Tag Archives: Durham University

Gold glue?

If you’re hoping for gold flecks in your glue, this is not going to satisfy you, given that it’s all at the nanoscale. An August 7, 2019 news item on Nanowerk briefly describes this gold glue (Note: A link has been removed),

It has long been known that gold can be used to do things that philosophers have never even dreamed of. The Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow has confirmed the existence of ‘gold glue’: bonds involving gold atoms, capable of permanently bonding protein rings. Skilfully used by an international team of scientists, the bonds have made it possible to construct molecular nanocages with a structure so far unparalleled in nature or even in mathematics (Nature, “An ultra-stable gold-coordinated protein cage displaying reversible assembly”).

Caption: The ‘impossible’ sphere, i.e. a molecular nanocage of 24 protein rings, each of which has an 11-sided structure. The rings are connected by bonds with the participation of gold atoms, here marked in yellow. Depending on their position in the structure, not all gold atoms have to be used to attach adjacent proteins (an unused gold atom is marked in red). Credit: Source: UJ, IFJ PAN

An August 6, 2019 Polish Academy of Sciences press release (also on EurekAlert but published August 7, 2019), which originated the news item, expands on the theme,

The world of science has been interested in molecular cages for years. Not without reason. Chemical molecules, including those that would under normal conditions enter into chemical reactions, can be enclosed within their empty interiors. The particles of the enclosed compound, separated by the walls of the cage from the environment, have nothing to bond with. These cages can be therefore be used, for example, to transport drugs safely into a cancer cell, only releasing the drug when they are inside it.

Molecular cages are polyhedra made up of smaller ‘bricks’, usually protein molecules. The bricks can’t be of any shape. For example, if we wanted to build a molecular polyhedron using only objects with the outline of an equilateral triangle, geometry would limit us to only three solid figures: a tetrahedron, an octahedron or an icosahedron. So far, there have been no other structural possibilities.

“Fortunately, Platonic idealism is not a dogma of the physical world. If you accept certain inaccuracies in the solid figure being constructed, you can create structures with shapes that are not found in nature, what’s more, with very interesting properties,” says Dr. Tomasz Wrobel from the Cracow Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN).

Dr. Wrobel is one of the members of an international team of researchers who have recently carried out the ‘impossible’: they built a cage similar in shape to a sphere out of eleven-walled proteins. The main authors of this spectacular success are scientists from the group of Prof. Jonathan Heddle from the Malopolska Biotechnology Centre of the Jagiellonian University in Cracow and the Japanese RIKEN Institute in Wako. The work described in Nature magazine took place with the participation of researchers from universities in Osaka and Tsukuba (Japan), Durham (Great Britain), Waterloo (Canada) and other research centres.

Each of the walls of the new nanocages was formed by a protein ring from which eleven cysteine molecules stuck out at regular intervals. It was to the sulphur atom found in each cysteine molecule that the ‘glue’, i.e. the gold atom, was planned to be attached. In the appropriate conditions, it could bind with one more sulphur atom, in the cysteine of a next ring. In this way a permanent chemical bond would be formed between the two rings. But would the gold atom under these conditions really be able to form a bond between the rings?

“In the Spectroscopic Imaging Laboratory of IFJ PAS we used Raman spectroscopy and X-ray photoelectron spectroscopy to show that in the samples provided to us with the test nanocages, the gold really did form bonds with sulphur atoms in cysteines. In other words, in a difficult, direct measurement, we proved that gold ‘glue’ for bonding protein rings in cages really does exist,” explains Dr. Wrobel.

Each gold atom can be treated as a stand-alone clip that makes it possible to attach another ring. The road to the ‘impossible’ begins when we realize that we don’t always have to use all of the clips! So, although all the rings of the new nanocages are physically the same, depending on their place in the structure they connect with their neighbours with a different number of gold atoms, and thus function as polygons with different numbers of vertices. 24 nanocage walls presented by the researchers were held together by 120 gold atoms. The outer diameter of the cages was 22 nanometres and the inner diameter was 16 nm.

Using gold atoms as a binder for nanocages is also important due to its possible applications. In earlier molecular structures, proteins were glued together using many weak chemical bonds. The complexity of the bonds and their similarity to the bonds responsible for the existence of the protein rings themselves did not allow for precise control over the decomposition of the cages. This is not the case in the new structures. On the one hand, gold-bonded nanocages are chemically and thermally stable (for example, they withstand hours of boiling in water). On the other hand, however, gold bonds are sensitive to an increase in acidity. By its increase, the nanocage can be decomposed in a controlled way and the contents can be released into the environment. Since the acidity within cells is greater than outside them, gold-bonded nanocages are ideal for biomedical applications.

The ‘impossible’ nanocage is the presentation of a qualitatively new approach to the construction of molecular cages, with gold atoms in the role of loose clips. The demonstrated flexibility of the gold bonds will make it possible in the future to create nanocages with sizes and features precisely tailored to specific needs.

Here’s a link to and a citation for the paper.

An ultra-stable gold-coordinated protein cage displaying reversible assembly by Ali D. Malay, Naoyuki Miyazaki, Artur Biela, Soumyananda Chakraborti, Karolina Majsterkiewicz, Izabela Stupka, Craig S. Kaplan, Agnieszka Kowalczyk, Bernard M. A. G. Piette, Georg K. A. Hochberg, Di Wu, Tomasz P. Wrobel, Adam Fineberg, Manish S. Kushwah, Mitja Kelemen, Primož Vavpetič, Primož Pelicon, Philipp Kukura, Justin L. P. Benesch, Kenji Iwasaki & Jonathan G. Heddle Nature volume 569, pages438–442 (2019) Issue Date: 16 May 2019 DOI: https://doi.org/10.1038/s41586-019-1185-4 Published online: 08 May 2019

This paper is behind a paywall.

Revisiting the scientific past for new breakthroughs

A March 2, 2017 article on phys.org features a thought-provoking (and, for some of us, confirming) take on scientific progress  (Note: Links have been removed),

The idea that science isn’t a process of constant progress might make some modern scientists feel a bit twitchy. Surely we know more now than we did 100 years ago? We’ve sequenced the genome, explored space and considerably lengthened the average human lifespan. We’ve invented aircraft, computers and nuclear energy. We’ve developed theories of relativity and quantum mechanics to explain how the universe works.

However, treating the history of science as a linear story of progression doesn’t reflect wholly how ideas emerge and are adapted, forgotten, rediscovered or ignored. While we are happy with the notion that the arts can return to old ideas, for example in neoclassicism, this idea is not commonly recognised in science. Is this constraint really present in principle? Or is it more a comment on received practice or, worse, on the general ignorance of the scientific community of its own intellectual history?

For one thing, not all lines of scientific enquiry are pursued to conclusion. For example, a few years ago, historian of science Hasok Chang undertook a careful examination of notebooks from scientists working in the 19th century. He unearthed notes from experiments in electrochemistry whose results received no explanation at the time. After repeating the experiments himself, Chang showed the results still don’t have a full explanation today. These research programmes had not been completed, simply put to one side and forgotten.

A March 1, 2017 essay by Giles Gasper (Durham University), Hannah Smithson (University of Oxford) and Tom Mcleish (Durham University) for The Conversation, which originated the article, expands on the theme (Note: Links have been removed),

… looping back into forgotten scientific history might also provide an alternative, regenerative way of thinking that doesn’t rely on what has come immediately before it.

Collaborating with an international team of colleagues, we have taken this hypothesis further by bringing scientists into close contact with scientific treatises from the early 13th century. The treatises were composed by the English polymath Robert Grosseteste – who later became Bishop of Lincoln – between 1195 and 1230. They cover a wide range of topics we would recognise as key to modern physics, including sound, light, colour, comets, the planets, the origin of the cosmos and more.

We have worked with paleographers (handwriting experts) and Latinists to decipher Grosseteste’s manuscripts, and with philosophers, theologians, historians and scientists to provide intellectual interpretation and context to his work. As a result, we’ve discovered that scientific and mathematical minds today still resonate with Grosseteste’s deeply physical and structured thinking.

Our first intuition and hope was that the scientists might bring a new analytic perspective to these very technical texts. And so it proved: the deep mathematical structure of a small treatise on colour, the De colore, was shown to describe what we would now call a three-dimensional abstract co-ordinate space for colour.

But more was true. During the examination of each treatise, at some point one of the group would say: “Did anyone ever try doing …?” or “What would happen if we followed through with this calculation, supposing he meant …”. Responding to this thinker from eight centuries ago has, to our delight and surprise, inspired new scientific work of a rather fresh cut. It isn’t connected in a linear way to current research programmes, but sheds light on them from new directions.

I encourage you to read the essay in its entirety.

Nanoparticle ‘caterpillars’ and immune system ‘crows’

This University of Colorado work fits in nicely with other efforts to ensure that nanoparticle medical delivery systems get to their destinations. From a Dec. 19, 2016 news item on phys.org,

In the lab, doctors can attach chemotherapy to nanoparticles that target tumors, and can use nanoparticles to enhance imaging with MRI, PET and CT scans. Unfortunately, nanoparticles look a lot like pathogens – introducing nanoparticles to the human body can lead to immune system activation in which, at best, nanoparticles are cleared before accomplishing their purpose, and at worst, the onset of dangerous allergic reaction. A University of Colorado Cancer Center paper published today [Dec. 19, 2016] in the journal Nature Nanotechnology details how the immune system recognizes nanoparticles, potentially paving the way to counteract or avoid this detection.

Specifically, the study worked with dextran-coated iron oxide nanoparticles, a promising and versatile class of particles used as drug-delivery vehicles and MRI contrast enhancers in many studies. As their name implies, the particles are tiny flecks of iron oxide encrusted with sugar chains.

“We used several sophisticated microscopy approaches to understand that the particles basically look like caterpillars,” says Dmitri Simberg, PhD, investigator at the CU Cancer Center and assistant professor in the Skaggs School of Pharmacy and Pharmaceutical Sciences, the paper’s senior author.

The comparison is striking: the iron oxide particle is the caterpillar’s body, which is surrounded by fine hairs of dextran.

Caption: University of Colorado Cancer Study shows how nanoparticles activate the complement system, potentially paving the way for expanded use of these technologies.
Credit: University of Colorado Cancer Center

A Dec. 19, 2016 University of Colorado news release on EurekAlert, which originated the news item, describes the work in more detail,

If Simberg’s dextran-coated iron oxide nanoparticles are caterpillars, then the immune system is a fat crow that would eat them – that is, if it can find them. In fact, the immune system has evolved for exactly this purpose – to find and “eat” foreign particles – and rather than one homogenous entity is actually composed of a handful of interrelated systems, each specialized to counteract a specific form of invading particle.

Simberg’s previous work shows that it is the immune subcomponent called the complement system that most challenges nanoparticles. Basically, the complement system is a group of just over 30 proteins that circulate through the blood and attach to invading particles and pathogens. In humans, complement system activation requires that three proteins come together on a particle -C3b, Bb and properdin – which form a stable complex called C3-convertase.

“The whole complement system activation starts with the assembly of C3-convertase,” Simberg says. “In this paper, we ask the question of how the complement proteins actually recognize the nanoparticle surface. How is this whole reaction triggered?”

First, it was clear that the dextran coating that was supposed to protect the nanoparticles from human complement attack was not doing its job. Simberg and colleagues could see complement proteins literally invade the barrier of dextran hairs.

“Electron microscopy images show protein getting inside the particle to touch the iron oxide core,” Simberg says.

In fact, as long as the nanoparticle coating allowed the nanoparticle to absorb proteins from blood, the C3 convertase was assembled and activated on these proteins. The composition of the coating was irrelevant – if any blood protein was able to bind to nanoparticles, it always led to complement activation. Moreover, Simberg and colleagues also showed that complement system activation is a dynamic and ongoing process – blood proteins and C3 convertase constantly dissociate from nanoparticles, and new proteins and C3 convertases bind to the particles, continuing the cascade of immune system activation. The group also demonstrated that this dynamic assembly of complement proteins occurs not only in the test tubes but also in living organisms as particles circulate in blood.

Simberg suggests that the work points to challenges and three possible strategies to avoid complement system activation by nanoparticles: “First, we could try to change the nanoparticle coating so that it can’t absorb proteins, which is a difficult task; second, we could better understand the composition of proteins absorbed from blood on the particle surface that allow it to bind complement proteins; and third, there are natural inhibitors of complement activation – for example blood Factor H – but in the context of nanoparticles, it’s not strong enough to stop complement activation. Perhaps we could get nanoparticles to attract more Factor H to decrease this activation.”

At one point, the concept of nanomedicine seemed as if it would be simple – engineers and chemists would make a nanoparticle with affinity for tumor tissue and then attach a drug molecule to it. Or they would inject nanoparticles into patients that would improve the resolution of diagnostic imaging. When the realities associated with the use of nanoparticles in the landscape of the human immune system proved more challenging, many researchers realized the need to step back from possible clinical use to better understand the mechanisms that challenge nanoparticle use.

“This basic groundwork is absolutely necessary,” says Seyed Moein Moghimi, PhD, nanotechnologist at Durham University, UK, and the coauthor of the Simberg paper. “It’s essential that we learn to control the process of immune recognition so that we can bridge between the promise that nanoparticles demonstrate in the lab and their use with real patients in the real world.”

Here’s a link to and a citation for the paper,

Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo by Fangfang Chen, Guankui Wang, James I. Griffin, Barbara Brenneman, Nirmal K. Banda, V. Michael Holers, Donald S. Backos, LinPing Wu, Seyed Moein Moghimi, & Dmitri Simberg. Nature Nanotechnology  (2016) doi:10.1038/nnano.2016.269 19 December 2016

This paper is behind a paywall.

I have a few previous postings about nanoparticles as drug delivery systems which have yet to fulfill their promise. There’s the April 27, 2016 posting (How many nanoparticle-based drugs does it take to kill a cancer tumour? More than 1%) and the Sept. 9, 2016 posting (Discovering how the liver prevents nanoparticles from reaching cancer cells).

Evolution-in-materio and unconventional computing

Training materials such as carbon nanotubes to imitate electronic circuits? Welcome to the world of evolution-in-materio and unconventional computing. From an April 7, 2015 news item on ScienceDaily,

As we approach the miniaturization limits of conventional electronics, alternatives to silicon-based transistors — the building blocks of the multitude of electronic devices we’ve come to rely on — are being hotly pursued.

Inspired by the way living organisms have evolved in nature to perform complex tasks with remarkable ease, a group of researchers from Durham University in the U.K. and the University of São Paulo-USP in Brazil is exploring similar “evolutionary” methods to create information processing devices.

An April 7, 2015 American Institute of Physics (AIP) news release on EurekAlert, which originated the news item, delves into the research itself and the emerging field to which it belongs,

In the Journal of Applied Physics, from AIP Publishing, the group describes using single-walled carbon nanotube composites (SWCNTs) as a material in “unconventional” computing. By studying the mechanical and electrical properties of the materials, they discovered a correlation between SWCNT concentration/viscosity/conductivity and the computational capability of the composite.

“Instead of creating circuits from arrays of discrete components (transistors in digital electronics), our work takes a random disordered material and then ‘trains’ the material to produce a desired output,” said Mark K. Massey, research associate, School of Engineering and Computing Sciences at Durham University.

This emerging field of research is known as “evolution-in-materio,” a term coined by Julian Miller at the University of York in the U.K. What exactly is it? An interdisciplinary field blends together materials science, engineering and computer science. Although still in its early stages, the concept has already shown that by using an approach similar to natural evolution, materials can be trained to mimic electronic circuits–without needing to design the material structure in a specific way.

“The material we use in our work is a mixture of carbon nanotubes and polymer, which creates a complex electrical structure,” explained Massey. “When voltages (stimuli) are applied at points of the material, its electrical properties change. When the correct signals are applied to the material, it can be trained or ‘evolved’ to perform a useful function.”

While the group doesn’t expect to see their method compete with high-speed silicon computers, it could turn out to be a complementary technology. “With more research, it could lead to new techniques for making electronics devices,” he noted. The approach may find applications within the realm of “analog signal processing or low-power, low-cost devices in the future.”

Beyond pursuing the current methodology of evolution-in-materio, the next stage of the group’s research will be to investigate evolving devices as part of the material fabrication “hardware-in-the-loop” evolution. “This exciting approach could lead to further enhancements in the field of evolvable electronics,” said Massey.

Here’s a link to and a citation for the paper,

Computing with carbon nanotubes: Optimization of threshold logic gates using disordered nanotube/polymer composites by using disordered nanotube/polymer composites by M. K. Massey, A. Kotsialos, F. Qaiser, D. A. Zeze, C. Pearson, D. Volpati, L. Bowen, and M. C. Petty. J. Appl. Phys. 117, 134903 (2015); http://dx.doi.org/10.1063/1.4915343

This paper appears to be open access.

Also, the researchers have produced a video,

Credit: Mark Massey/Durham University

Final comment, I am gobsmacked and fascinated.

Gold on the brain, a possible nanoparticle delivery system for drugs

A July 21, 2014 news item on Nanowerk describes special gold nanoparticles that could make drug delivery to cells easier,

A special class of tiny gold particles can easily slip through cell membranes, making them good candidates to deliver drugs directly to target cells.

A new study from MIT materials scientists reveals that these nanoparticles enter cells by taking advantage of a route normally used in vesicle-vesicle fusion, a crucial process that allows signal transmission between neurons.

A July 21, 2014 MIT (Massachusetts Institute of Technology) news release (also on EurekAlert), which originated the news item, provides more details,

The findings suggest possible strategies for designing nanoparticles — made from gold or other materials — that could get into cells even more easily.

“We’ve identified a type of mechanism that might be more prevalent than is currently known,” says Reid Van Lehn, an MIT graduate student in materials science and engineering and one of the paper’s lead authors. “By identifying this pathway for the first time it also suggests not only how to engineer this particular class of nanoparticles, but that this pathway might be active in other systems as well.”

The paper’s other lead author is Maria Ricci of École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. The research team, led by Alfredo Alexander-Katz, an associate professor of materials science and engineering, and Francesco Stellacci from EPFL, also included scientists from the Carlos Besta Institute of Neurology in Italy and Durham University in the United Kingdom.

Most nanoparticles enter cells through endocytosis, a process that traps the particles in intracellular compartments, which can damage the cell membrane and cause cell contents to leak out. However, in 2008, Stellacci, who was then at MIT, and Darrell Irvine, a professor of materials science and engineering and of biological engineering, found that a special class of gold nanoparticles coated with a mix of molecules could enter cells without any disruption.

“Why this was happening, or how this was happening, was a complete mystery,” Van Lehn says.

Last year, Alexander-Katz, Van Lehn, Stellacci, and others discovered that the particles were somehow fusing with cell membranes and being absorbed into the cells. In their new study, they created detailed atomistic simulations to model how this happens, and performed experiments that confirmed the model’s predictions.

Gold nanoparticles used for drug delivery are usually coated with a thin layer of molecules that help tune their chemical properties. Some of these molecules, or ligands, are negatively charged and hydrophilic, while the rest are hydrophobic. The researchers found that the particles’ ability to enter cells depends on interactions between hydrophobic ligands and lipids found in the cell membrane.

Cell membranes consist of a double layer of phospholipid molecules, which have hydrophobic lipid tails and hydrophilic heads. The lipid tails face in toward each other, while the hydrophilic heads face out.

In their computer simulations, the researchers first created what they call a “perfect bilayer,” in which all of the lipid tails stay in place within the membrane. Under these conditions, the researchers found that the gold nanoparticles could not fuse with the cell membrane.

However, if the model membrane includes a “defect” — an opening through which lipid tails can slip out — nanoparticles begin to enter the membrane. When these lipid protrusions occur, the lipids and particles cling to each other because they are both hydrophobic, and the particles are engulfed by the membrane without damaging it.

In real cell membranes, these protrusions occur randomly, especially near sites where proteins are embedded in the membrane. They also occur more often in curved sections of membrane, because it’s harder for the hydrophilic heads to fully cover a curved area than a flat one, leaving gaps for the lipid tails to protrude.

“It’s a packing problem,” Alexander-Katz says. “There’s open space where tails can come out, and there will be water contact. It just makes it 100 times more probable to have one of these protrusions come out in highly curved regions of the membrane.”

This phenomenon appears to mimic a process that occurs naturally in cells — the fusion of vesicles with the cell membrane. Vesicles are small spheres of membrane-like material that carry cargo such as neurotransmitters or hormones.

The similarity between absorption of vesicles and nanoparticle entry suggests that cells where a lot of vesicle fusion naturally occurs could be good targets for drug delivery by gold nanoparticles. The researchers plan to further analyze how the composition of the membranes and the proteins embedded in them influence the absorption process in different cell types. “We want to really understand all the constraints and determine how we can best design nanoparticles to target particular cell types, or regions of a cell,” Van Lehn says.

Here’s a link to and a citation for the paper,

Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes by Reid C. Van Lehn, Maria Ricci, Paulo H.J. Silva, Patrizia Andreozzi, Javier Reguera, Kislon Voïtchovsky, Francesco Stellacci, & Alfredo Alexander-Katz. Nature Communications 5, Article number: 4482 doi:10.1038/ncomms5482 Published 21 July 2014

This article is behind a paywall but there is a free preview available via ReadCube Access.

I last featured this multi-country team’s work on gold nanoparticles in an Aug. 23, 2013 posting.

Journal of Responsible Innovation is launched and there’s a nanotechnology connection

According to an Oct. 30, 2013 news release from the Taylor & Francis Group, there’s a new journal being launched, which is good news for anyone looking to get their research or creative work (which retains scholarly integrity) published in a journal focused on emerging technologies and innovation,

Journal of Responsible Innovation will focus on intersections of ethics, societal outcomes, and new technologies: New to Routledge for 2014 [Note: Routledge is a Taylor & Francis Group brand]

Scholars and practitioners in the emerging interdisciplinary field known as “responsible innovation” now have a new place to publish their work. The Journal of Responsible Innovation (JRI) will offer an opportunity to articulate, strengthen, and critique perspectives about the role of responsibility in the research and development process. JRI will also provide a forum for discussions of ethical, social and governance issues that arise in a society that places a great emphasis on innovation.

Professor David Guston, director of the Center for Nanotechnology in Society at Arizona State University and co-director of the Consortium for Science, Policy and Outcomes, is the journal’s founding editor-in-chief. [emphasis mine] The Journal will publish three issues each year, beginning in early 2014.

“Responsible innovation isn’t necessarily a new concept, but a research community is forming and we’re starting to get real traction in the policy world,” says Guston. “It is our hope that the journal will help solidify what responsible innovation can mean in both academic and industrial laboratories as well as in governments.”

“Taylor & Francis have been working with the scholarly community for over two centuries and over the past 20 years, we have launched more new journals than any other publisher, all offering peer-reviewed, cutting-edge research,” adds Editorial Director Richard Steele. “We are proud to be working with David Guston and colleagues to create a lively forum in which to publish and debate research on responsible technological innovation.”

An emerging and interdisciplinary field

The term “responsible innovation” is often associated with emerging technologies—for example, nanotechnology, synthetic biology, geoengineering, and artificial intelligence—due to their uncertain but potentially revolutionary influence on society. [emphasis mine] Responsible innovation represents an attempt to think through the ethical and social complexities of these technologies before they become mainstream. And due to the broad impacts these technologies may have, responsible innovation often involves people working in a variety of roles in the innovation process.

Bearing this interdisciplinarity in mind, the Journal of Responsible Innovation (JRI) will publish not only traditional journal articles and research reports, but also reviews and perspectives on current political, technical, and cultural events. JRI will publish authors from the social sciences and the natural sciences, from ethics and engineering, and from law, design, business, and other fields. It especially hopes to see collaborations across these fields, as well.

“We want JRI to help organize a research network focused around complex societal questions,” Guston says. “Work in this area has tended to be scattered across many journals and disciplines. We’d like to bring those perspectives together and start sharing our research more effectively.”

Now accepting manuscripts

JRI is now soliciting submissions from scholars and practitioners interested in research questions and public issues related to responsible innovation. [emphasis mine] The journal seeks traditional research articles; perspectives or reviews containing opinion or critique of timely issues; and pedagogical approaches to teaching and learning responsible innovation. More information about the journal and the submission process can be found at www.tandfonline.com/tjri.

About The Center for Nanotechnology in Society at ASU

The Center for Nanotechnology in Society at ASU (CNS-ASU) is the world’s largest center on the societal aspects of nanotechnology. CNS-ASU develops programs that integrate academic and societal concerns in order to better understand how to govern new technologies, from their birth in the laboratory to their entrance into the mainstream.

—————————————–
About Taylor & Francis Group

—————————————–

Taylor & Francis Group partners with researchers, scholarly societies, universities and libraries worldwide to bring knowledge to life.  As one of the world’s leading publishers of scholarly journals, books, ebooks and reference works our content spans all areas of Humanities, Social Sciences, Behavioural Sciences, Science, and Technology and Medicine.

From our network of offices in Oxford, New York, Philadelphia, Boca Raton, Boston, Melbourne, Singapore, Beijing, Tokyo, Stockholm, New Delhi and Johannesburg, Taylor & Francis staff provide local expertise and support to our editors, societies and authors and tailored, efficient customer service to our library colleagues.

You can find out more about the Journal of Responsible Innovation here, including information for would-be contributors,

JRI invites three kinds of written contributions: research articles of 6,000 to 10,000 words in length, inclusive of notes and references, that communicate original theoretical or empirical investigations; perspectives of approximately 2,000 words in length that communicate opinions, summaries, or reviews of timely issues, publications, cultural or social events, or other activities; and pedagogy, communicating in appropriate length experience in or studies of teaching, training, and learning related to responsible innovation in formal (e.g., classroom) and informal (e.g., museum) environments.

JRI is open to alternative styles or genres of writing beyond the traditional research paper or report, including creative or narrative nonfiction, dialogue, and first-person accounts, provided that scholarly completeness and integrity are retained.[emphases mine] As the journal’s online environment evolves, JRI intends to invite other kinds of contributions that could include photo-essays, videos, etc. [emphasis mine]

I like to check out the editorial board for these things (from the JRI’s Editorial board webpage; Note: Links have been removed),,

Editor-in-Chief

David. H. Guston , Arizona State University, USA

Associate Editors

Erik Fisher , Arizona State University, USA
Armin Grunwald , ITAS , Karlsruhe Institute of Technology, Germany
Richard Owen , University of Exeter, UK
Tsjalling Swierstra , Maastricht University, the Netherlands
Simone van der Burg, University of Twente, the Netherlands

Editorial Board

Wiebe Bijker , University of Maastricht, the Netherlands
Francesca Cavallaro, Fundacion Tecnalia Research & Innovation, Spain
Heather Douglas , University of Waterloo, Canada
Weiwen Duan , Chinese Academy of Social Sciences, China
Ulrike Felt, University of Vienna, Austria
Philippe Goujon , University of Namur, Belgium
Jonathan Hankins , Bassetti Foundation, Italy
Aharon Hauptman , University of Tel Aviv, Israel
Rachelle Hollander , National Academy of Engineering, USA
Maja Horst , University of Copenhagen, Denmark
Noela Invernizzi , Federal University of Parana, Brazil
Julian Kinderlerer , University of Cape Town, South Africa
Ralf Lindner , Frauenhofer Institut, Germany
Philip Macnaghten , Durham University, UK
Andrew Maynard , University of Michigan, USA
Carl Mitcham , Colorado School of Mines, USA
Sachin Chaturvedi , Research and Information System for Developing Countries, India
René von Schomberg, European Commission, Belgium
Doris Schroeder , University of Central Lancashire, UK
Kevin Urama , African Technology Policy Studies Network, Kenya
Frank Vanclay , University of Groningen, the Netherlands
Jeroen van den Hoven, Technical University, Delft, the Netherlands
Fern Wickson , Genok Center for Biosafety, Norway
Go Yoshizawa , Osaka University, Japan

Good luck to the publishers and to those of you who will be making submissions. As for anyone who may be as curious as I was about the connection between Routledge and Francis & Taylor, go here and scroll down about 75% of the page (briefly, Routledge is a brand).

Responsible innovation at the Center for Nanotechnology in Society’s (Arizona State University) Virtual Institute

The US National Science Foundation (NSF) has a funding program called Science Across Virtual Institutes (SAVI) which facilitates global communication for scientists, engineers, and educators. From the SAVI home page,

Science Across Virtual Institutes (SAVI) is a mechanism to foster and strengthen interaction among scientists, engineers and educators around the globe. It is based on the knowledge that excellence in STEM (science, technology, engineering and mathematics) research and education exists in many parts of the world, and that scientific advances can be accelerated by scientists and engineers working together across international borders.

According to a Sept. 24, 2013 news item on Nanowerk, the NSF’s SAVI program has funded a new virtual institute at Arizona State University’s (ASU)  Center for Nanotechnology in Societ6y (CNS), Note: Links have been removed,

The National Science Foundation recently announced a grant of nearly $500,000 to establish a new Virtual Institute for Responsible Innovation (VIRI) at the Center for Nanotechnology in Society at ASU (CNS-ASU). In a global marketplace that thrives on technological innovation, incorporating ethics, responsibility and sustainability into research and development is a critical priority.

VIRI’s goal is to enable an international community of students and scholars who can help establish a common understanding of responsible innovation in research, training and outreach. By doing so, VIRI aims to contribute to the governance of emerging technologies that are dominated by market uncertainty and difficult questions of how well they reflect societal values.

VIRI founding institutional partners are University of Exeter (UK), Durham University (UK), University of Sussex (UK), Maastricht University (Netherlands), University of Copenhagen (Denmark), Karlsruhe Institute of Technology (Germany), University of Waterloo (Canada), Oslo and Akershus University College of Applied Sciences (Norway), and State University of Campinas (Brazil).

VIRI founding institutional affiliates are the US National Academy of Engineering’s Center for Engineering, Ethics and Society, IEEE Spectrum Online and Fondazione Giannino Bassetti.

Interesting cast of characters.

The Sept. 23, 2013 ASU news release, which originated the news item, offers some insight into the time required to create this new virtual institute,

Led by ASU faculty members David Guston and Erik Fisher, VIRI will bring a social and ethical lens to research and development practices that do not always focus on the broader implications of their research and products. Guston, director of CNS-ASU, co-director of the Consortium of Science, Policy and Outcomes, and professor in the School of Politics and Global Studies, has been pushing for the establishment of academic units that focus on responsible innovation for years.

“We are thrilled that NSF has chosen to advance responsible innovation through this unique, international collaboration,” Guston said. “It will give ASU the opportunity to help focus the field and ensure that people start thinking about the broader implications of knowledge-based innovation.”

Fisher, assistant professor in the School for Politics and Global Studies, has long been involved in integrating social considerations into science research laboratories through his NSF-funded Socio-Technical Integration Research (STIR) project, an affiliated project of CNS-ASU.

“Using the insights we’ve gained in the labs that have participated in the STIR project, we expect to be able to get VIRI off the ground and make progress very quickly,” Fisher said.

The VIRI appears to be an invite-only affair and it’s early days yet so there’s not much information on the website but the VIRI home page looks promising,

“Responsible innovation” (RI) is an emerging term in science and innovation policy fields across the globe. Its precise definition has been at the center of numerous meetings, research council decisions, and other activities in recent years. But today there is neither a clear, unified vision of what responsible innovation is, what it requires in order to be effective, nor what it can accomplish.
The Virtual Institute for Responsible Innovation (VIRI)

The Virtual Institute for Responsible Innovation (VIRI) was created to accelerate the formation of a community of scholars and practitioners who, despite divides in geography and political culture, will create a common concept of responsible innovation for research, training and outreach – and in doing so contribute to the governance of emerging technologies under conditions dominated by high uncertainty, high stakes, and challenging questions of novelty.
Mission

VIRI’s mission in pursuit of this vision is to develop and disseminate a sophisticated conceptual and operational understanding of RI by facilitating collaborative research, training and outreach activities among a broad partnership of academic and non-academic institutions.
Activities

VIRI will:

  • perform interlinked empirical, reflexive and normative research in a collaborative and comparative mode to explore and develop key concepts in RI;
  • develop curricular material and support educational exchanges of graduate students, post-doctoral fellows, and faculty;
  •  create a dynamic online community to represent the breadth of the institute and its multi-lateral activities;
  •  disseminate outputs from across the institute through its own and partner channels and will encourage broad sharing of its research and educational findings.

VIRI will pursue these activities with founding academic partners in the US, the UK, the Netherlands, Germany, Denmark, Norway, Brazil and Canada.

The site does offer links to  relevant blogs here.

I was a bit surprised to see Canada’s University of Waterloo rather than the University of Alberta (home of Canada’s National Institute of Nanotechnology)  as one of the partners.