Tag Archives: Diamond Light Source synchrotron

Using natural proteins to grow gold nanoclusters for hybrid bionanomaterials

While there’s a January 10, 2022 news item on Nanowerk, the research being announced was made available online in the Fall of 2021 and is now available in print,

Gold nanoclusters are groups of a few gold atoms with interesting photoluminescent properties. The features of gold nanoclusters depend not only on their structure, but their size and also by the ligands coordinated to them. These inorganic nanomaterials have been used in sensing, biomedicine and optics and their coordination with biomolecules can endow multiple capabilities in biological media.

A research collaboration between the groups of Dr. Juan Cabanillas, Research Professor at IMDEA Nanociencia and Dr. Aitziber L. Cortajarena, Ikerbasque Professor and Principal Investigator at CIC biomaGUNE have explored the use of natural proteins to grow gold nanoclusters, resulting in hybrid bionanomaterials with tunable photoluminescent properties and with a plethora of potential applications.

A January 10, 2022 IMDEA Nanociencia press release, which originated the news item, provides more technical detail about the research,

The nanoclusters –with less than 2 nm in size- differentiate from larger nanoparticles (plasmonic) since they present discrete energy levels coupled optically. The groups of amino acids within the proteins coordinate the gold atoms and allow the groups to be arranged around the gold nanocluster, facilitating the stabilization and adding an extra level of tailoring. These nanoclusters have interesting energy harvesting features. Since the discrete energy levels are optically coupled, the absorption of a photon leads to promotion of an electron to higher levels, which can trigger a photophysical process or a photochemical reaction.  

The results by Cabanillas and Cortajarena groups, published in Advanced Optical Materials and Nano Letters, explore the origin of the photoluminescence in protein-designed gold nanoclusters and shed light into the strong influence of environmental conditions on the nature of luminescence. Nanocluster capping by two types of amino acids (histidine and cysteine) allow for changing the emission spectral range from blue to red, paving the way to tune the optical properties by an appropriate ligand choice. The nature of emission is also changed with capping, from fluorescence to phosphorescence, respectively. The synergistic protein-nanocluster effects on emission are still not clear, and the groups at IMDEA Nanociencia and CIC biomaGUNE are working to elucidate the mechanisms behind. There are potential applications for the aforementioned nanoclusters, in solid state as active medium in laser cavities. Optical gain properties from these nanoclusters are yet to be demonstrated, which could pave the way to a new generation of potentially interesting laser devices. As the combination of gold plus proteins is potentially biocompatible, many potential applications in biomedicine can also be envisaged.

A related publication of the groups in Nano Letters demonstrates that the insertion of tryptophans, amino acids with high electron density, in the vicinity of the nanocluster boosts its photoluminescence quantum efficiency up to 40% in some cases, values relevant for solid state light emission applications. Researchers also observed an antenna effect: the tryptophans can absorb light in a discrete manner and transfer the energy to the cluster. This effect has interest for energy harvesting and for sensing purposes as well.

The proteins through the biocapping enable the synthesis of the nanoclusters and largely improve their quantum efficiency. “The photoluminescence quantum efficiency is largely improved when using the biocapping” Dr. Cabanillas says. He believes this research work means “a new field opening for the tuning of optical properties of nanoclusters through protein engineering, and much work is ahead for the understanding of the amplification mechanism”. Dr. Cortajarena emphasizes “we have already demonstrated the great potential of engineered photoluminescent protein-nanocluster in biomedical and technological fields, and understanding the fundamental emission mechanisms is pivotal for future applications“. A variety of further applications include biosensors, as the protein admits functionalization with recognition molecules, energy harvesting, imaging and photodynamic therapies. Further work is ahead this opening avenue for photophysics research.

This research is a collaboration led by Dr. Juan Cabanillas and Dr. Aitziber L. Cortajarena research groups at IMDEA Nanociencia and CIC biomaGUNE, with contributions from researchers at the Diamond Light Source Ltd. [synchrotron] and DIPC. It has been cofounded by the projects AMAPOLA, NMAT2D, FULMATEN, Atracción de Talento from Comunidad de Madrid and the Severo Ochoa Centre of Excellence award to IMDEA Nanociencia. CIC biomaGUNE acknowledges support by the projects ERC-ProNANO, ERC-NIMM, ProTOOLs and the Maria de Maeztu Units of Excellence Programme.

Here are links to and citations for the papers,

Tuning the Optical Properties of Au Nanoclusters by Designed Proteins by Elena Lopez-Martinez, Diego Gianolio, Saül Garcia-Orrit, Victor Vega-Mayoral, Juan Cabanillas-Gonzalez, Carlos Sanchez-Cano, Aitziber L. Cortajarena. Advanced Optical Materials Volume 10, Issue 1 January 4, 2022 2101332 DOI: https://doi.org/10.1002/adom.202101332 First published: 31 October 2021

This paper is open access.

Boosting the Photoluminescent Properties of Protein-Stabilized Gold Nanoclusters through Protein Engineering by Antonio Aires, Ahmad Sousaraei, Marco Möller, Juan Cabanillas-Gonzalez, and Aitziber L. Cortajarena. Nano Lett. 2021, 21, 21, 9347–9353 DOI: https://doi.org/10.1021/acs.nanolett.1c03768 Publication Date: November 1, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Not being familiar with either of the two research institutions mentioned in the press release, I did a little digging.

Here’s a little information about IMDEA Nanociencia (IMDEA Nanoscience Institute), from its Wikipedia entry, Note: All links have been removed,

IMDEA Nanoscience Institute is a private non-profit foundation within the IMDEA Institutes network, created in 2006-2007 as a result of collaboration agreement between the Community of Madrid and Spanish Ministry of Education and Science. The foundation manages IMDEA-Nanoscience Institute,[1] a scientific centre dedicated to front-line research in nanoscience, nanotechnology and molecular design and aiming at transferable innovations and close contact with industries. IMDEA Nanoscience is a member of the Campus of International excellence, a consortium of research institutes promoted by the Autonomous University of Madrid and Spanish National Research Council (UAM/CSIC).[2]

As for CIC biomaGUNE, here’s more from its institutional profile on the science.eus website,

The Centre for Cooperative Research in Biomaterials-CIC biomaGUNE, located in San Sebastian (Spain), was officially opened in December 2006. CIC biomaGUNE is a non-profit research organization created to promote scientific research and technological innovation at the highest levels in the Basque Country following the BioBasque policy in order to create a new business sector based on biosciences. Established by the Department of Industry, Technology & Innovation of the Government of the Autonomous Community of the Basque Country, CIC biomaGUNE constitutes one of the Centres of the CIC network, the largest Basque Country research network on specific strategic areas, having the mission to contribute to the economical and social development of the country through the generation of knowledge and speeding up the process that leads to technological innovation.

Toxicity, nanoparticles, soil, and Europe’s NANO-ECOTOXICITY Project

I have featured pieces on nanoparticles, toxicity, and soil in the past (this Aug. 15, 2011 posting about Duke University’s mesocosm project is probably the most relevant) but this study is the first one I’ve seen focusing on earthworms. From the Sept. 23, 2013 news item on Nanowerk (Note: A link has been removed),

From the clothes and make-up we wear to the electronic devices we use every day, nanotechnology is becoming ubiquitous. But while industry has mastered the production of such materials, little is known about their fate once their service life comes to an end. The NANO-ECOTOXICITY project looked into their impact on soil organisms.

The Sept. 23, 2013 CORDIS (European Commission Community Research and Development Information Service) news release, which originated the new item, offers a Q&A (Question and Answer) with the project research leader,

Dr Maria Diez-Ortiz, research leader of the NANO-ECOTOXICITY project, tells us about her research findings and how she expects them to help increase knowledge and shape tools allowing for standard environmental hazard and risk-assessment methodologies.

What is the background of the NANO-ECOTOXICITY project?

Nanotechnology is based on the idea that, by engineering the size and shape of materials at the scale of atoms, i.e. nanometres (nm), distinct optical, electronic, or magnetic properties can be tuned to produce novel properties of commercial value. However, there is an obvious concern that such novel properties may also lead to novel behaviour when interacting with biological organisms, and thus to potentially novel toxic effects.

Since nanoparticles (NPs) are similar in size to viruses, their uptake by and transport through tissues are based on mechanisms distinct from those of molecular uptake and transport. Therefore, there is concern that standard toxicological tests may not be applicable or reliable in relation to NPs, hence compromising current risk-assessment procedures.

The majority of research on nano-safety in the environment has so far focused on the aquatic environment. Current research on environmental fate, however, indicates that soils will become the biggest environmental sink for nanoparticles. Following their entry into liquid waste streams, nanoparticles will pass through wastewater-treatment. processes, ending up in waste sludge which may accumulate in the agricultural land where this sludge is often applied.

What are the main objectives of the project?

This project deals with the toxicokinetics – that is, the rate at which a chemical enters a body and affects it – of metal nanoparticles coming into contact with soil-dwelling organisms. The aim is to determine NPs’ fate and effects in terrestrial ecosystems by means of case studies with zinc oxide and silver NPs, which represent different fate kinetics.

The project’s main objectives are to assess the toxicity of metal nanoparticles in soils in the short and long term; the main route of exposure for earthworms and whether it differs from those of ionic metals; and, finally, the influence of the exposure media on metal nanoparticle toxicity.

What is new or innovative about the project and the way it is addressing these issues?

We have been running a long-term study where soils with AgNP [silver nanoparticles] were stored and left to age for up to a year; their toxicity was tested at the start and after three, seven and 12 months of ageing. The results showed that silver toxicity increased over time, meaning that short-term standard toxicity tests may underestimate the environmental risk of silver nanoparticles.

In parallel, we found that organisms exposed to silver nanoparticles in short-term studies accumulated higher silver concentrations than organisms that were exposed to the same mass concentration of ionic silver. However, these NP exposed organisms actually suffered lower toxic effects. This observation contradicts the prevailing assumption in toxicology that the internalised concentration is directly related to chemical concentration at the target site and hence to its toxicity. This observation creates a new paradigm for nano-ecotoxicology.

What is not yet known is whether the accumulated NP metal may in the longer-term ultimately become toxic (e.g. through dissolution and ion release) in cells and tissues where AgNPs may be stored. Should this occur, the high concentrations accumulated may ultimately result in greater long-term toxicity for NPs than for ionic forms. This may reveal these accumulated NPs as internalised ‘time bombs’ relevant to long-term effects and toxicity.

However, it has to be borne in mind that the redicted environmental concentrations resulting from current use of nanoparticles (e.g. results from EU projects like NANOFATE2) are many times smaller than those used in these studies, meaning that such accumulations of nanoparticle-related silver are unlikely to occur in the environment or, ultimately, in humans.

What difficulties did you encounter and how did you solve them?

The main problems encountered relate to the tracking of nanoparticles inside the tissues and soils, as both are complex matrices. The analysis of the particles is a challenge in itself, even when in water, but to get information about their state in these matrices often requires unrealistic exposure concentrations (due to low detection limits of the highly specialised techniques used for analysis) or extraction of the particles from the matrices, which could potentially change the state of the particles.

In this project, I travelled to University of Kentucky to work with Jason Unrine and used gentle water-based extractions of soil samples immediately before analysing them using ‘Field-flow fractionation’ and ‘Inductively coupled plasma mass spectrometry’ to identify the state of nanoparticles in my aged soils.

To look at what form (speciation) of silver and zinc from the nanoparticle exposures could be found inside worms I collaborated with NANOFATE researchers at Cardiff University who fixed and thinly sectioned the worm tissues. I was lucky to be given the time to use specialist facilities like the UK’s Diamond Light Source synchrotron to investigate where and in what form the metals and potential nanoparticles could be found in these tissues.

The main challenge is that as soon as you take nanoparticles out of the manufacturers’ bottle they start changing, particularly when put into environments likes natural soils and waters, or even organisms. Therefore a lot of characterisation is needed during exposure to establish the state of the nanoparticles the organisms have been exposed to and how fast they are changing from pristine particles to dissolved ions, or particles with completely different surfaces.

Technical solutions to characterisation have been found during this short project, but this will remain a logistical challenge for many years to come as the analysis equipment is still very specialised and expensive and therefore not generally available.

What are the concrete results from the research so far?

The project has helped us draw various conclusions regarding the impact of NPs on the environment and how to assess them. First, we now know that soil acidity, or pH, influences the dissolution and toxicity of ZnO nanoparticles [zinc oxide].

Then, we found that toxicity of silver nanoparticles’ increases over time and that the particles’ coating affects their toxicity to soil invertebrates.

As previously mentioned, earthworms exposed to silver nanoparticles for 28 days accumulated higher silver concentrations than earthworms exposed to silver ions, without the excess silver from the nanoparticles having a toxic effect. [emphasis mine] Moreover, soil ingestion was identified as the main route of exposure to AgNP and ZnONP in earthworms.

How can industry and decision-makers ensure that nanomaterials do not impact our environment?

We hope that this project, and the larger EU project NANOFATE to which it is linked, will provide knowledge and tools enabling standard environmental-hazard and risk-assessment methodologies to be applied to engineered nanoparticles (ENPs) with just a few judicious modifications. The current systems and protocols for chemical risk assessment have been developed over decades, and where no novel toxic mechanisms exist, our results tend to say that nano fits in as long as we measure the right things and characterise realistic exposures properly.

Our research aims to determine the minimum methodological tweaks needed. So far everything indicates that the potential benefits from nanotechnology can be realised and managed safely alongside other chemicals. While we are fairly confident at this stage that ENPs impose no greater acute effects on important biological parameters – like reproduction – than their ionic forms, the NANO-ECOTOXICITY results demonstrate that we have some way to go before we can state loud and clear that we do not believe there is any novel low-level or long-term effect.

As for all chemicals, proving such a negative is impossible using short-term tests. We think the final conclusions by industry and regulators on safe use of nanoparticles should and will have to be made according to a ‘weight of evidence’ approach – proving there is a gap between predicted likely exposure levels and those levels seen to cause any effects or accumulations within ecosystem species.

What are the next topics for your research?

This project has finished but the next step for any other funding opportunity would be to address increasingly environmentally relevant exposure scenarios by analysing how nanoparticles modify in the environment and interact with living tissues and organisms at different trophic levels. I would like to investigate nanoparticle transformation and interactions in living tissues. To date, the studies that have identified this ‘excess’ accumulation of non-toxic metal loads in nanoparticleexposed organisms have only been short term.

Apart from the obviously increased food-chain transfer potential, is also not known whether, over the longer term, the accumulated NP-derived metal ultimately becomes toxic when present in tissues and cells. Such transformation and release of metal ions within tissues may ultimately result in greater longterm toxicity for NPs than for ionic forms.

Furthermore, I want to test exposures in a functioning model ecosystem including interspecific interactions and trophic transfer. Since interactions between biota and nanoparticles are relevant in natural soil systems, caution is needed when attempting to predict the ecological consequences of nanoparticles based on laboratory assays conducted with only a single species. In the presence of the full complement of biological components of soil systems, complex NPs may follow a range of pathways in which coatings may be removed and replaced with exudate materials. Studies to quantify the nature of these interactions are therefore needed to identify the fate, bioavailability and toxicity of realistic ‘non-pristine’ forms of NPs present in real soil environments.

New to me was the material about ageing silver nanoparticles and their increased toxicity over time. While this is an interesting piece of information it’s not necessarily all that useful. It seems even with their increased uptake compared to silver ions, silver nanoparticles (Diez-Ortiz doesn’t indicate whether or not * they tested variously aged silver nanoparticles) did not have toxic effects on the earthworms tested.

The NANO-ECOTOXICITY website doesn’t appear to exist anymore but you can find the NANOFATE (Nanoparticle Fate Assessment and Toxicity in the Environment) website here.

* ‘not’ removed to clarify meaning, Oct. 9, 2013. (Note: I had on Oct. 8, 2013 removed ‘not’ in a second place from the sentence in an attempt t o clarify the meaning and ended up not making any sense at all.) Please read Maria Diez-Ortiz in the Comments, as she clarifies matters in a way I could never hope to.