Tag Archives: Disney Research Pittsburgh

Sound speakers—shaped like rubber duckies or any other way you like them—from Disney Research

An April 28, 2014 Disney Research news release on EurekAlert describes a technology that allows 3D printing of speakers in any shape you’d like,

Forget everything you know about what a loudspeaker should look like. Scientists at Disney Research, Pittsburgh have developed methods using a 3D printer to produce electrostatic loudspeakers that can take the shape of anything, from a rubber ducky to an abstract spiral.

The simple speakers require little assembly, but even those few manual steps might be eliminated in the future, said Yoshio Ishiguro, a Disney Research, Pittsburgh post-doctoral associate. “In five to 10 years, a 3D printer capable of using conductive materials could create the entire piece,” he predicted.

The speaker technology could be used to add sound to any number of toys or other objects. Because the same speakers that produce audible sound also can produce inaudible ultrasound, the objects can be identified and tracked so that they can be integrated into games and other interactive systems. The objects can be touched or held in a user’s hand without a noticeable decrease in sound quality, so simple tactile feedback may also be possible.

The technology has its roots in the 1930s (from the news release),

The speakers are based on electrostatic speaker technology that was first explored in the early 1930s, but never widely adopted. This type of speaker is simpler than conventional electromagnetic speakers and includes no moving parts, which makes it suitable for producing with a 3D printer.

An electrostatic speaker consists of a thin, conductive diaphragm and an electrode plate, separated by a layer of air. An audio signal is amplified to high voltage and applied to the electrode; as the electrode charges, an electrostatic force develops between it and the diaphragm, causing the diaphragm to deform and produce sound as the audio signal changes.

This type of speaker has relatively little bass response, but does a good job of producing high-frequency sounds, such as chirping birds, computer-generated blips and even the human voice. Sound reproduction of up to 60 decibels is possible – an appropriate level for small objects.

The speakers have some advantages (other than decorative) over the standard type (from the news release),

“What’s more, it can generate sound across the entire face of the speaker,” Ishiguro noted. That makes it possible to not only produce directional, cone-shaped speakers but also omnidirectional speakers in which the entire 3D surface emits sound.

Also, the speakers can be built with any number or configuration of electrodes; placing multiple electrodes in a curved speaker, for instance, makes it possible to vary the direction of the sound emitted.

Ishiguro and Poupyrev created conductive surfaces by spraying a nickel-based conductive paint and developed a method for making full-body compliant diaphragms using negative molds produced by 3D printing and spraying them with the conductive paint and with a polyethylene coating. Once multi-material 3D printers are developed that can print functional electrical circuits and electrodes, these manual steps could be eliminated.

The Disney Corporation has produced a video featuring the speakers,

A paper about this work was presented at the 2014 CHI conference (ACM CHI Conference on Human Factors in Computing Systems, the premier international conference of Human-Computer Interaction) held April 26 – May 1, 2014 in Toronto, Ontario, Canada.

 Yoshio Ishiguro (Disney Research Pittsburgh), Ivan Poupyrev (Disney Research Pittsburgh)
ACM Conference on Human Factors in Computing Systems (CHI), 2014
Paper [PDF, 2.3MB]

Sometimes when we touch: Touché, a sensing project from Disnery Research and Carnegie Mellon

Researchers at Carnegie Mellon University and Disney Research, Pittsburgh (Philadelphia, US) have taken capacitive sensing, used for touchscreens such as smartphones, and added new capabilities. From the May 4, 2012 news item on Nanowerk,

A doorknob that knows whether to lock or unlock based on how it is grasped, a smartphone that silences itself if the user holds a finger to her lips and a chair that adjusts room lighting based on recognizing if a user is reclining or leaning forward are among the many possible applications of Touché, a new sensing technique developed by a team at Disney Research, Pittsburgh, and Carnegie Mellon University.

Touché is a form of capacitive touch sensing, the same principle underlying the types of touchscreens used in most smartphones. But instead of sensing electrical signals at a single frequency, like the typical touchscreen, Touché monitors capacitive signals across a broad range of frequencies.

This Swept Frequency Capacitive Sensing (SFCS) makes it possible to not only detect a “touch event,” but to recognize complex configurations of the hand or body that is doing the touching. An object thus could sense how it is being touched, or might sense the body configuration of the person doing the touching.

Disney Research, Pittsburgh made this video describing the technology and speculating on some of the possible applications (this is a research-oriented video, not your standard Disney fare),

Here’s a bit  more about the technology (from the May 4, 2012 news item),

Both Touché and smartphone touchscreens are based on the phenomenon known as capacitive coupling. In a capacitive touchscreen, the surface is coated with a transparent conductor that carries an electrical signal. That signal is altered when a person’s finger touches it, providing an alternative path for the electrical charge.

By monitoring the change in the signal, the device can determine if a touch occurs. By monitoring a range of signal frequencies, however, Touché can derive much more information. Different body tissues have different capacitive properties, so monitoring a range of frequencies can detect a number of different paths that the electrical charge takes through the body.

Making sense of all of that SFCS information, however, requires analyzing hundreds of data points. As microprocessors have become steadily faster and less expensive, it now is feasible to use SFCS in touch interfaces, the researchers said.

“Devices keep getting smaller and increasingly are embedded throughout the environment, which has made it necessary for us to find ways to control or interact with them, and that is where Touché could really shine,” Harrison [Chris Harrison, a Ph.D. student in Carnegie Mellon’s Human-Computer Interaction Institute] said. Sato [Munehiko Sato, a Disney intern and a Ph.D. student in engineering at the University of Tokyo] said Touché could make computer interfaces as invisible to users as the embedded computers themselves. “This might enable us to one day do away with keyboards, mice and perhaps even conventional touchscreens for many applications,” he said.

We’re seeing more of these automatic responses to a gesture or movement. For example, common spelling errors are corrected as you key in (type) text in wordprocessing packages and in search engines. In fact, there are times when an applications insists on its own correction and I have to insist (and I don’t always manage to override the system) if I have something which is nonstandard. As I watch these videos and read about these new technical possibilities, I keep asking myself, Where is the override?