Tag Archives: dengue fever

Dealing with mosquitos: a robot story and an engineered human tissue story

I have two ‘mosquito and disease’ stories, the first concerning dengue fever and the second, malaria.

Dengue fever in Taiwan

A June 8, 2023 news item on phys.org features robotic vehicles, dengue fever, and mosquitoes,

Unmanned ground vehicles can be used to identify and eliminate the breeding sources of mosquitos that carry dengue fever in urban areas, according to a new study published in PLOS Neglected Tropical Diseases by Wei-Liang Liu of the Taiwan National Mosquito-Borne Diseases Control Research Center, and colleagues.

It turns out sewers are a problem according to this June 8, 2023 PLOS (Public Library of Science) news release on EurekAlert, provides more context and detail,

Dengue fever is an infectious disease caused by the dengue virus and spread by several mosquito species in the genus Aedes, which also spread chikungunya, yellow fever and zika. Through the process of urbanization, sewers have become easy breeding grounds for Aedes mosquitos and most current mosquito monitoring programs struggle to monitor and analyze the density of mosquitos in these hidden areas.

In the new control effort, researchers combined a crawling robot, wire-controlled cable car and real-time monitoring system into an unmanned ground vehicle system (UGV) that can take high-resolution, real-time images of areas within sewers. From May to August 2018, the system was deployed in five administrative districts in Kaohsiung city, Taiwan, with covered roadside sewer ditches suspected to be hotspots for mosquitos. Mosquito gravitraps were places above the sewers to monitor effects of the UGV intervention on adult mosquitos in the area.

In 20.7% of inspected sewers, the system found traces of Aedes mosquitos in stages from larvae to adult. In positive sewers, additional prevention control measures were carried out, using either insecticides or high-temperature water jets.  Immediately after these interventions, the gravitrap index (GI)—  a measure of the adult mosquito density nearby— dropped significantly from 0.62 to 0.19.

“The widespread use of UGVs can potentially eliminate some of the breeding sources of vector mosquitoes, thereby reducing the annual prevalence of dengue fever in Kaohsiung city,” the authors say.

Here’s a link to and a citation for the paper,

Use of unmanned ground vehicle systems in urbanized zones: A study of vector Mosquito surveillance in Kaohsiung by Yu-Xuan Chen, Chao-Ying Pan, Bo-Yu Chen, Shu-Wen Jeng, Chun-Hong Chen, Joh-Jong Huang, Chaur-Dong Chen, Wei-Liang Liu. PLOS Neglected Tropical Diseases DOI: https://doi.org/10.1371/journal.pntd.0011346 Published: June 8, 2023

This paper is open access.

Dengue on the rise

Like many diseases, dengue is one where you may not have symptoms (asymptomatic), or they’re relatively mild and can be handled at home, or you may need care in a hospital and, in some cases, it can be fatal.

The World Health Organization (WHO) notes that dengue fever cases have increased exponentially since 2000 (from the March 17, 2023 version of the WHO’s “Dengue and severe dengue” fact sheet),

Global burden

The incidence of dengue has grown dramatically around the world in recent decades, with cases reported to WHO increased from 505 430 cases in 2000 to 5.2 million in 2019. A vast majority of cases are asymptomatic or mild and self-managed, and hence the actual numbers of dengue cases are under-reported. Many cases are also misdiagnosed as other febrile illnesses (1).

One modelling estimate indicates 390 million dengue virus infections per year of which 96 million manifest clinically (2). Another study on the prevalence of dengue estimates that 3.9 billion people are at risk of infection with dengue viruses.

The disease is now endemic in more than 100 countries in the WHO Regions of Africa, the Americas, the Eastern Mediterranean, South-East Asia and the Western Pacific. The Americas, South-East Asia and Western Pacific regions are the most seriously affected, with Asia representing around 70% of the global disease burden.

Dengue is spreading to new areas including Europe, [emphasis mine] and explosive outbreaks are occurring. Local transmission was reported for the first time in France and Croatia in 2010 [emphasis mine] and imported cases were detected in 3 other European countries.

The largest number of dengue cases ever reported globally was in 2019. All regions were affected, and dengue transmission was recorded in Afghanistan for the first time. The American Region reported 3.1 million cases, with more than 25 000 classified as severe. A high number of cases were reported in Bangladesh (101 000), Malaysia (131 000) Philippines (420 000), Vietnam (320 000) in Asia.

Dengue continues to affect Brazil, Colombia, the Cook Islands, Fiji, India, Kenya, Paraguay, Peru, the Philippines, the Reunion Islands and Vietnam as of 2021. 

There’s information from an earlier version of the fact sheet, in my July 2, 2013 posting, highlighting different aspects of the disease, e.g., “About 2.5% of those affected die.”

A July 21, 2023 United Nations press release warns that the danger from mosquitoes spreading dengue fever could increase along with the temperature,

Global warming marked by higher average temperatures, precipitation and longer periods of drought, could prompt a record number of dengue infections worldwide, the World Health Organization (WHO) warned on Friday [July 21, 2023].

Despite the absence of mosquitoes infected with the dengue virus in Canada, the government has a Dengue fever information page. At this point, the concern is likely focused on travelers who’ve contracted the disease from elsewhere. However, I am guessing that researchers are keeping a close eye on Canadian mosquitoes as these situations can change.

Malaria in Florida (US)

The researchers from the University of Central Florida (UCF) couldn’t have known when they began their project to study mosquito bites and disease that Florida would register its first malaria cases in 20 years this summer, from a July 26, 2023 article by Stephanie Colombini for NPR ([US] National Public Radio), Note: Links have been removed,

First local transmission in U.S. in 20 years

Heath [Hannah Heath] is one of eight known people in recent months who have contracted malaria in the U.S., after being bitten by a local mosquito, rather than while traveling abroad. The cases comprise the nation’s first locally transmitted outbreak in 20 years. The last time this occurred was in 2003, when eight people tested positive for malaria in Palm Beach, Fla.

One of the eight cases is in Texas; the rest occurred in the northern part of Sarasota County.

The Florida Department of Health recorded the most recent case in its weekly arbovirus report for July 9-15 [2023].

For the past month, health officials have issued a mosquito-borne illness alert for residents in Sarasota and neighboring Manatee County. Mosquito management teams are working to suppress the population of the type of mosquito that carries malaria, Anopheles.

Sarasota Memorial Hospital has treated five of the county’s seven malaria patients, according to Dr. Manuel Gordillo, director of infection control.

“The cases that are coming in are classic malaria, you know they come in with fever, body aches, headaches, nausea, vomiting, diarrhea,” Gordillo said, explaining that his hospital usually treats just one or two patients a year who acquire malaria while traveling abroad in Central or South America, or Africa.

All the locally acquired cases were of Plasmodium vivax malaria, a strain that typically produces milder symptoms or can even be asymptomatic, according to the Centers for Disease Control and Prevention. But the strain can still cause death, and pregnant people and children are particularly vulnerable.

Malaria does not spread from human-to-human contact; a mosquito carrying the disease has to bite someone to transmit the parasites.

Workers with Sarasota County Mosquito Management Services have been especially busy since May 26 [2023], when the first local case was confirmed.

Like similar departments across Florida, the team is experienced in responding to small outbreaks of mosquito-borne illnesses such as West Nile virus or dengue. They have protocols for addressing travel-related cases of malaria as well, but have ramped up their efforts now that they have confirmation that transmission is occurring locally between mosquitoes and humans.

While organizations like the World Health Organization have cautioned climate change could lead to more global cases and deaths from malaria and other mosquito-borne diseases, experts say it’s too soon to tell if the local transmission seen these past two months has any connection to extreme heat or flooding.

“We don’t have any reason to think that climate change has contributed to these particular cases,” said Ben Beard, deputy director of the CDC’s US Centers for Disease Control and Prevention] division of vector-borne diseases and deputy incident manager for this year’s local malaria response.

“In a more general sense though, milder winters, earlier springs, warmer, longer summers – all of those things sort of translate into mosquitoes coming out earlier, getting their replication cycles sooner, going through those cycles faster and being out longer,” he said. And so we are concerned about the impact of climate change and environmental change in general on what we call vector-borne diseases.”.

Beard co-authored a 2019 report that highlights a significant increase in diseases spread by ticks and mosquitoes in recent decades. Lyme disease and West Nile virus were among the top five most prevalent.

“In the big picture it’s a very significant concern that we have,” he said.

Engineered tissue and bloodthirsty mosquitoes

A June 8, 2023 University of Central Florida (UCF) news release (also on EurekAlert) by Eric Eraso describes the research into engineered human tissue and features a ‘bloodthirsty’ video. First, the video,

Note: A link has been removed,

A UCF research team has engineered tissue with human cells that mosquitoes love to bite and feed upon — with the goal of helping fight deadly diseases transmitted by the biting insects.

A multidisciplinary team led by College of Medicine biomedical researcher Bradley Jay Willenberg with Mollie Jewett (UCF Burnett School of Biomedical Sciences) and Andrew Dickerson (University of Tennessee) lined 3D capillary gel biomaterials with human cells to create engineered tissue and then infused it with blood. Testing showed mosquitoes readily bite and blood feed on the constructs. Scientists hope to use this new platform to study how pathogens that mosquitoes carry impact and infect human cells and tissues. Presently, researchers rely largely upon animal models and cells cultured on flat dishes for such investigations.

Further, the new system holds great promise for blood feeding mosquito species that have proven difficult to rear and maintain as colonies in the laboratory, an important practical application. The Willenberg team’s work was published Friday in the journal Insects.

Mosquitos have often been called the world’s deadliest animal, as vector-borne illnesses, including those from mosquitos cause more than 700,000 deaths worldwide each year. Malaria, dengue, Zika virus and West Nile virus are all transmitted by mosquitos. Even for those who survive these illnesses, many are left suffering from organ failure, seizures and serious neurological impacts.

“Many people get sick with mosquito-borne illnesses every year, including in the United States. The toll of such diseases can be especially devastating for many countries around the world,” Willenberg says.

This worldwide impact of mosquito-borne disease is what drives Willenberg, whose lab employs a unique blend of biomedical engineering, biomaterials, tissue engineering, nanotechnology and vector biology to develop innovative mosquito surveillance, control and research tools. He said he hopes to adapt his new platform for application to other vectors such as ticks, which spread Lyme disease.

“We have demonstrated the initial proof-of-concept with this prototype” he says. “I think there are many potential ways to use this technology.”

Captured on video, Willenberg observed mosquitoes enthusiastically blood feeding from the engineered tissue, much as they would from a human host. This demonstration represents the achievement of a critical milestone for the technology: ensuring the tissue constructs were appetizing to the mosquitoes.

“As one of my mentors shared with me long ago, the goal of physicians and biomedical researchers is to help reduce human suffering,” he says. “So, if we can provide something that helps us learn about mosquitoes, intervene with diseases and, in some way, keep mosquitoes away from people, I think that is a positive.”

Willenberg came up with the engineered tissue idea when he learned the National Institutes of Health (NIH) was looking for new in vitro 3D models that could help study pathogens that mosquitoes and other biting arthropods carry.

“When I read about the NIH seeking these models, it got me thinking that maybe there is a way to get the mosquitoes to bite and blood feed [on the 3D models] directly,” he says. “Then I can bring in the mosquito to do the natural delivery and create a complete vector-host-pathogen interface model to study it all together.”

As this platform is still in its early stages, Willenberg wants to incorporate addition types of cells to move the system closer to human skin. He is also developing collaborations with experts that study pathogens and work with infected vectors, and is working with mosquito control organizations to see how they can use the technology.

“I have a particular vision for this platform, and am going after it. My experience too is that other good ideas and research directions will flourish when it gets into the hands of others,” he says. “At the end of the day, the collective ideas and efforts of the various research communities propel a system like ours to its full potential. So, if we can provide them tools to enable their work, while also moving ours forward at the same time, that is really exciting.”

Willenberg received his Ph.D. in biomedical engineering from the University of Florida and continued there for his postdoctoral training and then in scientist, adjunct scientist and lecturer positions. He joined the UCF College of Medicine in 2014, where he is currently an assistant professor of medicine.

Willenberg is also a co-founder, co-owner and manager of Saisijin Biotech, LLC and has a minor ownership stake in Sustained Release Technologies, Inc. Neither entity was involved in any way with the work presented in this story. Team members may also be listed as inventors on patent/patent applications that could result in royalty payments. This technology is available for licensing. To learn more, please visit ucf.flintbox.com/technologies/44c06966-2748-4c14-87d7-fc40cbb4f2c6.

Here’s a link to and a citation for the paper,

Engineered Human Tissue as A New Platform for Mosquito Bite-Site Biology Investigations by Corey E. Seavey, Mona Doshi, Andrew P. Panarello, Michael A. Felice, Andrew K. Dickerson, Mollie W. Jewett and Bradley J. Willenberg. Insects 2023, 14(6), 514; https://doi.org/10.3390/insects14060514 Published: 2 June 2023

This paper is open access.

That final paragraph in the news release is new to me. I’ve seen them list companies where the researchers have financial interests but this is the first time I’ve seen a news release that offers a statement attempting to cover all the bases including some future possibilities such as: “Team members may also be listed as inventors on patent/patent applications that could result in royalty payments.

It seems pretty clear that there’s increasing concern about mosquito-borne diseases no matter where you live.

Combat yellow fever mosquito with carbon black nanoparticles?

This April 19, 2022 news item on Nanowerk announces mosquito research from Ohio State University (OSU), Note: A link has been removed,

Before being accidentally introduced to the New World by the 16th century slave trade, the yellow fever mosquito was a species native only to Africa. Highly adaptable, it has since become an invasive species in North America, but researchers at The Ohio State University may have found a way to squash the pesky population in its juvenile stages.

Recently published in the journal Insects (“Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti”), a new paper describes how mosquitoes have evolved a natural resistance to some chemical insecticides, and offers an alternative called carbon black, a type of carbon-based nanoparticles, or CNPs [when it’s specifically carbon black nanoparticles, it may sometimes be abbreviated to CBNPs; more about that at the end of this post].

An April 18, 2022 OSU news release (also on EurekAlert), which originated the news item, describes the work in more detail,

Study co-author and an associate professor of entomology at Ohio State, Peter Piermarini described CNPs as “microscopic” materials made out of organic elements. The study used a modified version of carbon black called Emperor 1800, which is often used to coat automobiles black. While CNPs are a relatively new scientific development, they have been considered as new tools to control various insect and pest infestations, he said.

“If we can learn more about how carbon black works and how to use it safely, we could design a commercially available nanoparticle that is highly effective against insecticide-resistant mosquitoes,” Piermarini said.

The yellow fever mosquito, or Aedes aegypti, is a species of mosquito known for spreading not just yellow fever, but also diseases like the Zika virus, dengue fever and chikungunya fever. Adults rarely fly more than a few hundred meters from where they emerge, but their abundance leads to steady transmission of diseases – enough to claim tens of thousands of lives every year and hospitalize hundreds of thousands more people.

Because of this, the mosquito is considered to be one of the deadliest animals on the planet. For this study, the researchers’ goal was to figure out how toxic these nanomaterials could be to mosquito larvae, or the immature form of the insect.

Contrary to popular belief, not all mosquitoes set their sights on turning our blood into their latest meal. Male mosquitoes subsist only on flower nectar; it’s the females that will consume both flower nectar and blood in a bid to provide their eggs with enough protein to grow.

When female mosquitoes are ready to lay their eggs, they return to standing pools of water, like lakes or birdbaths, to release them. After they hatch, these larvae will stay in the water for about a week until they reach adulthood, and take wing.

To test whether Emperor 1800 would be effective in stopping that process, researchers worked with two different strains of the yellow fever mosquito inside the lab, one extremely susceptible to typical chemical insecticides, and the other, extremely resistant to them.

By applying the carbon black nanomaterials to the water during the earliest stages of the mosquito’s life cycle and checking in 48 hours later, they were able to determine that CNPs kill mosquito larvae both quickly and efficiently.

“Given the properties of carbon black, it has the most potential for killing larvae because it can be suspended in water,” Piermarini said. Their findings showed that the material seemed to accumulate on the mosquito larvae’s head, abdomen, and even in its gut, meaning that at some point, the larvae were ingesting smaller particles of carbon black.

“Our hypothesis is that these materials may be physically obstructing their ability to perform basic biological functions. It could be blocking their digestion, or might be interfering with their ability to breathe,” said Piermarini.

However, there was one thing that Piermarini found particularly surprising.

When first suspended in water, carbon black appeared equally toxic to larvae of insecticide-resistant and insecticide-susceptible mosquitoes, but the longer the carbon black was suspended in water before treating them. it became more toxic to the insecticide-resistant larvae.

“When you first apply the CNP solution it has similar toxicity against both strains,” Piermarini said. “But when you let the suspension age for a few weeks, it tends to become more potent against the resistant strain of mosquitoes.”

Although they couldn’t determine the reason behind the time-lapsed deaths, the study concluded that these new nanomaterials could be extremely beneficial to controlling the species when applied as a preventive treatment to mosquito breeding grounds.

But before it can be utilized by the public, Piermarini said, carbon black needs to undergo rigorous testing to ensure it won’t harm humans and the environment as a whole.

Co-authors were Erick Martinez Rodriguez, a visiting scholar currently in the Ohio State Entomology Graduate program, Parker Evans, a previous PhD student in the Ohio State Translational Plant Sciences Graduate program, and Megha Kalsi, a previous postdoctoral researcher in entomology. This research was supported by Ohio State’s College of Food, Agricultural, and Environmental Sciences and Vaylenx LLC.

Here’s a link to and a citation for the paper,

Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti by Erick J. Martínez Rodríguez, Parker Evans, Megha Kalsi, Noah Rosenblatt, Morgan Stanley, and Peter M. Piermarini. Insects 2022, 13(3), 307 DOI: https://doi.org/10.3390/insects13030307 Published: 20 March 2022

The paper appears to be open access.

The naming of things

The nomenclature for carbon at the nanoscale is a little confusing to me. As best as I can determine all of the elements have multiple names at the nanoscale but it’s only with carbon that subcategories function as categories themselves. For example, fullerenes (C60s), single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and mulit-walled carbon nanotubes (MWCNTs) are subcategories that stand on their own but, sometimes, are referred to as carbon nanoparticles, which is the main category. I checked carbon black nanoparticles online and found a number of instances where it was abbreviated to CBNP and it can also be a CNP since it is found under the carbon nanoparticle category as per this Wikipedia entry.

Spotting the difference between dengue and Zika infections with gold nanosensors

This July 29, 2020 news item on Nanowerk features research from Brazil,

A new class of nanosensor developed in Brazil could more accurately identify dengue and Zika infections, a task that is complicated by their genetic similarities and which can result in misdiagnosis.

The technique uses gold nanoparticles and can “observe” viruses at the atomic level, according to a study published in Scientific Reports (“Nanosensors based on LSPR are able to serologically differentiate dengue from Zika infections”).

Belonging to the Flavivirus genus in the Flaviviridae family, Zika and dengue viruses share more than 50 per cent similarity in their amino acid sequence. Both viruses are spread by mosquitos and can have long-term side effects. The Flaviviridae virus family was named after the yellow fever virus and comes from the Latin word for golden, or yellow, in colour.

“Diagnosing [dengue virus] infections is a high priority in countries affected by annual epidemics of dengue fever. The correct diagnostic is essential for patient managing and prognostic as there are no specific antiviral drugs to treat the infection,” the authors say.

More than 1.8 million people are suspected to have been infected with dengue so far this year in the Americas, with 4000 severe cases and almost 700 deaths, the Pan American Health Organization says. The annual global average is estimated to be between 100 million and 400 million dengue infections, according to the World Health Organization.

Flávio Fonseca, study co-author and researcher at the Federal University of Minas Gerais, tells SciDev.Net it is almost impossible to differentiate between dengue and Zika viruses.

“A serologic test that detects antibodies against dengue also captures Zika-generated antibodies. We call it cross-reactivity,” he says.

Meghie Rodrigues’ July 29, 2020 article for SciDev.net, which originated the news item, delves further into the work,

Co-author and virologist, Maurício Nogueira, tells SciDev.Net that avoiding cross-reactivity is crucial because “dengue is a disease that kills — and can do so quickly if the right diagnosis is not made. As for Zika, it offers risks for foetuses to develop microcephaly, and we can’t let pregnant women spend seven or eight months wondering whether they have the virus or not.”

There is also no specific antiviral treatment for Zika and the search for a vaccine is ongoing.

Virus differentiation is important to accurately measure the real impact of both diseases on public health. The most widely used blood test, the enzyme-linked immunosorbent assay (ELISA), is limited in its ability to tell the difference between the viruses, the authors say.

As dengue has four variations, known as serotypes, the team created four different nanoparticles and covered each of them with a different dengue protein. They applied ELISA serum and a blood sample. The researchers found that sample antibodies bound with the viruses’ proteins, changing the pattern of electrons on the gold nanoparticle surface.

Should you check out Rodrigues’ entire article, you might want to take some time to explore SciDev.net to find science news from countries that don’t often get the coverage they should.

Here’s a link to and a citation for the researchers’ paper,

Nanosensors based on LSPR are able to serologically differentiate dengue from Zika infections by Alice F. Versiani, Estefânia M. N. Martins, Lidia M. Andrade, Laura Cox, Glauco C. Pereira, Edel F. Barbosa-Stancioli, Mauricio L. Nogueira, Luiz O. Ladeira & Flávio G. da Fonseca. Scientific Reports volume 10, Article number: 11302 (2020) DOI: https://doi.org/10.1038/s41598-020-68357-9 Published: 09 July 2020

This paper is open access.

Hong Kong, MosquitNo, and Dengue fever

The most substantive piece I’ve written on dengue fever and a nanotechnology-enabled approach to the problem was a 2013 post explaining why the fever is of such concern, which also included information about a proposed therapeutic intervention by Nanoviricides. From the July 2, 2013 posting, here’s more about the magnitude of the problem,

… the WHO (World Health Organization) fact sheet no. 117,

The incidence of dengue has grown dramatically around the world in recent decades. Over 2.5 billion people – over 40% of the world’s population – are now at risk from dengue. WHO currently estimates there may be 50–100 million dengue infections worldwide every year.

Before 1970, only nine countries had experienced severe dengue epidemics. The disease is now endemic in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The American, South-east Asia and the Western Pacific regions are the most seriously affected.

Cases across the Americas, South-east Asia and Western Pacific have exceeded 1.2 million cases in 2008 and over 2.3 million in 2010 (based on official data submitted by Member States). Recently the number of reported cases has continued to increase. In 2010, 1.6 million cases of dengue were reported in the Americas alone, of which 49 000 cases were severe dengue.

Not only is the number of cases increasing as the disease spreads to new areas, but explosive outbreaks are occurring. The threat of a possible outbreak of dengue fever now exists in Europe and local transmission of dengue was reported for the first time in France and Croatia in 2010 and imported cases were detected in three other European countries. A recent (2012) outbreak of dengue on Madeira islands of Portugal has resulted in over 1800 cases and imported cases were detected in five other countries in Europe apart from mainland Portugal.

An estimated 500 000 people with severe dengue require hospitalization each year, a large proportion of whom are children. About 2.5% of those affected die.

Fast forwarding to 2015, this latest information about dengue fever features a preventative approach being taken in Hong Kong according to a July 5, 2015 article by Timmy Sung  for the South China Morning Post,

Dutch insect repellent innovator Mosquitno targets Hong Kong as dengue fever cases rise

A Dutch company says it has invented an insect repellent using nanotechnology which can keep clothes and homes mosquito-free for up to three months.

Mosquitno has been invited by a government body to begin trading in Hong Kong as the number of cases reported in the city of the deadly mosquito-borne dengue fever rises.

The new repellent does not include the active ingredient used in many insect repellents, DEET, which has question marks surrounding its safety.

Figures from the Department of Health show the number of dengue fever cases reported rose 8 per cent last year, to 112. There were 34 cases in the first five months of this year, 36 per cent more than in the same period last year. Mosquitoes are most active in the summer months.

MosquitNo does use an ingredient, IR3535, which has caused concern (from Sung’s article),

The Consumer Council has previously warned that IR3535-based mosquito repellents can break down plastic materials and certain synthetic fibres, but Wijnen [Erwin Wijnen, director of the {Mosqutino’s} brand development and global travel retailing] said the ingredient combined with nanotechnology is safe and there was no possibility it would damage clothes.

I was not able to find out more about the company’s nanotechnology solution as applied to MosquitNo,

The NANO Series is a revolutionary, innovative technology designed by scientists especially for MosquitNo. This line utilizes this-breaking insect repellent technology in various products including wipes, textile spray, fabric softener and bracelets. This technology and our trendy applications are truly industry-changing and MosquitNo is at the leading edge!

The active component in all our awesome products within this range is IR3535.

That’s it for technical detail. At least, for now.

Synthetic Aesthetics update and an informal Canadian synthetic biology roundup

Amanda Ruggeri has written a very good introduction to synthetic biology for nonexperts in her May 20, 2015 Globe and Mail article about ‘Designing for the Sixth Extinction’, an exhibit showcasing designs and thought experiments focused on synthetic biology ,

In a corner of Istanbul’s Design Biennial late last year [2014], photographs of bizarre creatures sat alongside more conventional displays of product design and typefaces. Diaphanous globes, like transparent balloons, clung to the mossy trunk of an oak tree. Rust-coloured patterns ran across green leaves, as if the foliage had been decorated with henna. On the forest floor, a slug-like creature slithered, its back dotted with gold markings; in another photograph, what looked like a porcupine without a head crawled over the dirt, its quills tipped blood-red.

But as strange as the creatures looked, what they actually are is even stranger. Not quite living things, not quite machines, these imagined prototypes inhabit a dystopic, future world – a world in which they had been created to solve the problems of the living. The porcupine, for example, is an Autonomous Seed Disperser, described as a device that would collect and disperse seeds to increase biodiversity. The slug would be programmed to seek out acidic soils and neutralize them by dispersing an alkali hygroscopic fluid.

They are the designs – and thought experiments – of London-based Alexandra Daisy Ginsberg, designer, artist and lead author of the book Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature. In her project Designing for the Sixth Extinction, which after Istanbul is now on display at the Design Museum in London, Ginsberg imagines what a synthetic biology-designed world would look like – and whether it’s desirable. “

I have a couple of comments. First, the ‘Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature’ book launch last year was covered here in a May 5, 2014 post. where you’ll notice a number of the academics included in Ruggeri’s article are contributors to the book (but not mentioned as such). Second, I cannot find ‘Design for the Sixth Extinction’ listed as an exhibition on London’s Design Museum website.

Getting back to the matter at hand, not all of the projects mentioned in Ruggeri’s article are ‘art’ projects, there is also this rather practical and controversial initiative,

Designing even more complex organisms is the inevitable, and controversial, next step. And those designs have already begun. The British company Oxitec has designed a sterile male mosquito. When the bugs are released into nature and mate, no offspring result, reducing the population or eliminating it altogether. This could be a solution to dengue fever, a mosquito-carried disease that infects more than 50 million people each year: In field trials in Cayman, Panama and Brazil, the wild population of the dengue-carrying mosquito species was reduced by 90 per cent. Yet, as a genetically engineered solution, it also makes some skittish. The consequences of such manipulations remain unforeseen, they say. Proponents counter that the solution is more elegant, and safer, than the current practice of spraying chemicals.

Even so, the engineered mosquito leads to overarching questions: What are the dangers of tinkering with life? Could this cause a slide toward eugenics? Currently, the field doesn’t have an established ethics oversight process, something some critics are pushing to change.

It’s a surprising piece for the Globe and Mail newspaper to run since it doesn’t have a Canadian angle to it and the Globe and Mail doesn’t specialize in science (not withstanding Ivan Semeniuk’s science articles) or art/science or synthetic biology writing, for that matter. Perhaps it bodes an interest and more pieces on emerging science and technology and on art/science projects?

In any event, it seems like a good time to review some of the synthetic biology work or the centres of activity in Canada.  I believe the last time I tackled this particular topic was in a May 24, 2010 post titled, Canada and synthetic biology in the wake of the first ‘synthetic’ bacteria.

After a brief search, I found three centres for research:

Concordia [University] Centre for Applied Synthetic Biology (CASB)

[University of Toronto] The Synthetic Biology and Cellular Control Lab

[University of British Columbia] Centre for High-Throughput Biology (CHiBi)

Following an Oct. 27 – 28, 2014 UK-Canada Synthetic Biology Workshop held at Concordia University, Rémi Quirion, Vincent Martin, Pierre Meulien and Marc LePage co-wrote a Nov. 4, 2014 Concordia University post titled, How Canada is poised to revolutionize synthetic biology,

Rémi Quirion is the Chief Scientist of Québec, Fonds de recherche du Québec. Vincent Martin is Canada Research Chair in Microbial Genomics and Engineering and a professor in the Department of Biology at Concordia University in Montreal. Pierre Meulien is President and CEO of Genome Canada. Marc LePage is the President and CEO of Génome Québec.

Canada’s research and business communities have an opportunity to become world leaders in a burgeoning field that is fast shaping how we deal with everything from climate change to global food security and the production of lifesaving medications. The science of synthetic biology has the transformative capacity to equip us with novel technology tools and products to build a more sustainable society, while creating new business and employment opportunities for the economy of tomorrow.

We can now decipher the code of life for any organism faster and less expensively than ever before. Canadian scientists are producing anti-malarial drugs from organic materials that increase the availability and decrease the cost of lifesaving medicines. They are also developing energy efficient biofuels to dramatically reduce environmental and manufacturing costs, helping Canadian industry to thrive in the global marketplace.

The groundwork has also been laid for a Canadian revolution in the field. Canada’s scientific community is internationally recognized for its leadership in genomics research and strong partnerships with key industries. Since 2000, Genome Canada and partners have invested more than $2.3 billion in deciphering the genomes of economically important plants, animals and microbes in order to understand how they function. A significant proportion of these funds has been invested in building the technological toolkits that can be applied to synthetic biology.

But science cannot do it alone. Innovation on this scale requires multiple forms of expertise in order to be successful. Research in law, business, social sciences and humanities is vital to addressing questions of ethics, supply chain management, social innovation and cultural adaptation to new technologies. Industry knowledge and investments, as well as the capacity to incentivize entrepreneurship, are key to devising business models that will enable new products to thrive. Governments and funding agencies also need to do their part by supporting multidisciplinary research, training and infrastructure.

It’s a bit ‘hype happy’ for my taste but it does provide some fascinating insight in what seems to be a male activity in Canada.

Counterbalancing that impression is an Oct. 6, 2013 article by Ivan Semeniuk for the Globe and Mail about a University of Lethbridge team winning the top prize in a synthetic biology contest,

If you want to succeed in the scientific revolution of the future, it helps to think about life as a computer program.

That strategy helped University of Lethbridge students walk away with the top prize in a synthetic biology competition Sunday. Often touted as the genetic equivalent of the personal computer revolution, synthetic biology involves thinking about cells as programmable machines that can be designed and built to suit a particular need – whether it’s mass producing a vaccine or breaking down a hazardous chemical in the environment.

The five member Lethbridge team came up with a way to modify how cells translate genetic information into proteins. Rather than one bit of DNA carrying the information to make one protein – the usual way cells go about their business – the method involves inserting a genetic command that jiggles a cell’s translational machinery while it’s in mid-operation, coaxing it to produce two proteins out of the same DNA input.

“We started off with a computer analogy – kind of like zipping your files together – so you’d zip two protein sequences together and therefore save space,” said Jenna Friedt, a graduate student in biochemistry at Lethbridge. [emphasis mine]

There are concerns other than gender issues, chief amongst them, ethics. The Canadian Biotechnology Action Network maintains an information page on Synthetic Biology which boasts this as its latest update,

October 2014: In a unanimous decision of 194 countries, the United Nation’s Convention on Biological Diversity formally urged countries to regulate synthetic biology, a new extreme form of genetic engineering. The landmark decision follows ten days of hard-fought negotiations between developing countries and a small group of wealthy biotech-friendly economies. Until now, synthetic organisms have been developed and commercialized without international regulations. …

Finally, there’s a June 2014 synthetic biology timeline from the University of Ottawa’s Institute for Science, Society, and Policy (ISSP) which contextualizes Canadian research, policy and regulation with Australia, the European Union, the UK, and the US.

(On a closely related note, there’s my May 14, 2015 post about genetic engineering and newly raised concerns.)