Tag Archives: Dr. Richard Berry

Nanocellulose fibres, pineapples, bananas, and cars

Brazilian researchers are working on ways to use nanocellulose fibres from various plants to reinforce plastics in the automotive industry. From the March 28, 2011 news item on Nanowerk,

Study leader Alcides Leão, Ph.D., said the fibers used to reinforce the new plastics may come from delicate fruits like bananas and pineapples, but they are super strong. Some of these so-called nano-cellulose fibers are almost as stiff as Kevlar, the renowned super-strong material used in armor and bulletproof vests. Unlike Kevlar and other traditional plastics, which are made from petroleum or natural gas, nano-cellulose fibers are completely renewable.

“The properties of these plastics are incredible,” Leão said, “They are light, but very strong — 30 per cent lighter and 3-to-4 times stronger. We believe that a lot of car parts, including dashboards, bumpers, side panels, will be made of nano-sized fruit fibers in the future. For one thing, they will help reduce the weight of cars and that will improve fuel economy.”

Besides weight reduction, nano-cellulose reinforced plastics have mechanical advantages over conventional automotive plastics, Leão added. These include greater resistance to damage from heat, spilled gasoline, water, and oxygen. With automobile manufacturers already testing nano-cellulose-reinforced plastics, with promising results, he predicted they would be used within two years. [emphasis mine]

This sounds very similar to the work being done by FPInnovations with wood cellulose in Québec and in BC. I did post an interview with Dr. Richard Berry, Aug. 27, 2010 (http://www.frogheart.ca/?p=1922) where he described and discussed what FPInnovations calls  nanocrystalline cellulose. Coincidentally, Mark MacLachlan is giving a talk about nanocrystalline cellulose  at the Café Scientifique meeting in Vancouver tomorrow, March 29, 2011. Check my March 25, 2011 posting for more details.

Here’s a description of cellulose and the process by which the Brazilian researchers are extracting nanocellulose fibres (from the news item),

Cellulose is the main material that makes up the wood in trees and other parts of plants. Its ordinary-size fibers have been used for centuries to make paper, extracted from wood that is ground up and processed. In more recent years, scientists have discovered that intensive processing of wood releases ultra-small, or “nano” cellulose fibers, so tiny that 50,000 could fit inside across the width of a single strand of human hair. Like fibers made from glass, carbon, and other materials, nano-cellulose fibers can be added to raw material used to make plastics, producing reinforced plastics that are stronger and more durable.

Leão said that pineapple leaves and stems, rather than wood, may be the most promising source for nano-cellulose. He is with Sao Paulo State University in Sao Paulo, Brazil. Another is curaua, a plant related to pineapple that is cultivated in South America. Other good sources include bananas; coir fibers found in coconut shells; typha, or “cattails;” sisal fibers produced from the agave plant; and fique, another plant related to pineapples.

To prepare the nano-fibers, the scientists insert the leaves and stems of pineapples or other plants into a device similar to a pressure cooker. They then add certain chemicals to the plants and heat the mixture over several cycles, producing a fine material that resembles talcum powder. The process is costly, but it takes just one pound of nano-cellulose to produce 100 pounds of super-strong, lightweight plastic, the scientists said.

Since the Brazilian researchers are claiming that they will be introducing nanocellulose fibres into plastics within two years, I wonder if that has accelerated  the timeframe for applications (coatings, films, and textiles according to Dr. Berry) from FPInnovations and their nanocrystalline cellulose?