Tag Archives: Domtar

Designing nanocellulose (?) products in Finland; update on Canada’s CelluForce

A VTT Technical Research Centre of Finland Oct. 2, 2013 news release (also on EurekAlert) has announced an initiative which combines design with technical expertise in the production of cellulose- (nanocellulose?) based textile and other products derived from wood waste,

The combination of strong design competence and cutting-edge cellulose-based technologies can result in new commercially successful brands. The aim is for fibre from wood-based biomass to replace both cotton production, which burdens the environment, and polyester production, which consumes oil. A research project launched by VTT Technical Research Centre of Finland, Aalto University and Tampere University of Technology aims to create new business models and ecosystems in Finland through design-driven cellulose products.

The joint research project is called Design Driven Value Chains in the World of Cellulose (DWoC). The objective is to develop cellulose-based products suitable for technical textiles and consumer products. The technology could also find use in the pharmaceutical, food and automotive industries. Another objective is to build a new business ecosystem and promote spin-offs.

Researchers seek to combine Finnish design competence with cutting-edge technological developments to utilise the special characteristics of cellulose to create products that feature the best qualities of materials such as cotton and polyester. Product characteristics achieved by using new manufacturing technologies and nanocellulose as a structural fibre element include recyclability and individual production.

The first tests performed by professor Olli Ilkkala’s team at the Aalto University showed that the self-assembly of cellulose fibrils in wood permits the fibrils to be spun into strong yarn. VTT has developed an industrial process that produces yarn from cellulose fibres without the spinning process. VTT has also developed efficient applications of the foam forming method for manufacturing materials that resemble fabric.

“In the future, combining different methods will enable production of individual fibre structures and textile products, even by using 3D printing technology,” says Professor Ali Harlin from VTT.

Usually the price of a textile product is the key criterion even though produced sustainably. New methods help significantly to shorten the manufacturing chain of existing textile products and bring it closer to consumers to respond to their rapidly changing needs. Projects are currently under way where the objective is to replace wet spinning with extrusion technology. The purpose is to develop fabric manufacturing methods where several stages of weaving and knitting are replaced without losing the key characteristics of the textile, such as the way it hangs.

The VTT news release also provides statistics supporting the notion that cellulose textile products derived from wood waste are more sustainable than those derived from cotton,

Finland’s logging residue to replace environmentally detrimental cotton Cotton textiles account for about 40% of the world’s textile markets, and oil-based polyester for practically the remainder. Cellulose-based fibres make up 6% of the market. Although cotton is durable and comfortable to wear, cotton production is highly water-intensive, and artificial fertilisers and chemical pesticides are often needed to ensure a good crop. The surface area of cotton-growing regions globally equates to the size of Finland.

Approximately 5 million tons of fibre could be manufactured from Finland’s current logging residue (25 million cubic metres/year). This could replace more than 20% of globally produced cotton, at the same time reducing carbon dioxide emissions by 120 million tons, and releasing enough farming land to grow food for 18 million people. Desertification would also decrease by approximately 10 per cent.

I am guessing this initiative is focused on nanocellulose since the news release makes no mention of it but it is highly suggestive that one of the project leads, Olli Ilkkala mentions nanocellulose as part of the research for which he received a major funding award as recently as 2012,. From a Feb. 7, 2012 Aalto University news release announcing the grant for Ikkala’s research,

The European Research Council granted Aalto University’s Academy Professor Olli Ikkala funding in the amount of €2.3 million for research on biomimetic nanomaterials. Ikkala’s group specialises in the self-assembly of macromolecules and how to make use of this process when producing functional materials.

The interests of Ikkala’s group focus on the self-assembled strong and light nanocomposite structures found in nature, such as the nacreous matter underneath seashells and biological fibres resembling silk and nanocellulose. [emphasis mine] Several strong natural materials are built from both strong parallel elements and softening and viscosifying macromolecules. All sizes of structures form to combine opposite properties: strength and viscosity.

The research of the properties of biomimetic nanocomposites is based on finding out the initial materials of self-assembly. Initial material may include, for example, nano platelets, polymers, new forms of carbon, surfactants and nanocellulose.[emphasis mine]

– Cellulose is especially interesting, as it is the most common polymer in the world and it is produced in our renewable forests. In terms of strength, nano-sized cellulose fibres are comparable to metals, which was the very offset of interest in using nanocellulose in the design of strong self-assembled biomimetic materials, Ikkala says. [emphases mine]

Celluforce update

After reading about the Finnish initiative, I stumbled across an interesting little article on the Celluforce website about the current state of NCC (nanocrystalline cellulose aka CNC [cellulose nanocrystals]) production, Canada’s claim to fame in the nanocellulose world. From an August 2013 Natural Resources Canada, Canadian Forest Service, Spotlight series article,

The pilot plant, located at the Domtar pulp and paper mill in Windsor, Quebec, is a joint venture between Domtar and FPInnnovations called CelluForce. The plant, which began operations in January 2012, has since successfully demonstrated its capacity to produce NCC on a continuous basis, thus enabling a sufficient inventory of NCC to be collected for product development and testing. Operations at the pilot plant are temporarily on hold while CelluForce evaluates the potential markets for various NCC applications with its stockpiled material. [emphasis mine]

When the Celluforce Windsor, Québec plant was officially launched in January 2012 the production target was for 1,000 kg (1 metric ton) per day (there’s more in my Jan. 31 2012 posting about the plant’s launch). I’ve never seen anything which confirms they reached their production target, in any event, that seems irrelevant in light of the ‘stockpile’.

I am somewhat puzzled by the Celluforce ‘stockpile’ issue. On the one hand, it seems the planning process didn’t take into account demand for the material and, on the other hand, I’ve had a couple back channel requests from entrepreneurs about gaining access to the material after they were unsuccessful with Celluforce.  Is there not enough demand and/or is Celluforce choosing who or which agencies are going to have access to the material?

ETA Oct. 14, 2013: It took me a while to remember but there was a very interesting comment by Tim Harper (UK-based, emerging technologies consultant [Cientifica]) in Bertrand Marotte’s May 6, 2012 Globe & Mail article (about NCC (from my May 8, 2012 posting offering some commentary about Marotte’s article),

Tim Harper, the CEO of London-based Cientifica, a consultant on advanced technologies, describes the market for NCC as “very much a push, without signs of any pull.”

It would seem the current stockpile confirms Harper’s take on NCC’s market situation. For anyone not familiar with marketing terminology, ‘pull’ means market demand. No one is asking to buy NCC as there are no applications requiring the product, so there is ‘no pull/no market demand’.

Gary Goodyear rouses passions: more on Canada’s National Research Council and its new commitment to business

Gary Goodyear’s, Minister of State (Science and Technology), office in attempting to set the record straight has, inadvertently, roused even more passion in Phil Plait’s (Slate.com blogger) bosom and inspired me to examine more commentary about the situation regarding the NRC and its ‘new’ commitment to business.

Phil Plait in a May 22, 2013 followup to one 0f his recent postings (I have the details about Plait’s and other commentaries in my May 13, 2013 posting about the NRC’s recent declarations) responds to an email from Michele-Jamali Paquette, the director of communication for Goodyear (Note: A link has been removed),

I read the transcripts, and assuming they are accurate, let me be very clear: Yes, the literal word-for-word quotation I used was incorrect, and one point I made was technically and superficially in error. But the overall point—that this is a terrible move by the NRC and the conservative Canadian government, short-changing real science—still stands. And, in my opinion, Goodyear’s office is simply trying to spin what has become a PR problem.

I’ll note that in her email to me, Paquette quoted my own statement:

John MacDougal [sic], President of the NRC, literally said, “Scientific discovery is not valuable unless it has commercial value”

Paquette took exception to my use of the word “literally,” emphasizing it in her email. (The link, in both her email and my original post, goes to the Toronto Sun story with the garbled quotation.) Apparently MacDougal did not literally say that. But the objection strikes me as political spin since the meaning of what MacDougal said at the press conference is just as I said it was in my original post.

As I pointed out in my first post: Science can and should be done for its own sake. It pays off in the end, but that’s not why we do it. To wit …

Paquette’s choice of what issues (the 2nd issue was Plait’s original description of the NRC as a funding agency) to dispute seem odd and picayune as they don’t have an impact on Plait’s main argument,

Unfortunately, despite these errors, the overall meaning remains the same: The NRC is moving away from basic science to support business better, and the statements by both Goodyear and MacDougal [sic] are cause for concern.

Plait goes on to restate his argument and provide a roundup of commentaries. It’s well worth reading for the roundup alone.  (One picayune comment from me, I wish Plait would notice that the head of Canada’s National Research Council’s name is spelled this way, John McDougall.)

Happily, Nassif Ghoussoub has also chimed in with a May 22, 2013 posting (on his Piece of Mind blog) regarding the online discussion (Note: Links have been removed),

The Canadian twitter world has been split in the last couple of days. … But then, you have the story of the Tories’ problem with science, be it defunding, muzzling, disbelieving, doubting, preventing, delegitimizing etc. The latter must have restarted with the incredible announcement about the National Research Council (NRC), presented as “Canada sells out science” in Slate, and as “Failure doesn’t come cheap” in Maclean’s. What went unnoticed was the fact that the restructuring turned out to be totally orthogonal to the recommendations of the Jenkins report about the NRC. Then came the latest Science, Technology and Innovation Council (STIC) report, which showed that Canada’s expenditure on research and development has fallen from 16th out of 41 comparable countries in the year Stephen Harper became prime minister, to 23rd in 2011. Paul Wells seems to be racking up hits on his Maclean’s article,  “Stephen Harper and the knowledge economy: perfect strangers.”  But the story of the last 48 hours has been John Dupuis’s chronology of what he calls, “The Canadian war on science” and much more.

Yes, it’s another roundup but it’s complementary (albeit with one or two repetitions) since Plait does not seem all that familiar with the Canadian scene (I find it’s always valuable to have an outside perspective) and Nassif is a longtime insider.

John Dupuis’ May 20, 2013 posting (on his Confessions of a Science Librarian blog), mentioned by both Nassif and Plait, provides an extraordinary listing of stories ranging from 2006 through to 2013 whose headlines alone paint a very bleak picture of the practice of science in Canada,

As is occasionally my habit, I have pulled together a chronology of sorts. It is a chronology of all the various cuts, insults, muzzlings and cancellations that I’ve been able to dig up. Each of them represents a single shot in the Canadian Conservative war on science. It should be noted that not every item in this chronology, if taken in isolation, is necessarily the end of the world. It’s the accumulated evidence that is so damning.

As I’ve noted before, I am no friend of Stephen Harper and his Conservative government and many of their actions have been reprehensible and, at times, seem childishly spiteful but they do occasionally get something right. There was a serious infrastructure problem in Canada. Buildings dedicated to the pursuit of science were sadly aged and no longer appropriate for the use to which they were being put. Harper and his government have poured money into rebuilding infrastructure and for that they should be acknowledged.

As for what the Conservatives are attempting with this shift in direction for the National Research Council (NRC), which has been ongoing for at least two years as I noted in my May 13, 2013 posting, I believe they are attempting to rebalance the Canadian research enterprise.  It’s generally agreed that Canada historically has very poor levels of industrial research and development (R&D) and high levels of industrial R&D are considered, internationally, as key to a successful economy. (Richard Jones, Pro-Vice Chancellor for Research and Innovation at the University of Sheffield, UK, discusses how a falling percentage of industrial R&D, taking place over decades,  is affecting the UK economy in a May 10, 2013 commentary on the University of  Sheffield SPERI [Sheffield Political Economy Research Institute] website.)

This NRC redirection when taken in conjunction with the recent StartUp visa programme (my May 20, 2013 posting discusses Minister of Immigration Jason Kenney’s recent recruitment tour in San Francisco [Silicon Valley]),  is designed to take Canada and Canadians into uncharted territory—the much desired place where we develop a viable industrial R&D sector and an innovative economy in action.

In having reviewed at least some of the commentary, there are a couple of questions left unasked about this international obsession with industrial R&D,

  • is a country’s economic health truly tied to industrial R&D or is this ‘received’ wisdom?
  • if industrial R&D is the key to economic health, what would be the best balance between it and the practice of basic science?

As for the Canadian situation, what might be some of the unintended consequences? It occurs to me that if scientists are rewarded for turning their research into commercially viable products they might be inclined to constrain access to materials. Understandable if the enterprise is purely private but the NRC redirection is aimed at bringing together academics and private enterprise in a scheme that seems a weird amalgam of both.

For example, cellulose nanocrystals (CNC) are not easily accessed if you’re a run-of-the-mill entrepreneur. I’ve had more than one back-channel request about how to purchase the material and it would seem that access is tightly controlled by the academics and publicly funded enterprise, in this case, a private business, who produce the material. (I’m speaking of the FPInnovations and Domtar comingling in CelluForce, a CNC production facility and much more. It would make a fascinating case study on how public monies are used to help finance private enterprises and their R&D efforts; the relationship between nongovernmental agencies (FPInnovations, which I believe was an NRC spinoff), various federal public funding agencies, and Domtar, a private enterprise; and the power dynamics between all the players including the lowly entrepreneur.

Nanocrystalline cellulose (NCC): killer app for Canadian forestry industry?

Bertrand Marotte, a writer from one of Canada’s better known newspapers, The Globe and Mail, contacted me a few weeks ago regarding his proposed story on Canada’s nanocrystalline cellulose (NCC) efforts. May 6, 2012, he posted his article, Domtar leading the way to market eco-friendly NCC. I was a little curious about what he’d done with the information I’d given him and happy to see this article.

Compared to the amount of hype and excitement I’ve seen and sometimes contributed to myself, Marotte offers a more restrained perspective. From the May 6, 2012 article,

Industry leaders say the forestry sector – hammered over the past 10 years by declining demand for newsprint and paper in the digital revolution, competition from low-cost producers in developing countries and a surfeit of inefficient old mills – has to re-invent itself by creating new revenue streams if it is to survive.

Innovations being pursued by forestry companies come none too soon, but the risks are huge and a payoff is far from guaranteed.

Tom Rosser, assistant deputy minister at Natural Resources Canada’s Canadian Forest Service, agrees the risk factor is high.

“These are very risky technologies that make it hard to attract private capital,” he said.

Tim Harper, the CEO of London-based Cientifica, a consultant on advanced technologies, describes the market for NCC as “very much a push, without signs of any pull.”

Mention of an AbitiBowater lignin project in Marotte’s article helped to underline the forestry industry’s urgency.

Interestingly, there’s no mention of the NCC project plant in Alberta (mentioned in my July 5, 2011 posting) or Canada’s worldwide NCC production lead.

Canadians are taking a huge risk and, so far, we’re taking the lead on the production side of things but, in a quintessentially Canadian fashion, the article casts doubt on the whole enterprise and ends on that note.

We tout innovation but at the same are deeply disconcerted by and hesitant about the risktaking required to be truly innovative. (I have to note that I too write pieces that can be quite restrained and critical of these types of endeavours.) Really, it’s as much a question of culture as anything else. How do we support innovation and risktaking while maintaining some of our quintessential character?

It’s now official, the CelluForce NCC plant has been inaugurated

I’ve been writing (July 16, 2010 posting) about the nanocrystalline cellulose (NCC) manufacturing plant in Windsor, Québec since construction was first announced. CelluForce’s (a joint partnership between Domtar and FPInnovations) new plant was officially opened by Canada’s Minister of Natural Resources, Joe Oliver, on Thursday, Jan. 26, 2012. (For anyone curious about NCC [derived from wood cellulose] and/or CelluForce, there are more details in my Dec. 15, 2011 posting where I mentioned that the plant was then operational.)

This NCC plant represents a major investment from the Government of Canada and the Province of Québec. The latest funds from these two levels of government are noted here in the Jan. 26, 2012 CelluForce news release (you may have to scroll down to find it),

The Canadian and Québec governments made a significant contribution to the financing of the $36 million plant with $23.2 million coming from Natural Resources Canada (Pulp and Paper Green Transformation Program and Transformative Technologies Program) and $10.2 million from Québec’s Natural Resources and Wildlife Department.

If my arithmetic is right, those numbers mean that someone (Domtar?) provided $2.5M to make the total $36M. (It almost seems that Domtar might be a junior partner in this endeavour.)

There are some grand plans for both the plant and NCC,

CelluForce is ramping up its production of NCC with a target of reaching a 1,000 kg (1 metric ton) per day production rate in 2012. Trials integrating NCC into the manufacturing process of different products are currently taking place through technical collaboration agreements between CelluForce and 15 companies based in Canada, the United States, Europe and Asia in four main industrial sectors: paints and coatings, films and barriers, textiles, and composites.

As I noted in my Jan. 27, 2012 posting about ArboraNano’s appearance at an international symposium on nanotechnology and its economic impacts, NCC seems to be on the international agenda and, at this point, Canadians are world leaders in this area of research.

In the interests of being comprehensive regarding the Canadian NCC production scene, there is a demonstration plant in Alberta slated to produce up to 100kg of NCC/day, as I noted in my July 5, 2011 posting. For some reason (I’m guessing it has something to do with regional rivalries), the two groups are resolutely ignoring each other.

CelluForce (nanocrystalline cellulose) plant opens

Before launching into the news about its manufacturing plant, here’s a little information about the company itself, CelluForce, a joint venture between FPInnovations and Domtar, from the About CelluForce page,

The company is a joint venture of Domtar Corporation and FPInnovations and was created to manufacture NCC in the world’s first plant of its kind, located in Windsor, Québec.

I wrote about CelluForce in my June 6, 2011 posting around the time it was launched and now its raison d’être, the manufacturing plant, is operational. From the Dec. 13, 2011 news item on Nanowerk,

Members of the board, management and employees of CelluForce are pleased to announce the end of the construction phase and the start of operations at the first manufacturing plant for NanoCrystalline Cellulose (NCC) in the world.

For the last eight weeks, CelluForce has been progressively starting up the equipment for the first ever large-scale production of NCC. The nanomaterial will be produced in state-of-the-art facilities located at Domtar’s pulp and paper plant in Windsor, Quebec. Construction extended over a fourteen-month period. It required a total investment of $36M including the financial participation of both the Federal and Québec governments. The company is particularly pleased to have completed construction phase on time.

CelluForce President and CEO Jean Moreau declared, “Wood pulp is being delivered to the plant to test the new equipment and we are making progress on a daily basis. NCC will start to be produced by the end of the year, with production gradually increasing until it reaches a steady rhythm of 1,000 kg per day in 2012”.

For anyone who’s unfamiliar with NanoCrystalline Cellulose (NCC), I posted an interview with Dr. Richard Berry of FPInnovations who kindly answered some very basic questions on NCC in my Aug. 27, 2010 posting.

The opening of the CelluForce manufacturing plant is very exciting news given that Canadians have a worldwide lead in this research area. Being able to produce NCC in amounts that are meaningful at an industrial scale will make research easier not just in Canada but elsewhere too.

From the news item on Nanowerk,

CelluForce will, on a worldwide basis, market NanoCrystalline Cellulose for strength applications under the CelluForce Impact™ brand, and for optical applications of NCC under the CelluForce Allure™ brand.

I don’t think this video adds much information but it is very slick and entertaining,

Here’s a listing of applications that NCC can be used to produce (from the CelluForce Applications page),

NCC’s properties and many potential forms enable many uses, including:

  • Biocomposites for bone replacement and tooth repair
  • Pharmaceuticals and drug delivery
  • Additives for foods and cosmetics
  • Improved paper and building products
  • Advanced or “intelligent” packaging
  • High-strength spun fibres and textiles
  • Additives for coatings, paints, lacquers and adhesives
  • Reinforced polymers and innovative bioplastics
  • Advanced reinforced composite materials
  • Recyclable interior and structural components for the transportation industry
  • Aerospace and transportation structures
  • Iridescent and protective films
  • Films for optical switching
  • Pigments and inks
  • Electronic paper printers
  • Innovative coatings and new fillers for papermaking

One of the most notable attributes of this material is that it can be used to form iridescent coloured films that can be adjusted precisely, making it possible to revolutionize many applications, including, among others;

  • Security papers
  • Iridescent pigments
  • Switchable optical filters and barriers
  • Sunscreens
  • Cosmetics
  • Packaging
  • Coatings

I hope to hear more about CelluForce and its efforts with NCC.

On a somewhat related note, I wonder what’s happening with the NCC efforts in Alberta? I noted in my July 5, 2011 posting that an NCC pilot plant was being opened in that Canadian province but I haven’t heard anything since.

I also noted that there is going to be a session titled NanoCellulose: An Abundant, Sustainable, Versatile Biopolymer at the American Association for the Advancement of Science (AAAS) annual meeting in Vancouver this February 2012 featuring a researcher from Alberta.

Here’s the session description and speakers,

Saturday, February 18, 2012: 3:00 PM-4:30 PM

Room 220 (VCC West Building)

Nanocellulose is a generic name for a new family of novel fibrils derived from plant cell walls or bacteria. Just as cellulose has been an abundant natural resource for millennia with substantial contributions to the development of civilizations, the unique nanocelluloses are sustainable biopolymers poised to have a major role in improving the quality of human life in this century. A rapidly expanding field of nanocellulose science has emerged with pioneering results, leading some to predict that the field could parallel history, where the 1920s studies on cellulose contributed to the discovery of polymers and led to the origin of polymer science. Fibrillated, crystalline, and bacterial nanocelluloses have unsurpassed versatility and strength for composite materials, films, medical implants, drug delivery systems, and a biomaterial rivaling Kevlar, which is made from fossil fuels. With cellulosic biofuels becoming a competitive alternative to fossil fuels, research in enzymology is targeting high-value nanofibrillated cellulose as a biofuel co-product. This symposium will present current findings that bridge multidisciplines, from genomics of tree and plant breeding, plant cell wall structure and function, advanced techniques for characterizing cell walls and nanocellulose, and specialized methods for isolating nanofibrils, to novel biomaterials. The speakers represent three international science and technology centers at the forefront of this new wave of cellulose research.

Organizer:

Barbara Illman, U.S. Forest Service

Moderator:

Barbara Illman, U.S. Forest Service

Speakers:

Theodore Wegner, U.S. Forest Service
A World View of Nanocellulose

Nils Petersen, National Research Council Canada
Nano-Scale Devices for Nanocellulose

Ali Harlin, VTT Technical Research Center of Finland
Nanocellulosic Technologies: A Success Story

It looks interesting but I would have liked to have heard from an FPInnovations researcher and the Brazilian researchers who are working on nanocellulose fibres from pineapples and bananas (my Mar. 28, 2011 and June 16, 2011 postings) and Israeli researchers who are working on NCC foams (my Aug. 2, 2011 posting). These panels are always difficult to organize as you try to get everyone in the same room at the same time although the panel does seem to be focused on wood products as a source for NCC.  (If you search Ali Harlin on LinkedIn, you’ll find paper and wood products are Harlin’s area of expertise.)

I notice Nils Petersen, one of the speakers, who in addition to being a National Research Council (NRC) scientist is also the Director General for Canada’s National Institute of Nanotechnology located in Alberta.

NCC (nanocrystalline cellulose) production in Alberta

A $5.5M pilot plant to produce NCC (nanocrystalline cellulose) in Alberta has been announced. From the July 5, 2011 news release,

It’s super strong, it’s green and it’s providing new opportunities for business in Alberta. It’s called nanocrystalline cellulose (NCC) and Alberta is about to become a leader in its production and study. A new Edmonton-based pilot facility will be the first in Canada to produce the quality of NCC that researchers need to fully explore all its potential applications. [emphasis mine]

The $5.5-million pilot plant, created through a collaboration of the provincial and federal governments in partnership with industry under the Western Economic Partnership Agreement (WEPA), will use wood and straw pulp, like that from flax and hemp, to create up to 100 kg per week of NCC for testing in commercial applications leading to production. [emphasis mine]

Interestingly, there’s no mention of the NCC pilot plant in Québec; my May 31, 2011 posting highlights information about their 3kg/day NCC production, at that time the largest production in the world. So, I’m not sure how the plant in Alberta could be considered the first; it doesn’t seem to have been built yet, plus, that means the Québec plant is still likely to be the largest production facility. (Generally when a new facility built with government funding is opened, there are politicians and pictures. There are no pictures of the Alberta facility.)

Funders for the Alberta initiative include the Government of Alberta and Western Economic Diversification through the Western Economic Partnership Agreement (WEPA) along with Alberta-Pacific Forest Industries Inc., and Alberta Innovates – Technology Futures (AITF)

Regardless of any regional competitiveness, the NCC initiatives both in Alberta and Québec are exciting developments suggesting that the innovation picture in Canada is not quite as bleak as we are sometimes inclined to believe.

One comment, FPInnovations and Domtar (joint venture partners) for the Québec initiative have formed a joint venture NCC company, CelluForce (mentioned in my June 6, 2011 posting).

Finally, I’m not sure how long the website where I found the Alberta news release will keep it available. I have found an alternative although it does not include a backgrounder and appears to have been edited on canadaviews.ca.

CelluForce springs forth from the FPInnovations/Domtar partnership

New company, CelluForce (a joint venture between FPInnovations and Domtar), has sent out a rather odd (from my perspective) news release. From the June 3, 2011 news release on the University of British Columbia website,

Domtar and FPInnovations are pleased to announce CelluForce, the corporate identity chosen for their new joint venture, launched in July 2010. CelluForce will manufacture nanocrystalline cellulose, a recyclable and renewable nanomaterial, that will be commercialized throughout the world. The new company’s identity was developed to reflect both the origin of the nanomaterial, extracted from tree cellulose, and one of the multiple properties of the product to be sold by the new company.

That was expected, here is one of the unusual bits (from the news release),

The typeface of the CelluForce logo uses two colours, to clearly illustrate the fundamental value of the partnership between two entities in the company — partnership between the two co-shareholders as well as with CelluForce employees and customers. The name is topped
with a “C” formed of numerous tetrahedrons, which combine the blue and green colours that symbolize each partner. The spray of tetrahedrons gives a sense of forward movement, like the new technology’s leap into the future. The logo was designed to be easily animated on multimedia platforms. The company’s temporary website, www.celluforce.com, already displays the brand’s new visual identity.

This is the kind of information I’ve seen in employee handbooks or given as part of an employee orientation so that people get the company logo/brand identity right when they’re ordering materials and/or representing the company. I’ve never before observed anyone sending out a news release explaining it to all and sundry.

I am a little more interested in the nanocrystalline cellulose (NCC) and its manufacture (from the news release),

Nanocrystalline cellulose will be produced in a large-scale commercial demonstration plant using cutting-edge technology. The plant is currently under construction on the site of Domtar’s pulp and paper mill in Windsor, Quebec. The construction of the demonstration plant is progressing quickly, and it should be operational in the first quarter of 2012. The plant’s operations will be managed by a team of committed employees who have enthusiastically agreed to tackle the colossal challenge of getting a new plant up and running. For several weeks now, the management team has been preparing to welcome all the workers who are set to undergo training in June.

As far as I can tell, they don’t actually have any NCC enabled-products at this point (from the news release),

With regard to this major milestone, John D. Williams, President and CEO of Domtar, stated, “Emerging from a strategic alliance between two leaders in their respective industries, CelluForce creates new partnerships to develop innovative technology in growing markets. Domtar will bring its vast manufacturing experience to the table to produce a green nanomaterial that, like paper, comes from trees. We will therefore develop new applications for our market pulp.”

For his part, Pierre Lapointe, President and CEO of FPInnovations, stated, “Thanks to a revolutionary technological breakthrough developed by FPInnovations and an exceptional government-industry partnership, the CelluForce team will benefit from a nanomaterial of high quality, which is stable, abundant and unique in the world, namely nanocrystalline cellulose, or NCC. With the combined strengths of FPInnovations researchers and Domtar staff, CelluForce will continue to develop new commercial applications and new market areas for NCC.

Jean Moreau, the new company (CelluForce) president and CEO (chief executive officer), discussed the importance of the brand identity,

“Our new brand reflects who we are, how we want to position ourselves in our target markets and the innovation that differentiates us within our industry. The name “CelluForce” reminds us that one of the main characteristics of the nanocrystalline cellulose is the great strength it provides to the materials to which it is added, but the name also represents the strength of our relationships with our shareholders, our partners
and our customers, which is one of the company’s core values. It was essential that this feature be one of the key elements of our corporate identity.”

Good luck to them all and I’d be very interested from anyone who’d care to comment about the practice of sending out a news release explaining the corporate brand in such detail.

ETA June 6, 2011: (1) Here’s the CelluForce website (under construction). (2) Interestingly the announcement for the new company was made on Friday, June 3, 2011 just before the industry’s 2011 TAPPI International Conference on Renewable Nanomaterials is being held from Monday, June 6, 2011 to Wednesday, June 8, 2011 in Washington, DC.

Maintaining a worldwide *research lead in nanocrystalline cellulose

“We are all working very hard to maintain our world-wide lead in NCC [nanocrystalline cellulose] research and development. With its three kilograms per day, this small pilot plant will still be producing the largest quantity of NCC in the world”, declared Pierre Lapointe, President and Chief Executive Officer of FPInnovations. “We are building the future of the forest industry by focusing on the research and development of new applications, innovative products and new markets, and we will get there one success at a time”, concluded Lapointe.

FPInnovations (located in Pointe-Claire, Québec) is (from their Strength in Unity webpage) “the world’s largest private, not-for-profit forest products research institute” and they’ve just opened new NCC research facilities. From the May 30, 2011 news item on Nanowerk,

FPInnovations has announced today’s inauguration of its new NanoCrystalline Cellulose (NCC) research facilities, which consist of a state-of-the-art pilot plant, new high-performance equipment for the Québec City laboratory and two new research laboratories located at Pointe-Claire. The Pointe-Claire laboratories are dedicated primarily to NCC chemistry, as well as to NCC and nanocomposites characterization. The new laboratory equipment in Québec City is being used in the development of advanced wood materials in the appearance, structural and composite wood products sector. The cost of the construction of the facilities and the acquisition of the research equipment amounts to $4.1 million. This investment has been made possible thanks to the financial participation of the Ministère du Développement économique, de l’Innovation et de l’Exportation du Québec for 80% of the expenses and, Natural Resources Canada, for 20%, under its Transformative Technologies Program (TT). The project will make it possible to retain 11 full-time scientists and technicians dedicated to NCC research.

I believe I mentioned the state-of-the-art pilot plant in my July 16, 2010 posting***), when FPInnovations announced a joint venture company with Domtar to build a ‘demonstration’ plant producing one metric ton per day of commercial-scale NCC in Windsor, Québec. 

It sounds very grand to me “… building the future of the forest industry …” and frankly I’d be just as happy if the technology is safe and people get jobs.

***ETA August 23, 2011: The FPInnovations Domtar plant featured in my July 16, 2010 posting is expected to produce one metric ton of  NCC per day when it is completed and operational.

* Nov. 27, 2013: Corrected headline, changed ‘reseach’ to ‘research’.

Nanocrystalline cellulose interview with Dr. Richard Berry of FPInnovations

Nanocrystalline cellulose (NCC) is one of the most searched items on this blog so it seemed like a good idea to send some questions about it to a Canadian company, FPInnovations, that has been a leader in  its development.  [Edited for typo, July 7, 2011] Dr. Richard Berry, program manager for FPInnovations very kindly answered. First a little biographical information,

Dr. Richard Berry is the manager of the FPInnovations Chemical Pulping Program and he has been the leader of the nanotechnology initiative at FPInnovations for the last several years. Dr. Berry is a key contributor to ArboraNano. His scientific accomplishments include work on the elimination of chlorinated dioxins and the development of a variety of bleaching technologies. Dr. Berry has overseen the industrial application of his numerous inventions. He is the author of more than eighty peer-reviewed publications and patents. The prestigious 2009 Nano-industry award from NanoQuébec was given to him for his exceptional contribution to the development of Nanocrystalline Cellulose. The initiatives Dr. Berry has spearheaded in recent years have allowed Canada to position itself as a world leader in the development of this new nanotechnology industry.

Now for the  interview:

Q: In light of the new Domtar-FPInnovations plant [mentioned here in my July 16, 2010 posting] which is going to be built in Windsor, Québec, could you tell me a little about nanocrystalline cellulose (NCC). I have looked at your information sheet which notes that cellulose is: milled then hydrolyzed with the NCC separated and concentrated so it can be treated chemically for new uses.  In layperson’s terms, what’s cellulose?

A:         Cellulose is the most abundant polymer on earth and is the major constituent of all plants; cotton is 100% cellulose. Cellulose is made of chains of glucose molecules and these arrange into amorphous (soft) and crystalline (hard) regions. These structures provide flexibility and strength respectively to the fibres that are made of cellulose.

The hard crystalline regions are separated from the soft amorphous regions in the process that we are using which also causes the separation of the crystallites in the crystalline regions. These crystallites are nanocrystalline cellulose and have a needle shape approximately 200nm in length and 10 nm in diameter

Q: What does hydrolyze mean, in simple terms?

A:         Hydrolyze in this process means that we break the bonds between the glucose molecules. This reaction occurs far more rapidly in the soft amorphous regions of the cellulose structure leaving the hard crystalline regions largely intact

Q: After [Edited for grammar, July 7, 2011] all this processing, do you have nanocrystalline cellulose and how would you describe what nanocrystalline cellulose is?

A:         The process is to produce nanocrystalline cellulose but many of the processing steps are to ensure that the process is closed cycle and that the acid used is recovered and that the dissolved glucose can be separated to make energy, ethanol or higher value chemical products.

Nanocrystalline cellulose is the basic physical building block of plants which therefore have used nanotechnology for eons. The crystallites are the reinforcement elements providing strength in wood, paper and fibres.

Q: Does the process use up the entire log or are parts of it left over? What happens to any leftover bits?

A:         We are starting from the bleached chemical pulp which is, to a large extent, cellulose. The left over bits have actually been processed as part of the chemical pulp mill processes. The acid used is recovered and reused and the sugars are converted into other products; in the demonstration plant they will be converted into biogas.

Q: I understand you won’t want to give away any competitive advantages but could you describe at least partially the sort of chemical processing involved for these new applications?

A:         In some applications, there is no processing needed at all. In other applications, the formulation used allows the NCC to be effective. In further applications, surface modification is required to maximize the properties.

Q: Is the new plant (Domtar-FPInnovations) meant to be used for producing nanocrystalline cellulose particles for shipment elsewhere? Or will there be work on applications using the nanoparticles? If so, on which application(s) are you concentrating your efforts?

A:         The plant presently is for producing various grades of nanocrystalline cellulose for shipment elsewhere. The applications are being developed with partners in the new industry sectors that we are targeting. Amongst others, we have partners for applications in coatings, films and textiles.

Q: Is FPInnovations involved with the ArboraNano Centre of Excellence programme and its efforts to encourage NCC use in industries not usually associated with forest products? What might involvement entail?

A:         FPInnovations is one of the founding members and had a significant role in setting up ArboraNano.  Our involvement presently is as a supplier of NCC through our pilot plant in Pointe Claire and as members of both the Scientific Committee and Board of Arboranano.

Q: Assuming FPInnovations is attending the 2010 TAPPI [International Conference on Nanotechnology for the Forest Product Industry] in Finland, can you give me a preview of the company’s proposed presentation(s) at the conference?

A:         Representatives of FPInnovations will be at the conference but our involvement will be limited because much of the material we have developed is proprietary to ourselves and to the partners that we have. Our focus at this stage is commercial development.

Q: What kind of research is being done on possible health, safety and environment issues with regard to NCC?

A:         From the very beginning of our project, 20% of our funding has been spent on these issues. We are glad to say that the research has shown that NCC is in the category of “practically non toxic”, and mammalian studies done to assess inhalation, ingestion and dermal risk have all shown the material to be in the lowest category of risk. These results show that the size of a particle is not a determinant of its risk but as with chemicals it is the specific material that is critical in determining toxicity.

Q: Are there plans, at some point in the future, to list NCC on Charles McGovern’s Integrated Nano-Science Commodities Exchange or will your product be listed on some other commodities exchange?

A:         We do not view NCC at the moment as a commodity; it is a very specialized group of materials. We hope it will take a long time before it becomes a commodity.

Thank you very much Dr. Berry.

On a related matter, I was fortunate enough to receive a copy of the documentation that the Canadian federal government provided in response to Member of Parliament, Peter Julian’s (NDP), question about nanotechnology funding from 2005/6 – 2008/9. The response from Natural Resources Canada highlighted funding provided to FPInnovations in fiscal year 2007/8 of $2,308,000 and in fiscal year 2008/9,  a further, $3,2570,000 for a total of $5,565,000. Natural Resources Canada did not fund any nanotechnology research in 2005/6 or 2006/7.

One final note, former president and chief executive officer of FPInnovations, Ian de la Roche, PhD, will be the keynote speaker at the 10th Pacific Rim Bio-Based Composites Symposium Oct. 5-8, 2010 in Banff, Alberta. (Thanks to Joel Burford at Alberta Innovates Technology Futures for the information.)

Could science funding in the European Union have an impact on Canadian nanotechnology?

Unexpectedly they’re upping the research budget in the European Union. According to the item online at  BBC News,

The EU has announced 6.4bn euros (£5.4bn) of funding for scientific research and innovation next year – a 12% increase on this year’s allocation.

The programme is aimed at creating more than 165,000 jobs and developing “a more competitive and greener Europe”, the European Commission says.

The focus is on tackling climate change, energy projects, food security, health and Europe’s ageing population.

Grants will be awarded to about 16,000 research bodies and businesses.

“Research and innovation are the only smart and lasting route out of crisis and towards sustainable and socially equitable growth,” said the EU Commissioner for Research and Innovation, Maire Geoghegan-Quinn.

“There is no other way of creating good and well-paid jobs that will withstand the pressures of globalisation.”

EU-funded research currently accounts for about 5% of the total public funding for research in the EU, she said.

The investment includes more than 600m euros for health research, about 206m euros of which will go into clinical trials for new drugs.

Nanotechnologies will get 270m euros, while about 600m euros is earmarked for advanced computer technologies. [emphasis mine]

Another 400m euros is to be spent on computer applications that address the challenges of building a low-carbon economy and managing ageing populations.

I was inclined to view it as a piece of delightful news without really analyzing it, then David Bruggeman (Pasco Phronesis) made a salient comment,

I suspect that the European spending will be insufficient even if individual nations hold the line on their own science funding. Because even those nations are looking at significant cuts to their universities, which affect both the training of the next generation of researchers and a certain amount of research. At best the funding boosts and cuts will be a wash, but the future doesn’t look like the best. What might happen is a greater shift in attention to European Union level research compared to country level research.

David also provides a brief description of the  ‘framework programme’ that the European Union uses to fund science research so that readers (such as me) have a better understanding of the bigger picture. If you’re interested in this kind of thing, do check out his posting.

David’s commentary was particularly timely as, this morning, I came across an article about the French government funding nanotechnology research in Canada (Sherbrooke, Québec to be precise). Since the article is in French, I’m going to be relying on my translation skills (Note: I will reproduce at least some of the French, so do let me know if you spot any errors.)

There is an abbreviated version of the article (Nanotechnologies: un petit bout de France à L’UdeS) by Jonathan Custeau for the Sherbrooke Tribune here (fyi, somebody sent me a copy of the full article).

The University of Sherbrooke’s current nanotechnology laboratory (Laboratoire international associé en nanotechnologies et nanosystèmes [LIA-LN2]) is about to receiving funding to the tune of ! million Euros over three years from France’s CNRS (Centre National de la Recherche Scientifique) putting  it in a category occupied by only eight other labs in the world.

I gather the lab’s current LIA-LN2 status is a consequence of previous French funding since the university’s vice-president of research describes the current bonanza as ‘jumping to a new level’, i.e. jumping to Unité mixte international (UMI) status,

“Nous étions tellement en avance que nous sautons à un autre niveau”, fait valoir Jacques Beauvais, vice-recteur à la recherche de l’Université de Sherbrooke.

L’autre niveau, c’est l’Unité mixte internationale, un laboratoire financé par le Centre national de la recherche scientifique (CNRS français. Il n’en existe que huit à travers le monde.

“Une UMI coûte très cher, parce que c’est un vrai laboratoire, avec des chercheurs financés par le CNRS, des fonds de recherches français et européens. C’est comme s’il y avait un bout de France sur le campus de l’Université de Sherbrooke”, fait valoir Vincent Aimez, codirecteur du LIA-LN2.

The nanotechnology researchers at the University of Sherbrooke (L’UdeS) have been liaising and collaborating with researchers in Varennes, Lyon, and Grenoble, France for over two years,  so this new funding is an acknowledgment of the quality of their work.

Bravo—the award is all the more extraordinary given the concerns about science and university funding in Europe.

January 2012 is the launch date for the University of Sherbrooke’s UMI which will have a focus on bringing at least some of the academic research to the market. Miniaturized integrated circuit boards are mentioned specifically and my translation skills failed a bit here,

Les applications des recherches pourraient notamment permettre de relever le défi de la miniaturisation des puces électroniques [integrated circuit boards?]. “Nous cherchons à faire des puces avec plus de fonctions, mais qui consomment moins d’énergie, pour qu’elles restent efficaces pendant un mois par exemple. Nous voulons aussi développer des biocapteurs [?] pour des contrôles environnementaux [?] ou des analyses médicales [medical diagnostics?]”, précise Abdelkader Souifi, également codirecteur du LIA-LN2.

I found the comments regarding products quite interesting in light of the Québec government’s recent moves to improve innovation in that province as per the article (June 30, 2010) by Peter Hadekel in the Montréal Gazette. (Idle thought: This casts a new light on the recent Domtar-FPInnovations collaboration on nanocrystalline cellulose (my July 16, 2010 posting).