Tag Archives: doping

Diamond-based electronics?

A May 24, 2016 news item on ScienceDaily describes the latest research on using diamonds as semiconductors,

Along with being a “girl’s best friend,” diamonds also have remarkable properties that could make them ideal semiconductors. This is welcome news for electronics; semiconductors are needed to meet the rising demand for more efficient electronics that deliver and convert power.

The thirst for electronics is unlikely to cease and almost every appliance or device requires a suite of electronics that transfer, convert and control power. Now, researchers have taken an important step toward that technology with a new way to dope single crystals of diamonds, a crucial process for building electronic devices.

A May 24, 2016 American Institute of Physics (AIP) news release (also on EurekAlert), which originated the news item, provides more detail,

For power electronics, diamonds could serve as the perfect material. They are thermally conductive, which means diamond-based devices would dissipate heat quickly and easily, foregoing the need for bulky and expensive methods for cooling. Diamond can also handle high voltages and power. Electrical currents also flow through diamonds quickly, meaning the material would make for energy efficient devices.

But among the biggest challenges to making diamond-based devices is doping, a process in which other elements are integrated into the semiconductor to change its properties. Because of diamond’s rigid crystalline structure, doping is difficult.

Currently, you can dope diamond by coating the crystal with boron and heating it to 1450 degrees Celsius. But it’s difficult to remove the boron coating at the end. This method only works on diamonds consisting of multiple crystals stuck together. Because such polydiamonds have irregularities between the crystals, single-crystals would be superior semiconductors.

You can dope single crystals by injecting boron atoms while growing the crystals artificially. The problem is the process requires powerful microwaves that can degrade the quality of the crystal.

Now, Ma [Zhengqiang (Jack) Ma, an electrical and computer engineering professor at the University of Wisconsin-Madison] and his colleagues have found a way to dope single-crystal diamonds with boron at relatively low temperatures and without any degradation. The researchers discovered if you bond a single-crystal diamond with a piece of silicon doped with boron, and heat it to 800 degrees Celsius, which is low compared to the conventional techniques, the boron atoms will migrate from the silicon to the diamond. It turns out that the boron-doped silicon has defects such as vacancies, where an atom is missing in the lattice structure. Carbon atoms from the diamond will fill those vacancies, leaving empty spots for boron atoms.

This technique also allows for selective doping, which means more control when making devices. You can choose where to dope a single-crystal diamond simply by bonding the silicon to that spot.

The new method only works for P-type doping, where the semiconductor is doped with an element that provides positive charge carriers (in this case, the absence of electrons, called holes).

“We feel like we found a very easy, inexpensive, and effective way to do it,” Ma said. The researchers are already working on a simple device using P-type single-crystal diamond semiconductors.

But to make electronic devices like transistors, you need N-type doping that gives the semiconductor negative charge carriers (electrons). And other barriers remain. Diamond is expensive and single crystals are very small.

Still, Ma says, achieving P-type doping is an important step, and might inspire others to find solutions for the remaining challenges. Eventually, he said, single-crystal diamond could be useful everywhere — perfect, for instance, for delivering power through the grid.

Here’s an image the researchers have released,

Optical image of a diode array on a natural single crystalline diamond plate. (The image looks blurred due to light scattering by the array of small pads on top of the diamond plate.) Inset shows the deposited anode metal on top of heavy doped Si nanomembrane that is bonded to natural single crystalline diamond. CREDIT: Jung-Hun Seo

Optical image of a diode array on a natural single crystalline diamond plate. (The image looks blurred due to light scattering by the array of small pads on top of the diamond plate.) Inset shows the deposited anode metal on top of heavy doped Si nanomembrane that is bonded to natural single crystalline diamond. CREDIT: Jung-Hun Seo Courtesy: American Institute of Physics

Here’s a link to and a citation for the paper,

Thermal diffusion boron doping of single-crystal natural diamond by Jung-Hun Seo, Henry Wu, Solomon Mikael, Hongyi Mi, James P. Blanchard, Giri Venkataramanan, Weidong Zhou, Shaoqin Gong, Dane Morgan, and Zhenqiang Ma. J. Appl. Phys. 119, 205703 (2016); http://dx.doi.org/10.1063/1.4949327

This paper appears to be open access.

Inside story on doping; build it and they will collide; and physicist, feminist, and philosopher superstar Evelyn Fox Keller visits

Here are a few events being held in Vancouver (Canada) over the next weeks and months. This is not an exhaustive list (three events) but it certainly offers a wide range of topics.

Inside story on doping

First, Café Scientifique will be holding a meeting on the subject of doping and athletic pursuits at The Railway Club on the 2nd floor of 579 Dunsmuir St. (at Seymour St.) next Tuesday,

Our next café will happen on Tuesday January 29th, 7:30pm at The Railway Club. Our speaker for the evening will be Dr. Jim Rupert.[School of Kinesiology, University of British Columbia]

The title and abstract for his café is:

The use of genetics in doping and in doping control

Sports performance is an outcome of the complex interactions between an athlete’s genes and the environment(s) in which he or she develops and competes.  As more is learned about the contribution of genetics to athletic ability, concerns have been raised that unscrupulous athletes will attempt manipulate their DNA in an attempt to get an ‘edge‘ over the competition. The World Anti-doping Agency (WADA) has invested research funds to evaluate this possibility and to support studies into methods to detect so-called “gene doping”.  Superimposed on these concerns is the realisation that, in addition to contributing to performance, an athlete’s genes may influence the results of current doping-control tests. Natural genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To help differentiate between naturally occurring deviations in blood and urine ‘markers’ and those potentially caused by doping, the ‘biological-passport’ program uses intra-individual variability rather than population values to establish an athlete’s parameters.  The next step in ‘personalised’ doping-control may be the inclusion of genetic data; however, while this may benefit ‘clean’ athletes, it will do so at the expense of risks to privacy.  In my talk, I will describe some examples of the intersection of genetics and doping-control, and discuss how genetic technology might be used to both enhance physical performance as well as to detect athletes attempting to do so.

This is a timely topic  given hugely lauded Lance Armstrong’s recent confession that he was doping when he won his multiple cycling awards. From the Lance Armstrong essay on Wikipedia (Note: Footnotes and links have been removed),

Lance Edward Armstrong (born Lance Edward Gunderson, September 18, 1971) is an American former professional road racing cyclist. Armstrong was awarded victory in the Tour de France a record seven consecutive times between 1999 and 2005, but in 2012 he was disqualified from all his results since August 1998 for using and distributing performance-enhancing drugs, and he was banned from professional cycling for life. Armstrong did not appeal the decision to the Court of Arbitration for Sport. Armstrong confessed to doping in a television interview in January 2013, two-and-a-half months after the Union Cycliste Internationale (UCI), the sport’s governing body, announced its decision to accept USADA’s findings regarding him, and after he had consistently denied it throughout his career.

Build it and they will collide

Next, both TRIUMF (Canada’s national laboratory for particle and nuclear physics) and ARPICO (Society of Italian Researchers and Professionals in Western Canada) have sent Jan. 23, 2013 news releases concerning Dr. Lyn Evans and his talk about building the Large Hadron Collider (LHC) at CERN (European Particle Physics Laboratory) which led to the discovery of the Higgs Boson. The talk will be held at 6:30 pm on Feb. 20, 2013 at Telus World of Science, 1455 Quebec Street, Vancouver,

Fundamental Physics Prize winner to deliver public lecture Wed. Feb. 20 at Science World

Back to the Big Bang – From the LHC to the Higgs, and Beyond
Unveiling the Universe Lecture Series
Wednesday, 20 February 2013 at 6:30 PM (PST)
Vancouver, British Columbia

(Vancouver, B.C.)  The Large Hadron Collider (LHC) is history’s most powerful atom smasher, capable of recreating the conditions that existed less than a billionth of a second after the Big Bang. The construction of the LHC was a massive engineering challenge that spanned almost 15 years, yielding the most technologically sophisticated instrument mankind ever has created.

Join Science World and TRIUMF in welcoming Dr. Lyn Evans, project leader for the LHC construction, in his Milner Foundation Special Fundamental Physics Prize lecture. In this free event, Dr Evans will detail some of the design features and technical challenges that make the LHC such an awe-inspiring scientific instrument. He will also discuss recent results from the LHC and touch on what’s next in the world of high-energy physics. The lecture will be followed by an audience question and answer session.

Dr Evans, born in Wales in 1945, has spent his whole career in the field of high energy physics and particle accelerators. In 2012, he was awarded the Special Fundamental Physics Prize for his contribution to the discovery of the Higgs-like boson. See http://www.fundamentalphysicsprize.org

Tickets are free, but registration is required.

See  http://fpplecture.eventbrite.ca

Physicist, feminist, philosopher superstar Evelyn Fox Keller

Here’s the information available from the Situating Science Cluster Winter 2013 newsletter,

The UBC [University of British Columbia] Node and partners are pleased to welcome Dr. Evelyn Fox Keller as Cluster Visiting Scholar Th. April 4th. The Node and partners continue to support the UBC STS [University of British Columbia Science and Technology Studies] colloquium.

There is more information Fox Keller and the first talk she gave to kick off this Canadawide tour in an Oct. 29, 2012 posting. She will be visiting the University of Alberta and the University of Calgary (Alberta) just prior to the April 4, 2013 visit to Vancouver. There are no further details about Fox Keller’s upcoming visit either on the Situating Science website or on the UBC website.