Tag Archives: dengue fever

Hong Kong, MosquitNo, and Dengue fever

The most substantive piece I’ve written on dengue fever and a nanotechnology-enabled approach to the problem was a 2013 post explaining why the fever is of such concern, which also included information about a proposed therapeutic intervention by Nanoviricides. From the July 2, 2013 posting, here’s more about the magnitude of the problem,

… the WHO (World Health Organization) fact sheet no. 117,

The incidence of dengue has grown dramatically around the world in recent decades. Over 2.5 billion people – over 40% of the world’s population – are now at risk from dengue. WHO currently estimates there may be 50–100 million dengue infections worldwide every year.

Before 1970, only nine countries had experienced severe dengue epidemics. The disease is now endemic in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The American, South-east Asia and the Western Pacific regions are the most seriously affected.

Cases across the Americas, South-east Asia and Western Pacific have exceeded 1.2 million cases in 2008 and over 2.3 million in 2010 (based on official data submitted by Member States). Recently the number of reported cases has continued to increase. In 2010, 1.6 million cases of dengue were reported in the Americas alone, of which 49 000 cases were severe dengue.

Not only is the number of cases increasing as the disease spreads to new areas, but explosive outbreaks are occurring. The threat of a possible outbreak of dengue fever now exists in Europe and local transmission of dengue was reported for the first time in France and Croatia in 2010 and imported cases were detected in three other European countries. A recent (2012) outbreak of dengue on Madeira islands of Portugal has resulted in over 1800 cases and imported cases were detected in five other countries in Europe apart from mainland Portugal.

An estimated 500 000 people with severe dengue require hospitalization each year, a large proportion of whom are children. About 2.5% of those affected die.

Fast forwarding to 2015, this latest information about dengue fever features a preventative approach being taken in Hong Kong according to a July 5, 2015 article by Timmy Sung  for the South China Morning Post,

Dutch insect repellent innovator Mosquitno targets Hong Kong as dengue fever cases rise

A Dutch company says it has invented an insect repellent using nanotechnology which can keep clothes and homes mosquito-free for up to three months.

Mosquitno has been invited by a government body to begin trading in Hong Kong as the number of cases reported in the city of the deadly mosquito-borne dengue fever rises.

The new repellent does not include the active ingredient used in many insect repellents, DEET, which has question marks surrounding its safety.

Figures from the Department of Health show the number of dengue fever cases reported rose 8 per cent last year, to 112. There were 34 cases in the first five months of this year, 36 per cent more than in the same period last year. Mosquitoes are most active in the summer months.

MosquitNo does use an ingredient, IR3535, which has caused concern (from Sung’s article),

The Consumer Council has previously warned that IR3535-based mosquito repellents can break down plastic materials and certain synthetic fibres, but Wijnen [Erwin Wijnen, director of the {Mosqutino’s} brand development and global travel retailing] said the ingredient combined with nanotechnology is safe and there was no possibility it would damage clothes.

I was not able to find out more about the company’s nanotechnology solution as applied to MosquitNo,

The NANO Series is a revolutionary, innovative technology designed by scientists especially for MosquitNo. This line utilizes this-breaking insect repellent technology in various products including wipes, textile spray, fabric softener and bracelets. This technology and our trendy applications are truly industry-changing and MosquitNo is at the leading edge!

The active component in all our awesome products within this range is IR3535.

That’s it for technical detail. At least, for now.

Synthetic Aesthetics update and an informal Canadian synthetic biology roundup

Amanda Ruggeri has written a very good introduction to synthetic biology for nonexperts in her May 20, 2015 Globe and Mail article about ‘Designing for the Sixth Extinction’, an exhibit showcasing designs and thought experiments focused on synthetic biology ,

In a corner of Istanbul’s Design Biennial late last year [2014], photographs of bizarre creatures sat alongside more conventional displays of product design and typefaces. Diaphanous globes, like transparent balloons, clung to the mossy trunk of an oak tree. Rust-coloured patterns ran across green leaves, as if the foliage had been decorated with henna. On the forest floor, a slug-like creature slithered, its back dotted with gold markings; in another photograph, what looked like a porcupine without a head crawled over the dirt, its quills tipped blood-red.

But as strange as the creatures looked, what they actually are is even stranger. Not quite living things, not quite machines, these imagined prototypes inhabit a dystopic, future world – a world in which they had been created to solve the problems of the living. The porcupine, for example, is an Autonomous Seed Disperser, described as a device that would collect and disperse seeds to increase biodiversity. The slug would be programmed to seek out acidic soils and neutralize them by dispersing an alkali hygroscopic fluid.

They are the designs – and thought experiments – of London-based Alexandra Daisy Ginsberg, designer, artist and lead author of the book Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature. In her project Designing for the Sixth Extinction, which after Istanbul is now on display at the Design Museum in London, Ginsberg imagines what a synthetic biology-designed world would look like – and whether it’s desirable. “

I have a couple of comments. First, the ‘Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature’ book launch last year was covered here in a May 5, 2014 post. where you’ll notice a number of the academics included in Ruggeri’s article are contributors to the book (but not mentioned as such). Second, I cannot find ‘Design for the Sixth Extinction’ listed as an exhibition on London’s Design Museum website.

Getting back to the matter at hand, not all of the projects mentioned in Ruggeri’s article are ‘art’ projects, there is also this rather practical and controversial initiative,

Designing even more complex organisms is the inevitable, and controversial, next step. And those designs have already begun. The British company Oxitec has designed a sterile male mosquito. When the bugs are released into nature and mate, no offspring result, reducing the population or eliminating it altogether. This could be a solution to dengue fever, a mosquito-carried disease that infects more than 50 million people each year: In field trials in Cayman, Panama and Brazil, the wild population of the dengue-carrying mosquito species was reduced by 90 per cent. Yet, as a genetically engineered solution, it also makes some skittish. The consequences of such manipulations remain unforeseen, they say. Proponents counter that the solution is more elegant, and safer, than the current practice of spraying chemicals.

Even so, the engineered mosquito leads to overarching questions: What are the dangers of tinkering with life? Could this cause a slide toward eugenics? Currently, the field doesn’t have an established ethics oversight process, something some critics are pushing to change.

It’s a surprising piece for the Globe and Mail newspaper to run since it doesn’t have a Canadian angle to it and the Globe and Mail doesn’t specialize in science (not withstanding Ivan Semeniuk’s science articles) or art/science or synthetic biology writing, for that matter. Perhaps it bodes an interest and more pieces on emerging science and technology and on art/science projects?

In any event, it seems like a good time to review some of the synthetic biology work or the centres of activity in Canada.  I believe the last time I tackled this particular topic was in a May 24, 2010 post titled, Canada and synthetic biology in the wake of the first ‘synthetic’ bacteria.

After a brief search, I found three centres for research:

Concordia [University] Centre for Applied Synthetic Biology (CASB)

[University of Toronto] The Synthetic Biology and Cellular Control Lab

[University of British Columbia] Centre for High-Throughput Biology (CHiBi)

Following an Oct. 27 – 28, 2014 UK-Canada Synthetic Biology Workshop held at Concordia University, Rémi Quirion, Vincent Martin, Pierre Meulien and Marc LePage co-wrote a Nov. 4, 2014 Concordia University post titled, How Canada is poised to revolutionize synthetic biology,

Rémi Quirion is the Chief Scientist of Québec, Fonds de recherche du Québec. Vincent Martin is Canada Research Chair in Microbial Genomics and Engineering and a professor in the Department of Biology at Concordia University in Montreal. Pierre Meulien is President and CEO of Genome Canada. Marc LePage is the President and CEO of Génome Québec.

Canada’s research and business communities have an opportunity to become world leaders in a burgeoning field that is fast shaping how we deal with everything from climate change to global food security and the production of lifesaving medications. The science of synthetic biology has the transformative capacity to equip us with novel technology tools and products to build a more sustainable society, while creating new business and employment opportunities for the economy of tomorrow.

We can now decipher the code of life for any organism faster and less expensively than ever before. Canadian scientists are producing anti-malarial drugs from organic materials that increase the availability and decrease the cost of lifesaving medicines. They are also developing energy efficient biofuels to dramatically reduce environmental and manufacturing costs, helping Canadian industry to thrive in the global marketplace.

The groundwork has also been laid for a Canadian revolution in the field. Canada’s scientific community is internationally recognized for its leadership in genomics research and strong partnerships with key industries. Since 2000, Genome Canada and partners have invested more than $2.3 billion in deciphering the genomes of economically important plants, animals and microbes in order to understand how they function. A significant proportion of these funds has been invested in building the technological toolkits that can be applied to synthetic biology.

But science cannot do it alone. Innovation on this scale requires multiple forms of expertise in order to be successful. Research in law, business, social sciences and humanities is vital to addressing questions of ethics, supply chain management, social innovation and cultural adaptation to new technologies. Industry knowledge and investments, as well as the capacity to incentivize entrepreneurship, are key to devising business models that will enable new products to thrive. Governments and funding agencies also need to do their part by supporting multidisciplinary research, training and infrastructure.

It’s a bit ‘hype happy’ for my taste but it does provide some fascinating insight in what seems to be a male activity in Canada.

Counterbalancing that impression is an Oct. 6, 2013 article by Ivan Semeniuk for the Globe and Mail about a University of Lethbridge team winning the top prize in a synthetic biology contest,

If you want to succeed in the scientific revolution of the future, it helps to think about life as a computer program.

That strategy helped University of Lethbridge students walk away with the top prize in a synthetic biology competition Sunday. Often touted as the genetic equivalent of the personal computer revolution, synthetic biology involves thinking about cells as programmable machines that can be designed and built to suit a particular need – whether it’s mass producing a vaccine or breaking down a hazardous chemical in the environment.

The five member Lethbridge team came up with a way to modify how cells translate genetic information into proteins. Rather than one bit of DNA carrying the information to make one protein – the usual way cells go about their business – the method involves inserting a genetic command that jiggles a cell’s translational machinery while it’s in mid-operation, coaxing it to produce two proteins out of the same DNA input.

“We started off with a computer analogy – kind of like zipping your files together – so you’d zip two protein sequences together and therefore save space,” said Jenna Friedt, a graduate student in biochemistry at Lethbridge. [emphasis mine]

There are concerns other than gender issues, chief amongst them, ethics. The Canadian Biotechnology Action Network maintains an information page on Synthetic Biology which boasts this as its latest update,

October 2014: In a unanimous decision of 194 countries, the United Nation’s Convention on Biological Diversity formally urged countries to regulate synthetic biology, a new extreme form of genetic engineering. The landmark decision follows ten days of hard-fought negotiations between developing countries and a small group of wealthy biotech-friendly economies. Until now, synthetic organisms have been developed and commercialized without international regulations. …

Finally, there’s a June 2014 synthetic biology timeline from the University of Ottawa’s Institute for Science, Society, and Policy (ISSP) which contextualizes Canadian research, policy and regulation with Australia, the European Union, the UK, and the US.

(On a closely related note, there’s my May 14, 2015 post about genetic engineering and newly raised concerns.)