Tag Archives: David Johnston

The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (5 of 5)

At long last, the end is in sight! This last part is mostly a collection of items that don’t fit elsewhere or could have fit elsewhere but that particular part was already overstuffed.

Podcasting science for the people

March 2009 was the birth date for a podcast, then called Skeptically Speaking and now known as Science for the People (Wikipedia entry). Here’s more from the Science for the People About webpage,

Science for the People is a long-format interview podcast that explores the connections between science, popular culture, history, and public policy, to help listeners understand the evidence and arguments behind what’s in the news and on the shelves.

Every week, our hosts sit down with science researchers, writers, authors, journalists, and experts to discuss science from the past, the science that affects our lives today, and how science might change our future.

THE TEAM

Rachelle Saunders: Producer & Host

I love to learn new things, and say the word “fascinating” way too much. I like to talk about intersections and how science and critical thinking intersect with everyday life, politics, history, and culture. By day I’m a web developer, and I definitely listen to way too many podcasts.

….

H/t to GeekWrapped’s 20 Best Science Podcasts.

Science: human contexts and cosmopolitanism

situating science: Science in Human Contexts was a seven-year project ending in 2014 and funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). Here’s more from their Project Summary webpage,

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

You can find out more about Situating Science’s final days in my August 16, 2013 posting where I included a lot of information about one of their last events titled, “Science and Society 2013 Symposium; Emerging Agendas for Citizens and the Sciences.”

The “think-tank” will dovetail nicely with a special symposium in Ottawa on Science and Society Oct. 21-23. For this symposium, the Cluster is partnering with the Institute for Science, Society and Policy to bring together scholars from various disciplines, public servants and policy workers to discuss key issues at the intersection of science and society. [emphasis mine]  The discussions will be compiled in a document to be shared with stakeholders and the wider public.

The team will continue to seek support and partnerships for projects within the scope of its objectives. Among our top priorities are a partnership to explore sciences, technologies and their publics as well as new partnerships to build upon exchanges between scholars and institutions in India, Singapore and Canada.

The Situating Science folks did attempt to carry on the organization’s work by rebranding the organization to call it the Canadian Consortium for Situating Science and Technology (CCSST). It seems to have been a short-lived volunteer effort.

Meanwhile, the special symposium held in October 2013 appears to have been the springboard for another SSHRC funded multi-year initiative, this time focused on science collaborations between Canada, India, and Singapore, Cosmopolitanism and the Local in Science and Nature from 2014 – 2017. Despite their sunset year having been in 2017, their homepage boasts news about a 2020 Congress and their Twitter feed is still active. Harking back, here’s what the project was designed to do, from the About Us page,

Welcome to our three year project that will establish a research network on “Cosmopolitanism” in science. It closely examines the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape. This partnership is both about “cosmopolitanism and the local” and is, at the same time, cosmopolitan and local.

Anyone who reads this blog with any frequency will know that I often comment on the fact that when organizations such as the Council of Canadian Academies bring in experts from other parts of the world, they are almost always from the US or Europe. So, I was delighted to discover the Cosmopolitanism project and featured it in a February 19, 2015 posting.

Here’s more from Cosmopolitanism’s About Us page

Specifically, the project will:

  1. Expose a hitherto largely Eurocentric scholarly community in Canada to widening international perspectives and methods,
  2. Build on past successes at border-crossings and exchanges between the participants,
  3. Facilitate a much needed nation-wide organization and exchange amongst Indian and South East Asian scholars, in concert with their Canadian counterparts, by integrating into an international network,
  4. Open up new perspectives on the genesis and place of globalized science, and thereby
  5. Offer alternative ways to conceptualize and engage globalization itself, and especially the globalization of knowledge and science.
  6. Bring the managerial team together for joint discussion, research exchange, leveraging and planning – all in the aid of laying the grounds of a sustainable partnership

Eco Art (also known as ecological art or environmental art)

I’m of two minds as to whether I should have tried to stuff this into the art/sci subsection in part 2. On balance, I decided that this merited its own section and that part 2 was already overstuffed.

Let’s start in Newfoundland and Labrador with Marlene Creates (pronounced Kreets), here’s more about her from her website’s bio webpage,

Marlene Creates (pronounced “Kreets”) is an environmental artist and poet who works with photography, video, scientific and vernacular knowledge, walking and collaborative site-specific performance in the six-acre patch of boreal forest in Portugal Cove, Newfoundland and Labrador, Canada, where she lives.

For almost 40 years her work has been an exploration of the relationship between human experience, memory, language and the land, and the impact they have on each other. …

Currently her work is focused on the six acres of boreal forest where she lives in a ‘relational aesthetic’ to the land. This oeuvre includes Water Flowing to the Sea Captured at the Speed of Light, Blast Hole Pond River, Newfoundland 2002–2003, and several ongoing projects:

Marlene Creates received a Governor General’s Award in Visual and Media Arts for “Lifetime Artistic Achievement” in 2019. …

As mentioned in her bio, Creates has a ‘forest’ project. The Boreal Poetry Garden,
Portugal Cove, Newfoundland 2005– (ongoing)
. If you are interested in exploring it, she has created a virtual walk here. Just click on one of the index items on the right side of the screen to activate a video.

An October 1, 2018 article by Yasmin Nurming-Por for Canadian Art magazine features 10 artists who focus on environmental and/or land art themes,

As part of her 2016 master’s thesis exhibition, Fredericton [New Brunswick] artist Gillian Dykeman presented the video Dispatches from the Feminist Utopian Future within a larger installation that imagined various canonical earthworks from the perspective of the future. It’s a project that addresses the inherent sense of timelessness in these massive interventions on the natural landscape from the perspective of contemporary land politics. … she proposes a kind of interaction with the invasive and often colonial gestures of modernist Land art, one that imagines a different future for these earthworks, where they are treated as alien in a landscape and as beacons from a feminist future.

A video trailer featuring “DISPATCHES FROM THE FEMINIST UTOPIAN FUTURE” (from Dykeman’s website archive page featuring the show,

If you have the time, I recommend reading the article in its entirety.

Oddly, I did not expect Vancouver to have such an active eco arts focus. The City of Vancouver Parks Board maintains an Environmental Art webpage on its site listing a number of current and past projects.

I cannot find the date for when this Parks Board initiative started but I did find a document produced prior to a Spring 2006 Arts & Ecology think tank held in Vancouver under the auspices of the Canada Council for the Arts, the Canadian Commission for UNESCO, the Vancouver Foundation, and the Royal Society for the Encouragement of the Arts, Manufactures and Commerce (London UK).

In all likelihood, Vancouver Park Board’s Environmental Art webpage was produced after 2006.

I imagine the document and the think tank session helped to anchor any then current eco art projects and encouraged more projects.

The document (MAPPING THE TERRAIN OF CONTEMPORARY ECOART PRACTICE AND COLLABORATION) while almost 14 years old offers a fascinating overview of what was happening internationally and in Canada.

While its early days were in 2008, EartHand Gleaners (Vancouver-based) wasn’t formally founded as an arts non-for-profit organization until 2013. You can find out more about them and their projects here.

Eco Art has been around for decades according to the eco art think tank document but it does seemed to have gained momentum here in Canada over the last decade.

Photography and the Natural Sciences and Engineering Research Council of Canada (NSERC)

Exploring the jack pine tight knit family tree. Credit: Dana Harris Brock University (2018)

Pictured are developing phloem, cambial, and xylem cells (blue), and mature xylem cells (red), in the outermost portion of a jack pine tree. This research aims to identify the influences of climate on the cellular development of the species at its northern limit in Yellowknife, NT. The differences in these cell formations is what creates the annual tree ring boundary.

Science Exposed is a photography contest for scientists which has been run since 2016 (assuming the Past Winners archive is a good indicator for the programme’s starting year).

The 2020 competition recently closed but public voting should start soon. It’s nice to see that NSERC is now making efforts to engage members of the general public rather than focusing its efforts solely on children. The UK’s ASPIRES project seems to support the idea that adults need to be more fully engaged with STEM (science, technology, engineering, and mathematics) efforts as it found that children’s attitudes toward science are strongly influenced by their parents’ and relatives’ attitudes.(See my January 31, 2012 posting.)

Ingenious, the book and Ingenium, the science museums

To celebrate Canada’s 150th anniversary in 2017, then Governor General David Johnston and Tom Jenkins (Chair of the board for Open Text and former Chair of the federal committee overseeing the ‘Review of Federal Support to R&’D [see my October 21, 2011 posting about the resulting report]) wrote a boo about Canada’s inventors and inventions.

Johnston and Jenkins jaunted around the country launching their book (I have more about their June 1, 2017 Vancouver visit in a May 30, 2017 posting; scroll down about 60% of the way]).

The book’s full title, “Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier ” outlines their thesis neatly.

Not all that long after the book was launched, there was a name change (thankfully) for the Canada Science and Technology Museums Corporation (CSTMC). It is now known as Ingenium (covered in my August 10, 2017 posting).

The reason that name change was such a relief (for those who don’t know) is that the corporation included three national science museums: Canada Aviation and Space Museum, Canada Agriculture and Food Museum, and (wait for it) Canada Science and Technology Museum. On the list of confusing names, this ranks very high for me. Again, I give thanks for the change from CSTMC to Ingenium, leaving the name for the museum alone.

2017 was also the year that the newly refurbished Canada Science and Technology Museum was reopened after more than three years (see my June 23, 2017 posting about the November 2017 reopening and my June 12, 2015 posting for more information about the situation that led to the closure).

A Saskatchewan lab, Convergence, Order of Canada, Year of Science, Animated Mathematics, a graphic novel, and new media

Since this section is jampacked, I’m using subheads.

Saskatchewan

Dr. Brian Eames hosts an artist-in-residence, Jean-Sebastien (JS) Gauthier at the University of Saskatchewan’s College of Medicine Eames Lab. A February 16, 2018 posting here featured their first collaboration together. It covered evolutionary biology, the synchrotron (Canadian Light Source [CLS]) in Saskatoon, and the ‘ins and outs’ of a collaboration between a scientist an artist. Presumably the art-in-residence position indicates that first collaboration went very well.

In January 2020, Brian kindly gave me an update on their current projects. Jean-Sebastin successfully coded an interactive piece for an exhibit at the 2019 Nuit Blanche Saskatoon event using Connect (Xbox). More recently, he got a VR [virtual reality] helmet for an upcoming project or two.

After much clicking on the Nuit Blanche Saskatoon 2019 interactive map, I found this,

Our Glass is a work of interactive SciArt co-created by artist JS Gauthier and biologist Dr Brian F. Eames. It uses cutting-edge 3D microscopic images produced for artistic purposes at the Canadian Light Source, Canada’s only synchrotron facility. Our Glass engages viewers of all ages to peer within an hourglass showing how embryonic development compares among animals with whom we share a close genetic heritage.

Eames also mentioned they were hoping to hold an international SciArt Symposium at the University of Saskatchewan in 2021.

Convergence

Dr. Cristian Zaelzer-Perez, an instructor at Concordia University (Montreal; read this November 20, 2019 Concordia news release by Kelsey Rolfe for more about his work and awards), in 2016 founded the Convergence Initiative, a not-for-profit organization that encourages interdisciplinary neuroscience and art collaborations.

Cat Lau’s December 23, 2019 posting for the Science Borealis blog provides insight into Zaelzer-Perez’s relationship to science and art,

Cristian: I have had a relationship with art and science ever since I have had memory. As a child, I loved to do classifications, from grouping different flowers to collecting leaves by their shapes. At the same time, I really loved to draw them and for me, both things never looked different; they (art and science) have always worked together.

I started as a graphic designer, but the pursuit to learn about nature was never dead. At some point, I knew I wanted to go back to school to do research, to explore and learn new things. I started studying medical technologies, then molecular biology and then jumped into a PhD. At that point, my life as a graphic designer slipped down, because of the focus you have to give to the discipline. It seemed like every time I tried to dedicate myself to one thing, I would find myself doing the other thing a couple years later.

I came to Montreal to do my post-doc, but I had trouble publishing, which became problematic in getting a career. I was still loving what I was doing, but not seeing a future in that. Once again, art came back into my life and at the same time I saw that science was becoming really hard to understand and scientists were not doing much to bridge the gap.

The Convergence Initiative has an impressive array of programmes. Do check it out.

Order of Canada and ‘The Science Lady’

For a writer of children’s science books, an appointment to the Order of Canada is a singular honour. I cannot recall a children’s science book writer previous to Shar Levine being appointed as a Member of the Order of Canada. Known as ‘The Science Lady‘, Levine was appointed in 2016. Here’s more from her Wikipedia entry, Note: Links have been removed,

Shar Levine (born 1953) is an award-winning, best selling Canadian children’s author, and designer.

Shar has written over 70 books and book/kits, primarily on hands-on science for children. For her work in Science literacy and Science promotion, Shar has been appointed to the 2016 Order of Canada. In 2015, she was recognized by the University of Alberta and received their Alumni Honour Award. Levine, and her co-author, Leslie Johnstone, were co-recipients of the Eve Savory Award for Science Communication from the BC Innovation Council (2006) and their book, Backyard Science, was a finalist for the Subaru Award, (hands on activity) from the American Association for the Advancement of Science, Science Books and Films (2005). The Ultimate Guide to Your Microscope was a finalist-2008 American Association for the Advancement of Science/Subaru Science Books and Films Prize Hands -On Science/Activity Books.

To get a sense of what an appointment to the Order of Canada means, here’s a description from the government of Canada website,

The Order of Canada is how our country honours people who make extraordinary contributions to the nation.

Since its creation in 1967—Canada’s centennial year—more than 7 000 people from all sectors of society have been invested into the Order. The contributions of these trailblazers are varied, yet they have all enriched the lives of others and made a difference to this country. Their grit and passion inspire us, teach us and show us the way forward. They exemplify the Order’s motto: DESIDERANTES MELIOREM PATRIAM (“They desire a better country”).

Year of Science in British Columbia

In the Fall of 2010, the British Columbia provincial government announced a Year of Science (coinciding with the school year) . Originally, it was supposed to be a provincial government-wide initiative but the idea percolated through any number of processes and emerged as a year dedicated to science education for youth (according to the idea’s originator, Moira Stilwell who was then a Member of the Legislative Assembly [MLA]’ I spoke with her sometime in 2010 or 2011).

As the ‘year’ drew to a close, there was a finale ($1.1M in funding), which was featured here in a July 6, 2011 posting.

The larger portion of the money ($1M) was awarded to Science World while $100,000 ($0.1 M) was given to the Pacific Institute of Mathematical Sciences To my knowledge there have been no followup announcements about how the money was used.

Animation and mathematics

In Toronto, mathematician Dr. Karan Singh enjoyed a flurry of interest due to his association with animator Chris Landreth and their Academy Award (Oscar) Winning 2004 animated film, Ryan. They have continued to work together as members of the Dynamic Graphics Project (DGP) Lab at the University of Toronto. Theirs is not the only Oscar winning work to emerge from one or more of the members of the lab. Jos Stam, DGP graduate and adjunct professor won his third in 2019.

A graphic novel and medical promise

An academic at Simon Fraser University since 2015, Coleman Nye worked with three other women to produce a graphic novel about medical dilemmas in a genre described as’ ethno-fiction’.

Lissa: A Story about Medical Promise, Friendship, and Revolution (2017) by Sherine Hamdy and Coleman Nye, two anthropologists and Art by Sarula Bao and Caroline Brewer, two artists.

Here’s a description of the book from the University of Toronto Press website,

As young girls in Cairo, Anna and Layla strike up an unlikely friendship that crosses class, cultural, and religious divides. Years later, Anna learns that she may carry the hereditary cancer gene responsible for her mother’s death. Meanwhile, Layla’s family is faced with a difficult decision about kidney transplantation. Their friendship is put to the test when these medical crises reveal stark differences in their perspectives…until revolutionary unrest in Egypt changes their lives forever.

The first book in a new series [ethnoGRAPIC; a series of graphic novels from the University of Toronto Press], Lissa brings anthropological research to life in comic form, combining scholarly insights and accessible, visually-rich storytelling to foster greater understanding of global politics, inequalities, and solidarity.

I hope to write more about this graphic novel in a future posting.

New Media

I don’t know if this could be described as a movement yet but it’s certainly an interesting minor development. Two new media centres have hosted, in the last four years, art/sci projects and/or workshops. It’s unexpected given this definition from the Wikipedia entry for New Media (Note: Links have been removed),

New media are forms of media that are computational and rely on computers for redistribution. Some examples of new media are computer animations, computer games, human-computer interfaces, interactive computer installations, websites, and virtual worlds.[1][2]

In Manitoba, the Video Pool Media Arts Centre hosted a February 2016 workshop Biology as a New Art Medium: Workshop with Marta De Menezes. De Menezes, an artist from Portugal, gave workshops and talks in both Winnipeg (Manitoba) and Toronto (Ontario). Here’s a description for the one in Winnipeg,

This workshop aims to explore the multiple possibilities of artistic approaches that can be developed in relation to Art and Microbiology in a DIY situation. A special emphasis will be placed on the development of collaborative art and microbiology projects where the artist has to learn some biological research skills in order to create the artwork. The course will consist of a series of intense experimental sessions that will give raise to discussions on the artistic, aesthetic and ethical issues raised by the art and the science involved. Handling these materials and organisms will provoke a reflection on the theoretical issues involved and the course will provide background information on the current diversity of artistic discourses centred on biological sciences, as well a forum for debate.

VIVO Media Arts Centre in Vancouver hosted the Invasive Systems in 2019. From the exhibition page,

Picture this – a world where AI invades human creativity, bacteria invade our brains, and invisible technological signals penetrate all natural environments. Where invasive species from plants to humans transform spaces where they don’t belong, technology infiltrates every aspect of our daily lives, and the waste of human inventions ravages our natural environments.

This weekend festival includes an art-science exhibition [emphasis mine], a hands-on workshop (Sat, separate registration required), and guided discussions and tours by the curator (Sat/Sun). It will showcase collaborative works by three artist/scientist pairs, and independent works by six artists. Opening reception will be on Friday, November 8 starting at 7pm; curator’s remarks and performance by Edzi’u at 7:30pm and 9pm. 

New Westminster’s (British Columbia) New Media Gallery recently hosted an exhibition, ‘winds‘ from June 20 – September 29, 2019 that could be described as an art/sci exhibition,

Landscape and weather have long shared an intimate connection with the arts.  Each of the works here is a landscape: captured, interpreted and presented through a range of technologies. The four artists in this exhibition have taken, as their material process, the movement of wind through physical space & time. They explore how our perception and understanding of landscape can be interpreted through technology. 

These works have been created by what might be understood as a sort of scientific method or process that involves collecting data, acute observation, controlled experiments and the incorporation of measurements and technologies that control or collect motion, pressure, sound, pattern and the like. …

Council of Canadian Academies, Publishing, and Open Access

Established in 2005, the Council of Canadian Academies (CCA) (Wikipedia entry) is tasked by various departments and agencies to answer their queries about science issues that could affect the populace and/or the government. In 2014, the CCA published a report titled, Science Culture: Where Canada Stands. It was in response to the Canada Science and Technology Museums Corporation (now called Ingenium), Industry Canada, and Natural Resources Canada and their joint request that the CCA conduct an in-depth, independent assessment to investigate the state of Canada’s science culture.

I gave a pretty extensive analysis of the report, which I delivered in four parts: Part 1, Part 2 (a), Part 2 (b), and Part 3. In brief, the term ‘science culture’ seems to be specifically, i.e., it’s not used elsewhere in the world (that we know of), Canadian. We have lots to be proud of. I was a little disappointed by the lack of culture (arts) producers on the expert panel and, as usual, I bemoaned the fact that the international community included as reviewers, members of the panel, and as points for comparison were drawn from the usual suspects (US, UK, or somewhere in northern Europe).

Science publishing in Canada took a bit of a turn in 2010, when the country’s largest science publisher, NRC (National Research Council) Research Publisher was cut loose from the government and spun out into the private, *not-for-profit publisher*, Canadian Science Publishing (CSP). From the CSP Wikipedia entry,

Since 2010, Canadian Science Publishing has acquired five new journals:

Since 2010, Canadian Science Publishing has also launched four new journals

Canadian Science Publishing offers researchers options to make their published papers freely available (open access) in their standard journals and in their open access journal, (from the CSP Wikipedia entry)

Arctic Science aims to provide a collaborative approach to Arctic research for a diverse group of users including government, policy makers, the general public, and researchers across all scientific fields

FACETS is Canada’s first open access multidisciplinary science journal, aiming to advance science by publishing research that the multi-faceted global community of research. FACETS is the official journal of the Royal Society of Canada’s Academy of Science.

Anthropocene Coasts aims to understand and predict the effects of human activity, including climate change, on coastal regions.

In addition, Canadian Science Publishing strives to make their content accessible through the CSP blog that includes plain language summaries of featured research. The open-access journal FACETS similarly publishes plain language summaries.

*comment removed*

CSP announced (on Twitter) a new annual contest in 2016,

Canadian Science Publishing@cdnsciencepub

New CONTEST! Announcing Visualizing Science! Share your science images & win great prizes! Full details on the blog http://cdnsciencepub.com/blog/2016-csp-image-contest-visualizing-science.aspx1:45 PM · Sep 19, 2016·TweetDeck

The 2016 blog posting is no longer accessible. Oddly for a contest of this type, I can’t find an image archive for previous contests. Regardless, a 2020 competition has been announced for Summer 2020. There are some details on the VISUALIZING SCIENCE 2020 webpage but some are missing, e.g., no opening date, no deadline. They are encouraging you to sign up for notices.

Back to open access, in a January 22, 2016 posting I featured news about Montreal Neuro (Montreal Neurological Institute [MNI] in Québec, Canada) and its then new policy giving researchers world wide access to its research and made a pledge that it would not seek patents for its work.

Fish, Newfoundland & Labrador, and Prince Edward Island

AquAdvantage’s genetically modified salmon was approved for consumption in Canada according to my May 20, 2016 posting. The salmon are produced/farmed by a US company (AquaBounty) but the the work of genetically modifying Atlantic salmon with genetic material from the Chinook (a Pacific ocean salmon) was mostly undertaken at Memorial University in Newfoundland & Labrador.

The process by which work done in Newfoundland & Labrador becomes the property of a US company is one that’s well known here in Canada. The preliminary work and technology is developed here and then purchased by a US company, which files patents, markets, and profits from it. Interestingly, the fish farms for the AquAdvantage salmon are mostly (two out of three) located on Prince Edward Island.

Intriguingly, 4.5 tonnes of the modified fish were sold for consumption in Canada without consumers being informed (see my Sept. 13, 2017 posting, scroll down about 45% of the way).

It’s not all sunshine and roses where science culture in Canada is concerned. Incidents where Canadians are not informed let alone consulted about major changes in the food supply and other areas are not unusual. Too many times, scientists, politicians, and government policy experts want to spread news about science without any response from the recipients who are in effect viewed as a ‘tabula rasa’ or a blank page.

Tying it all up

This series has been my best attempt to document in some fashion or another the extraordinary range of science culture in Canada from roughly 2010-19. Thank you! This series represents a huge amount of work and effort to develop science culture in Canada and I am deeply thankful that people give so much to this effort.

I have inevitably missed people and organizations and events. For that I am very sorry. (There is an addendum to the series as it’s been hard to stop but I don’t expect to add anything or anyone more.)

I want to mention but can’t expand upon,the Pan-Canadian Artificial Intelligence Strategy, which was established in the 2017 federal budget (see a March 31, 2017 posting about the Vector Institute and Canada’s artificial intelligence sector).

Science Borealis, the Canadian science blog aggregator, owes its existence to Canadian Science Publishing for the support (programming and financial) needed to establish itself and, I believe, that support is still ongoing. I think thanks are also due to Jenny Ryan who was working for CSP and championed the initiative. Jenny now works for Canadian Blood Services. Interestingly, that agency added a new programme, a ‘Lay Science Writing Competition’ in 2018. It’s offered n partnership with two other groups, the Centre for Blood Research at the University of British Columbia and Science Borealis

While the Royal Astronomical Society of Canada does not fit into my time frame as it lists as its founding date December 1, 1868 (18 months after confederation), the organization did celebrate its 150th anniversary in 2018.

Vancouver’s Electric Company often produces theatrical experiences that cover science topics such as the one featured in my June 7, 2013 posting, You are very star—an immersive transmedia experience.

Let’s Talk Science (Wikipedia entry) has been heavily involved with offering STEM (science, technology, engineering, and mathematics) programming both as part of curricular and extra-curricular across Canada since 1993.

This organization predates confederation having been founded in 1849 by Sir Sandford Fleming and Kivas Tully in Toronto. for surveyors, civil engineers, and architects. It is the Royal Canadian Institute of Science (Wikipedia entry)_. With almost no interruption, they have been delivering a regular series of lectures on the University of Toronto campus since 1913.

The Perimeter Institute for Theoretical Physics is a more recent beast. In 1999 Mike Lazirides, founder of Research In Motion (now known as Blackberry Limited), acted as both founder and major benefactor for this institute in Waterloo, Ontario. They offer a substantive and imaginative outreach programmes such as Arts and Culture: “Event Horizons is a series of unique and extraordinary events that aim to stimulate and enthral. It is a showcase of innovative work of the highest international standard, an emotional, intellectual, and creative experience. And perhaps most importantly, it is a social space, where ideas collide and curious minds meet.”

While gene-editing hasn’t seemed to be top-of-mind for anyone other than those in the art/sci community that may change. My April 26, 2019 posting focused on what appears to be a campaign to reverse Canada’s criminal ban on human gene-editing of inheritable cells (germline). With less potential for controversy, there is a discussion about somatic gene therapies and engineered cell therapies. A report from the Council of Canadian is due in the Fall of 2020. (The therapies being discussed do not involve germline editing.)

French language science media and podcasting

Agence Science-Presse is unique as it is the only press agency in Canada devoted to science news. Founded in 1978, it has been active in print, radio, television, online blogs, and podcasts (Baladodiffusion). You can find their Twitter feed here.

I recently stumbled across ‘un balados’ (podcast), titled, 20%. Started in January 2019 by the magazine, Québec Science, the podcast is devoted to women in science and technology. 20%, the podcast’s name, is the statistic representing the number of women in those fields. “Dans les domaines de la science et de la technologie, les femmes ne forment que 20% de la main-d’oeuvre.” (from the podcast webpage) The podcast is a co-production between “Québec Science [founded in 1962] et l’Acfas [formerly, l’Association Canadienne-Française pour l’Avancement des Sciences, now, Association francophone pour le savoir], en collaboration avec la Commission canadienne pour l’UNESCO, L’Oréal Canada et la radio Choq.ca.” (also from the podcast webpage)

Does it mean anything?

There have been many developments since I started writing this series in late December 2019. In January 2020, Iran shot down one of its own planes. That error killed some 176 people , many of them (136 Canadians and students) bound for Canada. The number of people who were involved in the sciences, technology, and medicine was striking.

It was a shocking loss and will reverberate for quite some time. There is a memorial posting here (January 13, 2020), which includes links to another memorial posting and an essay.

As I write this we are dealing with a pandemic, COVID-19, which has us all practicing physical and social distancing. Congregations of large numbers are expressly forbidden. All of this is being done in a bid to lessen the passage of the virus, SARS-CoV-2 which causes COVID-19.

In the short term at least, it seems that much of what I’ve described in these five parts (and the addendum) will undergo significant changes or simply fade away.

As for the long term, with this last 10 years having hosted the most lively science culture scene I can ever recall, I’m hopeful that science culture in Canada will do more than survive but thrive.

For anyone who missed them:

Part 1 covers science communication, science media (mainstream and others such as blogging) and arts as exemplified by music and dance: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (1 of 5).

Part 2 covers art/science (or art/sci or sciart) efforts, science festivals both national and local, international art and technology conferences held in Canada, and various bar/pub/café events: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (2 of 5).

Part 3 covers comedy, do-it-yourself (DIY) biology, chief science advisor, science policy, mathematicians, and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (3 of 5)

Part 4 covers citizen science, birds, climate change, indigenous knowledge (science), and the IISD Experimental Lakes Area: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (4 of 5)

*”for-profit publisher, Canadian Science Publishing (CSP)” corrected to “not-for-profit publisher, Canadian Science Publishing (CSP)” and this comment “Not bad for a for-profit business, eh?” removed on April 29, 2020 as per Twitter comments,

Canadian Science Publishing @cdnsciencepub

Hi Maryse, thank you for alerting us to your blog. To clarify, Canadian Science Publishing is a not-for-profit publisher. Thank you as well for sharing our image contest. We’ve updated the contest page to indicate that the contest opens July 2020!

10:01am · 29 Apr 2020 · Twitter Web App

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

This is the middle commentary on the report titled,(INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research). Part 1 of my commentary having provided some introductory material and first thoughts about the report, this part offers more detailed thoughts and Part 3 offers ‘special cases’ and sums up some of the ideas first introduced in part 1.

The report: the good, the informative, and the problematic

As Canadian government reports go, this is quite readable and I’m delighted to note some sections are downright engaging. (Thank you to the writer)

Happily, the report acknowledges the problems with the usual measures for research performance (p. xiv print; p. 18 PDF in the Executive Summary and, also, in Chapter 3). Also happily, the panel describes how the scope of the disciplines was decided,

Among the early challenges for the Panel were misinterpretation of its moniker and the related scope of its work. The term “fundamental science” originated with federal Budget 2016, which announced the Government of Canada’s intent to undertake a review.3 Alignment of terminology followed. Some members of the anglophone research community were understandably concerned that the Panel’s mandate excluded applied science in a range of fields, as well as the social sciences and humanities. Francophone researchers, accustomed to les sciences sociales et humaines, were more sanguine.

Minister Duncan [Kirsty Duncan], whose own scholarship cuts across the natural sciences, social sciences, and humanities, made it clear from the outset that the Panel was to examine the full range of scientific and scholarly disciplines. The Panel’s secretariat and members similarly emphasized the breadth of our review. We were accordingly delighted to receive submissions from many researchers and organizations representative of disciplines supported by the three granting councils, others doing transdisciplinary research who sometimes find themselves in limbo, and others again frustrated that the lack of collaboration across the councils has effectively shut out their disciplines altogether.

A residual source of some confusion was the term “fundamental”, which is used infrequently in the social sciences and humanities even though much scholarship in those fields is arguably basic or conceptual.

The Panel again took a pragmatic view. Our mandate was derived in meaningful measure from concerns that Canada’s capacity for generation of exciting new knowledge had been eroded. We therefore assumed our remit ranged from basic science focused on making major discoveries to applied science with important technological implications, and from deep philosophical inquiry to rigorous economic evaluations of policies and programs.

The Panel emphasizes in this latter regard that societies without great science and scholarship across a wide range of disciplines are impoverished in multiple dimensions. From the social sciences and humanities, contributions range from deeper understanding of the complexity of human nature and social structures to grace in self-expression and excellence and beauty in the creative and performing arts. From the natural and health sciences and engineering, while attention often focuses on practical applications, basic research provides the breakthrough insights that fundamentally change our understanding of the natural world and our cosmos. We return to this subject in Chapter 2.

The Panel also observes that these categorizations are all focused on research subject matter, when in fact the subject that really matters may be the person doing the research. Postsecondary education enriched by exposure to basic research provides citizens with an outlook and intellectual tools that are extraordinarily well-suited to technological and social innovation. Indeed, countless authors of abstract graduate theses have gone on to lives of deep and productive engagement with practical problems, bringing with them perspectives that reflect an inquiring and critical mind.

In brief, the Panel’s primary interest is in the extramural research realm, and particularly in supports for research into topics chosen by scholars and scientists from the full range of disciplines, using methods that they have developed or adapted, and subject to review by research colleagues. This research may be basic or applied. It may be project-based or programmatic. And it may have early application or no immediate relevance. However, a key criterion is that the work is sufficiently excellent to withstand critical scrutiny by peers, [emphasis mine] and produces knowledge that, after appropriate review, can be shared widely to advance the collective store of knowledge and ideas in the relevant field or fields. (p. 4-5 print; pp. 38-9 PDF)

Here’s a problem not mentioned in the report. Sometimes, the most exciting work is not appreciated or even approved by your peers. Daniel Schechtman’s work with quasicrystals  illustrates the issue (from the Dan Schechtman Wikipedia entry),

“I was a subject of ridicule and lectures about the basics of crystallography. The leader of the opposition to my findings was the two-time Nobel Laureate Linus Pauling, [emphasis mine] the idol of the American Chemical Society and one of the most famous scientists in the world. For years, ’til his last day, he fought against quasi-periodicity in crystals. He was wrong, and after a while, I enjoyed every moment of this scientific battle, knowing that he was wrong.”[citation needed]

Linus Pauling is noted saying “There is no such thing as quasicrystals, only quasi-scientists.”[15] Pauling was apparently unaware of a paper in 1981 by H. Kleinert and K. Maki which had pointed out the possibility of a non-periodic Icosahedral Phase in quasicrystals[16] (see the historical notes). The head of Shechtman’s research group told him to “go back and read the textbook” and a couple of days later “asked him to leave for ‘bringing disgrace’ on the team.”[17] [emphasis mine] Shechtman felt dejected.[15] On publication of his paper, other scientists began to confirm and accept empirical findings of the existence of quasicrystals.[18][19]

Schechtman does get back into the lab, finds support for his discovery from other scientists, and wins the Nobel Prize for Chemisty in 2011. But, that first few years was pretty rough sledding. As for the problem, how can you tell the difference between ground-breaking research and a ‘nutbar’ theory?

Getting back to the report, there’s a very nice listing of research milestones (the inception of various funding agencies, science ministries, important reports, and more) in the Canadian research landscape on pp. 8-9 print; pp. 42-3 PDF. The list stretches from 1916 to 2016. Oddly, the 2011 Jenkins report (also known as the Review of Federal Support to R&D report) is not on the list. Of course, it was a report commissioned by the then Conservative federal government.

Chapter 2 is the ‘Case for Science and Inquiry’ and it includes a bit of a history of the world, geologically speaking (p. 18 print; p. 52 PDF), and more. The scholars that are referenced tend to be from Europe and the US (sigh … isn’t there a way to broaden our perspectives?).

I was surprised that they didn’t include Wilder Penfield’s work in their partial listing of Canadian discoveries, and achievements in natural sciences, engineering, and health (p. 22 print; p. 56 PDF). From the Wilder Penfield Wikipedia entry*,

Wilder Graves Penfield OM CC CMG FRS[1] (January 26, 1891 – April 5, 1976) was an American-Canadian pioneering neurosurgeon once dubbed “the greatest living Canadian.”[2] He expanded brain surgery’s methods and techniques, including mapping the functions of various regions of the brain such as the cortical homunculus. His scientific contributions on neural stimulation expand across a variety of topics including hallucinations, illusions, and déjà vu. Penfield devoted a lot of his thinking to mental processes, including contemplation of whether there was any scientific basis for the existence of the human soul.[2]

Also mildly surprising was Ursula Franklin’s exclusion from their sampling of great Canadian thinkers in the social science and humanities (p. 23 print; p. 57 PDF) especially as there seems to be room for one more entry. From the Ursula Franklin Wikipedia entry,

Ursula Martius Franklin, CC OOnt FRSC (16 September 1921 – 22 July 2016), was a German-Canadian metallurgist, research physicist, author, and educator who taught at the University of Toronto for more than 40 years.[1] …

Franklin is best known for her writings on the political and social effects of technology. For her, technology was much more than machines, gadgets or electronic transmitters. It was a comprehensive system that includes methods, procedures, organization, “and most of all, a mindset”.[5] …

For some, Franklin belongs in the intellectual tradition of Harold Innis and Jacques Ellul who warn about technology’s tendency to suppress freedom and endanger civilization.[8] …

As noted earlier, Chapter 3 offers information about typical measures for scientific impact. There were two I didn’t mention. First, there are the scores for interprovincial collaboration. While we definitely could improve our international collaboration efforts, it’s the interprovincial efforts that tend to be pitiful (Note: I’ve had to create the table myself so it’s not identical to the report table’s format),

Province or Territory  Collaborative rates 2003-2014
Interprovincial International
Alberta 24.4 42.5
British Columbia 23.0 48.2
Manitoba 33.5 39.7
New Brunswick 35.7 38.0
Newfoundland and Labrador 33.6 38.7
Northwest Territories 86.9 32.5
Nova Scotia 34.7 40.9
Nunavut 85.7 34.5
Ontario 14.8 43.4
Prince Edward island 46.7 40.6
Québec 16.9 43.8
Saskatchewan 33.9 41.7
Yukon 79.4 39.0
Canada 9.8 43.7

* *The interprovincial collaboration rates (IPC) are computed on whole counts, not fractional counts. So, for example, a publication with authors from four provinces would count as one for Canada and one for each of the provinces. So the IPC for the whole of Canada would be 1 out of 874,475 (Canada’s whole publication count over 2003–2014) and the IPC for Ontario (for example) would be 1 out of 396,811 (the whole count for Ontario). Therefore the interprovincial collaboration rate would be lower for Canada than for Ontario. (p. 39 print; 73 PDF)

Second, there are the prizes,

Moving from highly-cited researchers and papers to the realm of major international research prizes takes us further into the realm of outlying talent. Major international prizes for research are relevant measures because they bring great prestige not just to individuals and teams, but also to institutions and nations. They are also the culmination of years of excellence in research and, particularly when prizes are won repeatedly across a range of disciplines, they send strong signals to the world about the health of a nation’s basic research ecosystem.

Unfortunately, Canada’s performance in winning international prizes is also lagging. In 2013 the Right Honourable David Johnston, Governor General of Canada, and Dr Howard Alper, then chair of the national Science, Technology and Innovation Council (STIC), observed that Canadians underperform “when it comes to the world’s most distinguished awards”, e.g., Nobel Prize, Wolf Prize, and Fields Medal. They added: “In the period from 1941 to 2008, Canadians received 19 of the top international awards in science—an impressive achievement, to be sure, but lacking when compared with the United States (with 1,403 winners), the United Kingdom (222), France (91), Germany (75) and Australia (42).”22 ix

There is an interesting wrinkle to the dominance of the U.S. in Nobel prizes.23 Over 30 per cent of all U.S. Nobel laureates since 1950 were foreign-born, with that proportion rising over time. From 2007 to 2016, the 54 Nobel prizes awarded to U.S.-based researchers included 20 immigrants. Sources differ as to whether more of the U.S. Nobel laureates originated from Canada or Germany, but the best estimate is that, since 1901, there have been 15 Canadian-born, and in many cases Canadian-educated, Nobel laureates based in the U.S.—double the total number of Nobel prizes awarded to Canadian-based researchers in the same period.

From the standpoint of international recognition, 2015 was an exceptional year. Canadians won two of the pinnacle awards: a Nobel prize (Arthur McDonald for Physics) and a Wolf prize (James Arthur for Mathematics). Those prizes celebrate work that exemplifies two very different models of discovery. As a theoretical mathematician, Dr Arthur’s pioneering papers in automorphic forms have been overwhelmingly sole-authored; his long-term support has come from modest NSERC Discovery Grants. As a particle physicist, Dr McDonald has led a large team in developing and operating the renowned Sudbury Neutrino Laboratory, a major science facility purpose-built deep in an active nickel mine, where startling observations have been made that are forcing a reconsideration of The Standard Model for Elementary Particles. In both cases, however, what matters is that the work began decades ago, and Canada provided long-term support at the levels and in forms required to enable path-breaking discoveries to be made.

Canada cannot assume that there will be a series of other pinnacle prizes awarded based on discoveries that tap into work initiated in the 1970s and 1980s. To ensure a continuous pipeline of successful nominations for international awards, research institutions must be supported consistently to recruit and retain outstanding scholars and scientists. They in turn must be supported to create world-class research environments through meritocratic adjudication processes that offer fair access to appropriate levels of consistent funding for scientific inquiry. Our assessment thus far has not given us great confidence that these winning conditions are being created, let alone enhanced. (pp. 46-7 print; pp. 80-1 PDF)

I found one more interesting bit in the report, a dated list of Canadian science advice vehicles. Somewhat optimistically given the speed with which the initiative has moved forward, they’ve listed a Canadian chief science advisor for 2017 (p. 54 print; p. 88 PDF). Understandably, since it is a recommendation, they left out the NACRI, .

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 1

Part 3

*’enty’ corrected to ‘entry’ and a link to Wilder Penfield’s Wikipedia entry was added on June 15, 2017.

May/June 2017 scienceish events in Canada (mostly in Vancouver)

I have five* events for this posting

(1) Science and You (Montréal)

The latest iteration of the Science and You conference took place May 4 – 6, 2017 at McGill University (Montréal, Québec). That’s the sad news, the good news is that they have recorded and released the sessions onto YouTube. (This is the first time the conference has been held outside of Europe, in fact, it’s usually held in France.) Here’s why you might be interested (from the 2017 conference page),

The animator of the conference will be Véronique Morin:

Véronique Morin is science journalist and communicator, first president of the World Federation of Science Journalists (WFSJ) and serves as judge for science communication awards. She worked for a science program on Quebec’s public TV network, CBCRadio-Canada, TVOntario, and as a freelancer is also a contributor to -among others-  The Canadian Medical Journal, University Affairs magazine, NewsDeeply, while pursuing documentary projects.

Let’s talk about S …

Holding the attention of an audience full of teenagers may seem impossible… particularly on topics that might be seen as boring, like sciences! Yet, it’s essential to demistify science in order to make it accessible, even appealing in the eyes of futur citizens.
How can we encourage young adults to ask themselves questions about the surrounding world, nature and science? How can we make them discover sciences with and without digital tools?

Find out tips and tricks used by our speakers Kristin Alford and Amanda Tyndall.

Kristin Alford
Dr Kristin Alford is a futurist and the inaugural Director of MOD., a futuristic museum of discovery at the University of South Australia. Her mind is presently occupied by the future of work and provoking young adults to ask questions about the role of science at the intersection of art and innovation.

Internet Website

Amanda Tyndall
Over 20 years of  science communication experience with organisations such as Café Scientifique, The Royal Institution of Great Britain (and Australia’s Science Exchange), the Science Museum in London and now with the Edinburgh International Science Festival. Particularly interested in engaging new audiences through linkages with the arts and digital/creative industries.

Internet Website

A troll in the room

Increasingly used by politicians, social media can reach thousand of people in few seconds. Relayed to infinity, the message seems truthful, but is it really? At a time of fake news and alternative facts, how can we, as a communicator or a journalist, take up the challenge of disinformation?
Discover the traps and tricks of disinformation in the age of digital technologies with our two fact-checking experts, Shawn Otto and Vanessa Schipani, who will offer concrete solutions to unravel the true from the false..

 

Shawn Otto
Shawn Otto was awarded the IEEE-USA (“I-Triple-E”) National Distinguished Public Service Award for his work elevating science in America’s national public dialogue. He is cofounder and producer of the US presidential science debates at ScienceDebate.org. He is also an award-winning screenwriter and novelist, best known for writing and co-producing the Academy Award-nominated movie House of Sand and Fog.

Vanessa Schipani
Vanessa is a science journalist at FactCheck.org, which monitors U.S. politicians’ claims for accuracy. Previously, she wrote for outlets in the U.S., Europe and Japan, covering topics from quantum mechanics to neuroscience. She has bachelor’s degrees in zoology and philosophy and a master’s in the history and philosophy of science.

At 20,000 clicks from the extreme

Sharing living from a space station, ship or submarine. The examples of social media use in extreme conditions are multiplying and the public is asking for more. How to use public tools to highlight practices and discoveries? How to manage the use of social networks of a large organisation? What pitfalls to avoid? What does this mean for citizens and researchers?
Find out with Phillipe Archambault and Leslie Elliott experts in extrem conditions.

Philippe Archambault

Professor Philippe Archambault is a marine ecologist at Laval University, the director of the Notre Golfe network and president of the 4th World Conference on Marine Biodiversity. His research on the influence of global changes on biodiversity and the functioning of ecosystems has led him to work in all four corners of our oceans from the Arctic to the Antarctic, through Papua New Guinea and the French Polynesia.

Website

Leslie Elliott

Leslie Elliott leads a team of communicators at Ocean Networks Canada in Victoria, British Columbia, home to Canada’s world-leading ocean observatories in the Pacific and Arctic Oceans. Audiences can join robots equipped with high definition cameras via #livedive to discover more about our ocean.

Website

Science is not a joke!

Science and humor are two disciplines that might seem incompatible … and yet, like the ig-Nobels, humour can prove to be an excellent way to communicate a scientific message. This, however, can prove to be quite challenging since one needs to ensure they employ the right tone and language to both captivate the audience while simultaneously communicating complex topics.

Patrick Baud and Brian Malow, both well-renowned scientific communicators, will give you with the tools you need to capture your audience and also convey a proper scientific message. You will be surprised how, even in Science, a good dose of humour can make you laugh and think.

Patrick Baud
Patrick Baud is a French author who was born on June 30, 1979, in Avignon. He has been sharing for many years his passion for tales of fantasy, and the marvels and curiosities of the world, through different media: radio, web, novels, comic strips, conferences, and videos. His YouTube channel “Axolot”, was created in 2013, and now has over 420,000 followers.

Internet Website
Youtube

Brian Malow
Brian Malow is Earth’s Premier Science Comedian (self-proclaimed).  Brian has made science videos for Time Magazine and contributed to Neil deGrasse Tyson’s radio show.  He worked in science communications at a museum, blogged for Scientific American, and trains scientists to be better communicators.

Internet Website
YouTube

I don’t think they’ve managed to get everything up on YouTube yet but the material I’ve found has been subtitled (into French or English, depending on which language the speaker used).

Here are the opening day’s talks on YouTube with English subtitles or French subtitles when appropriate. You can also find some abstracts for the panel presentations here. I was particularly in this panel (S3 – The Importance of Reaching Out to Adults in Scientific Culture), Note: I have searched out the French language descriptions for those unavailable in English,

Organized by Coeur des sciences, Université du Québec à Montréal (UQAM)
Animator: Valérie Borde, Freelance Science Journalist

Anouk Gingras, Musée de la civilisation, Québec
Text not available in English

[La science au Musée de la civilisation c’est :
• Une cinquantaine d’expositions et espaces découvertes
• Des thèmes d’actualité, liés à des enjeux sociaux, pour des exposition souvent destinées aux adultes
• Un potentiel de nouveaux publics en lien avec les autres thématiques présentes au Musée (souvent non scientifiques)
L’exposition Nanotechnologies : l’invisible révolution :
• Un thème d’actualité suscitant une réflexion
• Un sujet sensible menant à la création d’un parcours d’exposition polarisé : choix entre « oui » ou « non » au développement des nanotechnologies pour l’avenir
• L’utilisation de divers éléments pour rapprocher le sujet du visiteur

  • Les nanotechnologies dans la science-fiction
  • Les objets du quotidien contenant des nanoparticules
  • Les objets anciens qui utilisant les nanotechnologies
  • Divers microscopes retraçant l’histoire des nanotechnologies

• Une forme d’interaction suscitant la réflexion du visiteur via un objet sympatique : le canard  de plastique jaune, muni d’une puce RFID

  • Sept stations de consultation qui incitent le visiteur à se prononcer et à réfléchir sur des questions éthiques liées au développement des nanotechnologies
  • Une compilation des données en temps réel
  • Une livraison des résultats personnalisée
  • Une mesure des visiteurs dont l’opinion s’est modifiée à la suite de la visite de l’exposition

Résultats de fréquentation :
• Public de jeunes adultes rejoint (51%)
• Plus d’hommes que de femmes ont visité l’exposition
• Parcours avec canard: incite à la réflexion et augmente l’attention
• 3 visiteurs sur 4 prennent le canard; 92% font l’activité en entier]

Marie Lambert-Chan, Québec Science
Capting the attention of adult readership : challenging mission, possible mission
Since 1962, Québec Science Magazine is the only science magazine aimed at an adult readership in Québec. Our mission : covering topical subjects related to science and technology, as well as social issues from a scientific point of view. Each year, we print eight issues, with a circulation of 22,000 copies. Furthermore, the magazine has received several awards and accolades. In 2017, Québec Science Magazine was honored by the Canadian Magazine Awards/Grands Prix du Magazine and was named Best Magazine in Science, Business and Politics category.
Although we have maintained a solid reputation among scientists and the media industry, our magazine is still relatively unknown to the general public. Why is that ? How is it that, through all those years, we haven’t found the right angle to engage a broader readership ?
We are still searching for definitive answers, but here are our observations :
Speaking science to adults is much more challenging than it is with children, who can marvel endlessly at the smallest things. Unfortunately, adults lose this capacity to marvel and wonder for various reasons : they have specific interests, they failed high-school science, they don’t feel competent enough to understand scientific phenomena. How do we bring the wonder back ? This is our mission. Not impossible, and hopefully soon to be accomplished. One noticible example is the number of reknown scientists interviewed during the popular talk-show Tout le monde en parle, leading us to believe the general public may have an interest in science.
However, to accomplish our mission, we have to recount science. According to the Bulgarian writer and blogger Maria Popova, great science writing should explain, elucidate and enchant . To explain : to make the information clear and comprehensible. To elucidate : to reveal all the interconnections between the pieces of information. To enchant : to go beyond the scientific terms and information and tell a story, thus giving a kaleidoscopic vision of the subject. This is how we intend to capture our readership’s attention.
Our team aims to accomplish this challenge. Although, to be perfectly honest, it would be much easier if we had more resources, financial-wise or human-wise. However, we don’t lack ideas. We dream of major scientific investigations, conferences organized around themes from the magazine’s issues, Web documentaries, podcasts… Such initiatives would give us the visibility we desperately crave.
That said, even in the best conditions, would be have more subscribers ? Perhaps. But it isn’t assured. Even if our magazine is aimed at adult readership, we are convinced that childhood and science go hand in hand, and is even decisive for the children’s future. At the moment, school programs are not in place for continuous scientific development. It is possible to develop an interest for scientific culture as adults, but it is much easier to achieve this level of curiosity if it was previously fostered.

Robert Lamontagne, Université de Montréal
Since the beginning of my career as an astrophysicist, I have been interested in scientific communication to non-specialist audiences. I have presented hundreds of lectures describing the phenomena of the cosmos. Initially, these were mainly offered in amateur astronomers’ clubs or in high-schools and Cégeps. Over the last few years, I have migrated to more general adult audiences in the context of cultural activities such as the “Festival des Laurentides”, the Arts, Culture and Society activities in Repentigny and, the Université du troisième âge (UTA) or Senior’s University.
The Quebec branch of the UTA, sponsored by the Université de Sherbrooke (UdeS), exists since 1976. Seniors universities, created in Toulouse, France, are part of a worldwide movement. The UdeS and its senior’s university antennas are members of the International Association of the Universities of the Third Age (AIUTA). The UTA is made up of 28 antennas located in 10 regions and reaches more than 10,000 people per year. Antenna volunteers prepare educational programming by drawing on a catalog of courses, seminars and lectures, covering a diverse range of subjects ranging from history and politics to health, science, or the environment.
The UTA is aimed at people aged 50 and over who wish to continue their training and learn throughout their lives. It is an attentive, inquisitive, educated public and, given the demographics in Canada, its number is growing rapidly. This segment of the population is often well off and very involved in society.
I usually use a two-prong approach.
• While remaining rigorous, the content is articulated around a few ideas, avoiding analytical expressions in favor of a qualitative description.
• The narrative framework, the story, which allows to contextualize the scientific content and to forge links with the audience.

Sophie Malavoy, Coeur des sciences – UQAM

Many obstacles need to be overcome in order to reach out to adults, especially those who aren’t in principle interested in science.
• Competing against cultural activities such as theater, movies, etc.
• The idea that science is complex and dull
• A feeling of incompetence. « I’ve always been bad in math and physics»
• Funding shortfall for activities which target adults
How to reach out to those adults?
• To put science into perspective. To bring its relevance out by making links with current events and big issues (economic, heath, environment, politic). To promote a transdisciplinary approach which includes humanities and social sciences.
• To stake on originality by offering uncommon and ludic experiences (scientific walks in the city, street performances, etc.)
• To bridge between science and popular activities to the public (science/music; science/dance; science/theater; science/sports; science/gastronomy; science/literature)
• To reach people with emotions without sensationalism. To boost their curiosity and ability to wonder.
• To put a human face on science, by insisting not only on the results of a research but on its process. To share the adventure lived by researchers.
• To liven up people’s feeling of competence. To insist on the scientific method.
• To invite non-scientists (citizens groups, communities, consumers, etc.) to the reflections on science issues (debate, etc.).  To move from dissemination of science to dialog

Didier Pourquery, The Conversation France
Text not available in English

[Depuis son lancement en septembre 2015 la plateforme The Conversation France (2 millions de pages vues par mois) n’a cessé de faire progresser son audience. Selon une étude menée un an après le lancement, la structure de lectorat était la suivante
Pour accrocher les adultes et les ainés deux axes sont intéressants ; nous les utilisons autant sur notre site que sur notre newsletter quotidienne – 26.000 abonnés- ou notre page Facebook (11500 suiveurs):
1/ expliquer l’actualité : donner les clefs pour comprendre les débats scientifiques qui animent la société ; mettre de la science dans les discussions (la mission du site est de  « nourrir le débat citoyen avec de l’expertise universitaire et de la recherche »). L’idée est de poser des questions de compréhension simple au moment où elles apparaissent dans le débat (en période électorale par exemple : qu’est-ce que le populisme ? Expliqué par des chercheurs de Sciences Po incontestables.)
Exemples : comprendre les conférences climat -COP21, COP22 – ; comprendre les débats de société (Gestation pour autrui); comprendre l’économie (revenu universel); comprendre les maladies neurodégénératives (Alzheimer) etc.
2/ piquer la curiosité : utiliser les formules classiques (le saviez-vous ?) appliquées à des sujets surprenants (par exemple : «  Que voit un chien quand il regarde la télé ? » a eu 96.000 pages vues) ; puis jouer avec ces articles sur les réseaux sociaux. Poser des questions simples et surprenantes. Par exemple : ressemblez-vous à votre prénom ? Cet article académique très sérieux a comptabilisé 95.000 pages vues en français et 171.000 en anglais.
3/ Susciter l’engagement : faire de la science participative simple et utile. Par exemple : appeler nos lecteurs à surveiller l’invasion de moustiques tigres partout sur le territoire. Cet article a eu 112.000 pages vues et a été republié largement sur d’autres sites. Autre exemple : appeler les lecteurs à photographier les punaises de leur environnement.]

Here are my very brief and very rough translations. (1) Anouk Gingras is focused largely on a nanotechnology exhibit and whether or not visitors went through it and participated in various activities. She doesn’t seem specifically focused on science communication for adults but they are doing some very interesting and related work at Québec’s Museum of Civilization. (2) Didier Pourquery is describing an online initiative known as ‘The Conversation France’ (strange—why not La conversation France?). Moving on, there’s a website with a daily newsletter (blog?) and a Facebook page. They have two main projects, one is a discussion of current science issues in society, which is informed with and by experts but is not exclusive to experts, and more curiosity-based science questions and discussion such as What does a dog see when it watches television?

Serendipity! I hadn’t stumbled across this conference when I posted my May 12, 2017 piece on the ‘insanity’ of science outreach in Canada. It’s good to see I’m not the only one focused on science outreach for adults and that there is some action, although seems to be a Québec-only effort.

(2) Ingenious—a book launch in Vancouver

The book will be launched on Thursday, June 1, 2017 at the Vancouver Public Library’s Central Branch (from the Ingenious: An Evening of Canadian Innovation event page)

Ingenious: An Evening of Canadian Innovation
Thursday, June 1, 2017 (6:30 pm – 8:00 pm)
Central Branch
Description

Gov. Gen. David Johnston and OpenText Corp. chair Tom Jenkins discuss Canadian innovation and their book Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier.

Books will be available for purchase and signing.

Doors open at 6 p.m.

INGENIOUS : HOW CANADIAN INNOVATORS MADE THE WORLD SMARTER, SMALLER, KINDER, SAFER, HEALTHIER, WEALTHIER, AND HAPPIER

Address:

350 West Georgia St.
VancouverV6B 6B1

Get Directions

  • Phone:

Location Details:

Alice MacKay Room, Lower Level

I do have a few more details about the authors and their book. First, there’s this from the Ottawa Writer’s Festival March 28, 2017 event page,

To celebrate Canada’s 150th birthday, Governor General David Johnston and Tom Jenkins have crafted a richly illustrated volume of brilliant Canadian innovations whose widespread adoption has made the world a better place. From Bovril to BlackBerrys, lightbulbs to liquid helium, peanut butter to Pablum, this is a surprising and incredibly varied collection to make Canadians proud, and to our unique entrepreneurial spirit.

Successful innovation is always inspired by at least one of three forces — insight, necessity, and simple luck. Ingenious moves through history to explore what circumstances, incidents, coincidences, and collaborations motivated each great Canadian idea, and what twist of fate then brought that idea into public acceptance. Above all, the book explores what goes on in the mind of an innovator, and maps the incredible spectrum of personalities that have struggled to improve the lot of their neighbours, their fellow citizens, and their species.

From the marvels of aboriginal invention such as the canoe, snowshoe, igloo, dogsled, lifejacket, and bunk bed to the latest pioneering advances in medicine, education, philanthropy, science, engineering, community development, business, the arts, and the media, Canadians have improvised and collaborated their way to international admiration. …

Then, there’s this April 5, 2017 item on Canadian Broadcasting Corporation’s (CBC) news online,

From peanut butter to the electric wheelchair, the stories behind numerous life-changing Canadian innovations are detailed in a new book.

Gov. Gen. David Johnston and Tom Jenkins, chair of the National Research Council and former CEO of OpenText, are the authors of Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier. The authors hope their book reinforces and extends the culture of innovation in Canada.

“We started wanting to tell 50 stories of Canadian innovators, and what has amazed Tom and myself is how many there are,” Johnston told The Homestretch on Wednesday. The duo ultimately chronicled 297 innovations in the book, including the pacemaker, life jacket and chocolate bars.

“Innovations are not just technological, not just business, but they’re social innovations as well,” Johnston said.

Many of those innovations, and the stories behind them, are not well known.

“We’re sort of a humble people,” Jenkins said. “We’re pretty quiet. We don’t brag, we don’t talk about ourselves very much, and so we then lead ourselves to believe as a culture that we’re not really good inventors, the Americans are. And yet we knew that Canadians were actually great inventors and innovators.”

‘Opportunities and challenges’

For Johnston, his favourite story in the book is on the light bulb.

“It’s such a symbol of both our opportunities and challenges,” he said. “The light bulb was invented in Canada, not the United States. It was two inventors back in the 1870s that realized that if you passed an electric current through a resistant metal it would glow, and they patented that, but then they didn’t have the money to commercialize it.”

American inventor Thomas Edison went on to purchase that patent and made changes to the original design.

Johnston and Jenkins are also inviting readers to share their own innovation stories, on the book’s website.

I’m looking forward to the talk and wondering if they’ve included the botox and cellulose nanocrystal (CNC) stories to the book. BTW, Tom Jenkins was the chair of a panel examining Canadian research and development and lead author of the panel’s report (Innovation Canada: A Call to Action) for the then Conservative government (it’s also known as the Jenkins report). You can find out more about in my Oct. 21, 2011 posting.

(3) Made in Canada (Vancouver)

This is either fortuitous or there’s some very high level planning involved in the ‘Made in Canada; Inspiring Creativity and Innovation’ show which runs from April 21 – Sept. 4, 2017 at Vancouver’s Science World (also known as the Telus World of Science). From the Made in Canada; Inspiring Creativity and Innovation exhibition page,

Celebrate Canadian creativity and innovation, with Science World’s original exhibition, Made in Canada, presented by YVR [Vancouver International Airport] — where you drive the creative process! Get hands-on and build the fastest bobsled, construct a stunning piece of Vancouver architecture and create your own Canadian sound mashup, to share with friends.

Vote for your favourite Canadian inventions and test fly a plane of your design. Discover famous (and not-so-famous, but super neat) Canadian inventions. Learn about amazing, local innovations like robots that teach themselves, one-person electric cars and a computer that uses parallel universes.

Imagine what you can create here, eh!!

You can find more information here.

One quick question, why would Vancouver International Airport be presenting this show? I asked that question of Science World’s Communications Coordinator, Jason Bosher, and received this response,

 YVR is the presenting sponsor. They donated money to the exhibition and they also contributed an exhibit for the “We Move” themed zone in the Made in Canada exhibition. The YVR exhibit details the history of the YVR airport, it’s geographic advantage and some of the planes they have seen there.

I also asked if there was any connection between this show and the ‘Ingenious’ book launch,

Some folks here are aware of the book launch. It has to do with the Canada 150 initiative and nothing to do with the Made in Canada exhibition, which was developed here at Science World. It is our own original exhibition.

So there you have it.

(4) Robotics, AI, and the future of work (Ottawa)

I’m glad to finally stumble across a Canadian event focusing on the topic of artificial intelligence (AI), robotics and the future of work. Sadly (for me), this is taking place in Ottawa. Here are more details  from the May 25, 2017 notice (received via email) from the Canadian Science Policy Centre (CSPC),

CSPC is Partnering with CIFAR {Canadian Institute for Advanced Research]
The Second Annual David Dodge Lecture

Join CIFAR and Senior Fellow Daron Acemoglu for
the Second Annual David Dodge CIFAR Lecture in Ottawa on June 13.
June 13, 2017 | 12 – 2 PM [emphasis mine]
Fairmont Château Laurier, Drawing Room | 1 Rideau St, Ottawa, ON
Along with the backlash against globalization and the outsourcing of jobs, concern is also growing about the effect that robotics and artificial intelligence will have on the labour force in advanced industrial nations. World-renowned economist Acemoglu, author of the best-selling book Why Nations Fail, will discuss how technology is changing the face of work and the composition of labour markets. Drawing on decades of data, Acemoglu explores the effects of widespread automation on manufacturing jobs, the changes we can expect from artificial intelligence technologies, and what responses to these changes might look like. This timely discussion will provide valuable insights for current and future leaders across government, civil society, and the private sector.

Daron Acemoglu is a Senior Fellow in CIFAR’s Insitutions, Organizations & Growth program, and the Elizabeth and James Killian Professor of Economics at the Massachusetts Institute of Technology.

Tickets: $15 (A light lunch will be served.)

You can find a registration link here. Also, if you’re interested in the Canadian efforts in the field of artificial intelligence you can find more in my March 24, 2017 posting (scroll down about 25% of the way and then about 40% of the way) on the 2017 Canadian federal budget and science where I first noted the $93.7M allocated to CIFAR for launching a Pan-Canadian Artificial Intelligence Strategy.

(5) June 2017 edition of the Curiosity Collider Café (Vancouver)

This is an art/science (also known called art/sci and SciArt) that has taken place in Vancouver every few months since April 2015. Here’s more about the June 2017 edition (from the Curiosity Collider events page),

Collider Cafe

When
8:00pm on Wednesday, June 21st, 2017. Door opens at 7:30pm.

Where
Café Deux Soleils. 2096 Commercial Drive, Vancouver, BC (Google Map).

Cost
$5.00-10.00 cover at the door (sliding scale). Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

***

#ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science. Meet, discover, connect, create. How do you explore curiosity in your life? Join us and discover how our speakers explore their own curiosity at the intersection of art & science.

The event will start promptly at 8pm (doors open at 7:30pm). $5.00-10.00 (sliding scale) cover at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

Enjoy!

*I changed ‘three’ events to ‘five’ events and added a number to each event for greater reading ease on May 31, 2017.

Medical isotope team at TRIUMF (Canada’s national laboratory for particle and nuclear physics) wins award

I’ve written a few times about the development of a new means for producing medical isotopes that does not require nuclear materials. (my June 10, 2014 posting and my June 9, 2013 posting,) The breakthrough was made at TRIUMF, Canada’s national laboratory for particle and nuclear physics, which is located in Vancouver, and the team which made the breakthrough is being honoured. From a Feb. 17, 2015 TRIUMF news release,

For their outstanding teamwork in realizing a solution for safe and reliable isotope production for hospitals in Canada,interdisciplinary research team CycloMed99 will be receiving a prestigious national award at a ceremony in Ottawa today [Feb. 17, 2015]. The Honourable David Johnston, Governor General of Canada, will present the NSERC  [Natural Sciences and Engineering Research Council of Canada] Brockhouse Canada Prize for Interdisciplinary Research in Science and Engineering to the team in recognition of their seamless teamwork and successes.

Drawing from expertise in physics, chemistry, and nuclear medicine, the team set out five years ago to develop a reliable, alternative means of production for a key medical isotope in order to eliminate the threat of a supply shortage – a catastrophic healthcare crisis for patients around the world. Technetium-99m (Tc-99m) is the world standard for medical imaging to diagnose cancer and heart disease. Every day, 5,000 medical procedures in
Canada and 70,000 daily worldwide depend on this isotope. With funding support from NSERC, CIHR and Natural Resources Canada, the team developed technology that uses medical cyclotrons already installed and operational in major hospitals across Canada to produce enough Tc-99m on a daily basis.

This innovation is safer and more environmentally friendly than current technology because it eliminates the need for highly enriched uranium, also avoiding the generation
of highly radioactive waste. Canada’s healthcare system would save money by producing isotopes locally under a full-cost recovery model.

The project resulted in over a dozen scientific publications, several provisional patents and a training opportunity for more than 175 individuals.

Now, the research team is focused on working with the world’s major cyclotron manufacturers to add factory-supported Tc-99m production capability to their existing product lines so the technology will become standard in future machines.

CycloMed99 is also working with a Canadian start-up company to license, transfer and sell this technology around the world. This will allow hospitals and companies with cyclotrons to retrofit their existing infrastructure with a Made in Canada solution to produce this valuable material.

Congratulations to the CycloMed99 team, recipients of the Brockhouse Canada Prize:

• Dr. Paul Schaffer, a chemist by training and Division Head, Nuclear Medicine at TRIUMF; Adjunct Professor, Dept. of Chemistry at Simon Fraser University; and Professor, Dept. of Radiology at the University of British Columbia (UBC);

• Dr. François Bénard, a clinician by training and BC Leadership Chair in Functional Cancer Imaging at the BC Cancer Agency; and Professor, Dept. of Radiology at UBC;

• Dr. Anna Celler, a medical physicist by training and Professor, Dept. of Radiology at UBC;

• Dr. Michael Kovacs, a chemist by training; PET Radiochemistry Facility Imaging Scientist at Lawson Health Research Institute; Associate Professor at Western University;

• Dr. Thomas J. Ruth, a nuclear chemist by training and researcher emeritus at TRIUMF; and Professor emeritus at UBC, and;

• Dr. John Valliant, a chemist by training and Scientific Director and CEO of the Centre for Probe Development and Commercialization; and Professor at McMaster University.

There’s more information about TRIUMF and the business aspect of this breakthrough in a Jan. 16, 2015 article by Tyler Orton for Business in Vancouver.

Sanofi BioGENEius Challenge Canada awards national prizes to winners

I last wrote about Sanofi BioGENEius Challenge Canada and its awards in my Feb. 20, 2013 posting on the occasion of the organization’s 20th anniversary in Canada. Today, Apr. 9, 2013, there’s an annoucement that the 2013 Sanofi BioGENEius Challenge Canada prizes were awarded today in Ottawa,

Cutting edge research into an experimental therapy that deploys nano-particles of gold to kill cancer cells earned an Alberta high school student, 16, top national honours today in the 2013 “Sanofi BioGENEius Challenge Canada” (SBCC).

India-born Arjun Nair, 16, a Grade 11 student at Webber Academy, Calgary, was awarded the top prize of $5,000 by a panel of eminent Canadian scientists assembled at the Ottawa headquarters of the National Research Council of Canada (NRC).

His research project, mentored at the University of Calgary, advances an experimental cancer “photothermal therapy” which involves injecting a patient with gold nanoparticles.  The particles accumulate in tumours, forming so-called “nano-bullets” that can be heated to kill cancer cells.

Arjun showed how an antibiotic may overcome defences cancer deploys against the therapy and make the promising treatment more effective.  Arjun’s research, which a panel of expert judges led by Dr. Luis Barreto called “world class Masters or PhD-level quality,” also won a special $1,000 prize awarded to the project with the greatest commercial potential.

There were other winners too,

Eleven brilliant students from nine Canadian regions, all just 16 to 18 years old, took part in the national finals.  They had placed 1st at earlier regional SBCC competitions, conducted between March 21 and April 4.

Celebrating 20 years of inspiring young scientists in Canada, this year’s SBCC involved a total of 208 high school and CEGEP students collaborating on 123 projects, all mentored in professional labs over several months and submitted via the regional competitions.  Since its beginning in Toronto in 1994, some 4,500 young Canadians have competed in the SBCC, an event that has inspired sister BioGENEius competitions in the USA and Australia.

2nd place, $4,000 — British Columbia: Selin Jessa, 17, Grade 12, Dr. Charles Best Secondary School, Coquitlam, won the $4,000 2nd place prize with research into how genetic mutations naturally help some HIV patients escape symptoms.

Arjun and Selin will compete for Canada April 22-23 at the International BioGENEius Challenge, conducted at the annual BIO conference, this year in Chicago.

3rd place, $3,000 — Quebec: Eunice Linh You, 17, Grade 11, Laval Liberty High School, Laval, who investigated how to tailor stem cell treatments for Parkinson’s disease

4th place, $2,000 — Greater Toronto: Lauren Chan, 17, Grade 12, University of Toronto Schools, who described a potential new therapy to reduce the severity of diabetes

5th place, $1,000 — Manitoba: Daniel Huang, 16, Grade 11, St. John’s Ravenscourt School, Winnipeg, who discovered a potential new tactic to fight the world’s deadliest brain cancer

Honorable mention, $500:

Newfoundland, Jared Trask, 18, Kaitlyn Stockley, 17, Grade 12, Holy Spirit High School, Conception Bay West, who, for the second consecutive year, won the Atlantic region competition by proving novel ideas for creating biofuels;

Eastern Ontario, Adamo Young, 16, Grade 11, Lisgar Collegiate Institute, Ottawa, who found that altering its nitrogen supply appears to tame a toxic fungus that ruins billions worth of grain worldwide;

Southwestern Ontario, Melanie Grondin, 17, Shawn Liu, 18, Vincent Massey Secondary School, Windsor, who found a marker in medicine’s quest for the holy grail of leukaemia treatments: limitless supplies of healthy stem cells.

Saskatchewan, Saruul Uuganbayar, 17, Grade 12, Centennial Collegiate, Saskatoon, who invented a molecular therapy for mutated cells with the dream of curing cancer.

Given my interest in nanotechnology, Nair’s project is particularly intriguing,

Aiming to create an effective cancer-killing nano-bullet made of gold

Helping science develop a nano-bullet to defeat cancer is the futuristic vision of Arjun Nair, a 16-year-old Calgary high school student.

These “bullets” are formed by gold nanoparticles that, when injected into a patient, accumulate in cancerous tumours. Using light, the gold nanoparticles rapidly heat up in the tumours, killing only the cancer cells. Known as photothermal therapy (PTT), the idea has shown promise but isn’t that effective because cancer cells fight back, producing heat-shock proteins to protect themselves.

Arjun looked into the use of an antibiotic (17-AAG) to defeat cancer’s defence.

Nanoparticles are less than millionth of the size of grain of sand, making them pretty difficult to make and work with, says Arjun. He spent the last two years working on his idea, including the past year between Simon Trudel’s and David Cramb’s Nanoscience Labs at the University of Calgary [see my interview with Dr. Cramb in my Mar. 8, 2010 posting and he is mentioned here in other postings should you care to search his name].

It’s rare for a high-tech lab to allow a high school student to work with its expensive equipment but Dr. Cramb, Dr. Simon Trudel and Lab Manager, Amy Tekrony provided access and all important mentorship, he says.

“Proof-of-concepts were developed and tested in order to demonstrate the viability of PTT,” says Arjun.  “Moreover, after analyzing the literature a mathematical model was developed to evaluate a theoretical synergetic treatment.”

“I’ve entered science competitions since Grade 5. I really enjoy taking my ideas and making them happen in real life,” says Arjun, who also enjoys debating, sports and volunteer work.

He dreams of doing science in university, perhaps pursuing a career in medical research. One of the best parts of the competition was the great friendships Arjun has made. “I’m part of community of students who love sharing ideas and talking science.”

They make quite a big deal of these awards,

Following the presentation ceremony at the NRC, the students were received by Governor-General David Johnston at Rideau Hall, a distinguished educator prior to his vice-regal appointment.

Dr. Kellie Leitch, Parliamentary Secretary to the Minister of Human Resources Skills Development, keynote speaker at the awards ceremony, said: “It is so important that we have all of our skills and talent at work in Canada and the SBCC offers students a fantastic opportunity to experience science and technology in new ways, hopefully encouraging them toward exciting careers. I want to congratulate the winners, and all of the participants, of this year’s competition and I thank the organizers for all of the work that they have done in supporting young people in science.”

Sanofi Canada President and CEO Jon Fairest, who presented the top national prize, said: “The Sanofi Group is very proud to be founding sponsors of the Sanofi BioGENEIus Challenge Canada (SBCC) and participate in this milestone competition. With its 20-year heritage, the SBCC shows how critical partnerships are to advance science and talent in Canada. From the mentoring provided by dedicated academics, to the support of government and the private sector, the SBCC truly stands out as a model for collaboration. The SBCC and the incredible students who participate inspire us to all think differently about our future and ensure we have a strong foundation in place to create a sustainable healthcare system in Canada.”

The SBCC gives young scientists access to professional labs and academic mentors, encouraging the pursuit of future studies and careers in the country’s fast-growing biotechnology sector.

Each of the students worked for months conducting research and collaborating with university mentors.

It’s not just public officials and Sanofi officials who are paying attention,

The nine final national projects were presented at NRC headquarters Monday April 8 to a panel of eminent Canadian scientists:

  • Dr. Luis Barreto, MD, Chief Judge, Bioscience Education Canada
  • Dr. Roman Szumski, Vice President Research, National Research Council Canada
  • Dr. Paul Lasko, Scientific Director, Institute of Genetics, Canadian Institutes of Health Research
  • Dr. Robert Tsushima, Associate Dean of Research, Faculty of Science, York University
  • Dr. Pierre Meulien, President, Genome Canada
  • Dr. Ron Pearlman, Associate Scientific Director, Gairdner Foundation
  • Dr. Jerome Konecsni, President, Innovation Saskatchewan

On the panel as well: Ms. Janelle Tam, 18, of Waterloo, Ontario, SBCC’s national first-place winner in 2012.

National Awards Presenters, National Research Council Canada, April 9, 2013:

Commercialization Award – Dr. Ron Pearlman, Associate Scientific Director, Gairdner Foundation

5th Place – Dr. Alison Symington, VP, Corporate Development, Ontario Genomics Institute / Genome Canada

4th Place — Dr. Spriros Pagiatakis, Associate Dean, Research & Partnerships, York University

3rd Place – Dr. Alain Beaudet, President, Canadian Institutes of Health Research

2nd Place – John McDougall, President, National Research Council of Canada

1st Place – Jon Fairest, President and CEO, Sanofi Canada

The Canadian competition does not stand alone,

The Sanofi BioGENEius Challenge Canada (SBCC) is a national, biotechnology research competition that encourages high school and CEGEP students to pursue future studies and careers in the exciting field of biotechnology. The initiative is sponsored by Sanofi Pasteur Limited, Sanofi Canada, the National Research Council Canada/ Conseil national de recherches Canada (NRC-CNRC), Canadian Institutes of Health Research/Instituts de recherche en santé du Canada (CIHR-IRSC), York University, Genome Canada and the Government of Canada’s Youth Awareness Program. Canada’s respected Sanofi BioGENEius Challenge Canada has inspired counterpart competitions in the USA and Australia.

For more information, please see Wikipedia (http://bit.ly/11MtXX9), visit sanofibiogeneiuschallenge.ca, and follow us on Facebook or Twitter @BioscienceEdCan

About Sanofi

Sanofi, a global and diversified healthcare leader, discovers, develops and distributes therapeutic solutions focused on patients’ needs. Sanofi has core strengths in the field of healthcare with seven growth platforms: diabetes solutions, human vaccines, innovative drugs, rare diseases, consumer healthcare, emerging markets and animal health. Sanofi is listed in Paris (EURONEXT: SAN) and in New York (NYSE: SNY).

Sanofi Pasteur, the vaccines division of Sanofi, provides more than 1 billion doses of vaccine each year, making it possible to immunize more than 500 million people across the globe. A world leader in the vaccine industry, Sanofi Pasteur offers the broadest range of vaccines protecting against 20 infectious diseases. The company’s heritage, to create vaccines that protect life, dates back more than a century. Sanofi Pasteur is the largest company entirely dedicated to vaccines. Every day, the company invests more than EUR 1 million in research and development. For more information, please visit: www.sanofipasteur.com  or www.sanofipasteur.us

Good luck to Arjun Nair and Selin Jessa when they compete for Canada April 22-23, 2013 at the International BioGENEius Challenge, conducted at the annual BIO conference, in Chicago, Illinois.