, 2012 article by Sylvia Hui for Huffington Post, a group of eminent philosophers and scientists at the University of Cambridge are proposing to found a Centre for the Study of Existential Risk,

While I do have some reservations about how Paglen and Pfister describe the science, I appreciate their interest in communicating the scientific ideas, particularly those underlying Paglen’s screenplay.

For anyone who may be concerned about the likelihood of emulating  a human brain and uploading it to a computer, there’s an April 13, 2014 article by Luke Muehlhauser and Stuart Armstrong for Slate discussing that very possibility (Note 1: Links have been removed; Note 2: Armstrong is mentioned in this posting’s excerpt from the Wikipedia entry on Technological Singularity),

Today scientists can’t even emulate the brain of a tiny worm called C. elegans, which has 302 neurons, compared with the human brain’s 86 billion neurons. Using models of expected technological progress on the three key problems, we’d estimate that we wouldn’t be able to emulate human brains until at least 2070 (though this estimate is very uncertain).

But would an emulation of your brain be you, and would it be conscious? Such questions quickly get us into thorny philosophical territory, so we’ll sidestep them for now. For many purposes—estimating the economic impact of brain emulations, for instance—it suffices to know that the brain emulations would have humanlike functionality, regardless of whether the brain emulation would also be conscious.

Paglen/Pfister seem to be equating intelligence (brain power) with consciousness while Muehlhauser/Armstrong simply sidestep the issue. As they (Muehlhauser/Armstrong) note, it’s “thorny.”

If you consider thinkers like David Chalmers who suggest everything has consciousness, then it follows that computers/robots/etc. may not appreciate having a human brain emulation which takes us back into Battlestar Galactica territory. From my March 19, 2014 posting (one of the postings where I recounted various TED 2014 talks in Vancouver), here’s more about David Chalmers,

Finally, I wasn’t expecting to write about David Chalmers so my notes aren’t very good. A philosopher, here’s an excerpt from Chalmers’ TED biography,

In his work, David Chalmers explores the “hard problem of consciousness” — the idea that science can’t ever explain our subjective experience.

David Chalmers is a philosopher at the Australian National University and New York University. He works in philosophy of mind and in related areas of philosophy and cognitive science. While he’s especially known for his theories on consciousness, he’s also interested (and has extensively published) in all sorts of other issues in the foundations of cognitive science, the philosophy of language, metaphysics and epistemology.

Chalmers provided an interesting bookend to a session started with a brain researcher (Nancy Kanwisher) who breaks the brain down into various processing regions (vastly oversimplified but the easiest way to summarize her work in this context). Chalmers reviewed the ‘science of consciousness’ and noted that current work in science tends to be reductionist, i.e., examining parts of things such as brains and that same reductionism has been brought to the question of consciousness.

Rather than trying to prove consciousness, Chalmers proposes that we consider it a fundamental in the same way that we consider time, space, and mass to be fundamental. He noted that there’s precedence for additions and gave the example of James Clerk Maxwell and his proposal to consider electricity and magnetism as fundamental.

Chalmers next suggestion is a little more outré and based on some thinking (sorry I didn’t catch the theorist’s name) that suggests everything, including photons, has a type of consciousness (but not intelligence).

Have a great time at the movie!

Brains, guts, health, and consciouness at TED 2014′s Session 5: Us

While most of the speakers I’m mentioning are the ‘science’ speakers in this session, they are more precisely ‘medical science’ speakers which takes me further than usual out of my comfort zone. That said, Nancy Kanwisher, brain researcher, opened the session (from her TED biography),

Using cutting-edge fMRI technology as her lens, Nancy Kanwisher zooms in on the brain regions responsible for some surprisingly specific elements of cognition.

Does the brain use specialized processors to solve complex problems, or does it rely instead on more general-purpose systems?

This question has been at the crux of brain research for centuries. MIT [Massachusetts Institute of Technology] researcher Nancy Kanwisher seeks to answer this question by discovering a “parts list” for the human mind and brain. “Understanding the nature of the human mind,” she says, “is arguably the greatest intellectual quest of all time.”

As many of us now know courtesy of researchers like Kanwisher, the brain has both general purpose regions and specialized regions for perception and complex processing but Kanwisher’s presentation was as much about the process of discovery as it was about the discoveries she and her colleagues have made. She talked about her personal experiences with functional magnetic resonance imaging (fMRI) as she tested (many times) her own brain first and then spent years looking at grayscale images as she decoded what she was observing and tested over and over and over again.

Next came the ‘gut guy’, or as microbial ecologist Rob Knight’s TED biography describes him,

Rob Knight explores the unseen microbial world that exists literally right under our noses — and everywhere else on (and in) our bodies.

Using scatological research methods that might repel the squeamish, microbial researcher Rob Knight uncovers the secret ecosystem (or “microbiome”) of microbes that inhabit our bodies — and the bodies of every creature on earth. In the process, he’s discovered a complex internal ecology that affects everything from weight loss to our susceptibility to disease. As he said to Nature in 2012, “What motivates me, from a pragmatic standpoint, is how understanding the microbial world might help us improve human and environmental health.”

Knight made the case that our microbes are what give us our individuality by noting that 99.99% of our DNA is the same from one person to the next but out microbial communities vary greatly person to person and the community in your mouth varies greatly from the community on your skin. He and his colleagues are using the information to consider new types of medical interventions. For example, research has shown that giving children antibiotics before the age of six months affects their future health.

Interestingly, we carry about 3 lbs. of microbes individually and Knight and his colleagues are still gathering information about those lbs. He mentioned the American Gut project (and solicited future volunteers from the live audience by mentioning he had just happened to bring 100 kits which were available at his table outside). This project is for US participant only.

Stephen Friend, oncologist and open science advocate was featured next. From his TED biography,

Inspired by open-source software models, Sage Bionetworks co-founder Stephen Friend builds tools that facilitate research sharing on a massive and revolutionary scale.

While working for Merck, Stephen Friend became frustrated by the slow pace at which big pharma created new treatments for desperate patients. Studying shared models like Wikipedia, Friend realized that the complexities of disease could only be understood — and combated — with collaboration and transparency, not by isolated scientists working in secret with proprietary data

Friend has a great name for someone who advocates for transparency and openness. He opened with stories about his work and how he came to be inspired to look for health rather than disease. He noted that for the most part, medical research is focused on the question of what went wrong with a patient rather than asking if healthy people have some sort of natural immunity or protection from cancer, Alzheimer’s, etc. Perhaps by examining health people we can find ways to more effectively intervene.

He provided two examples of research that examined natural immunity such as research in San Francisco (California) into why a small but significant percentage of people with HIV never developed AIDS; his other example was regarding research into lipid levels and why some people with high levels never develop heart disease.

I’m a little foggy about this point but I think he made a request for information about these medical phenomena and people from around the world shared their research with him in an open and transparent fashion.

This next bit was clear to me, he and his colleagues are moving to another stage with their research initiative which they have named the Resilience Project; Unexpected Heroes. He too solicited volunteers from the audience. I haven’t been able to locate a website for the project but there maybe some on the Sage Bionetworks website, the organization Friend co-founded. Good luck!

Finally, I wasn’t expecting to write about David Chalmers so my notes aren’t very good. A philosopher, here’s an excerpt from Chalmers’ TED biography,

In his work, David Chalmers explores the “hard problem of consciousness” — the idea that science can’t ever explain our subjective experience.

David Chalmers is a philosopher at the Australian National University and New York University. He works in philosophy of mind and in related areas of philosophy and cognitive science. While he’s especially known for his theories on consciousness, he’s also interested (and has extensively published) in all sorts of other issues in the foundations of cognitive science, the philosophy of language, metaphysics and epistemology.

Chalmers provided an interesting bookend to a session started with a brain researcher (Nancy Kanwisher) who breaks the brain down into various processing regions (vastly oversimplified but the easiest way to summarize her work in this context). Chalmers reviewed the ‘science of consciousness’ and noted that current work in science tends to be reductionist, i.e., examining parts of things such as brains and that same reductionism has been brought to the question of consciousness.

Rather than trying to prove consciousness, Chalmers proposes that we consider it a fundamental in the same way that we consider time, space, and mass to be fundamental. He noted that there’s precedence for additions and gave the example of James Clerk Maxwell and his proposal to consider electricity and magnetism as fundamental.

Chalmers next suggestion is a little more outré and based on some thinking (sorry I didn’t catch the theorist’s name) that suggests everything, including photons, has a type of consciousness (but not intelligence).