Tag Archives: Egypt

“Egyptian blue” the first synthetic pigment in history inspires nanomaterials

Some chemists at the University of Georgia (US) have analyzed the blue pigment found in Egyptian monuments and elsewhere to discover that it has some unique properties at the nanoscale which ancient Egyptians and others capitalized on in their artworks. From the Feb. 20, 2013 news item on Nanowerk,

Tina T. Salguero [University of Georgia] and colleagues point out that Egyptian blue, regarded as humanity’s first artificial pigment, was used in paintings on tombs, statues and other objects throughout the ancient Mediterranean world. Remnants have been found, for instance, on the statue of the messenger goddess Iris on the Parthenon and in the famous Pond in a Garden fresco in the tomb of Egyptian “scribe and counter of grain” Nebamun in Thebes.

They describe surprise in discovering that the calcium copper silicate in Egyptian blue breaks apart into nanosheets so thin that thousands would fit across the width of a human hair. The sheets produce invisible infrared (IR) radiation similar to the beams that communicate between remote controls and TVs, car door locks and other telecommunications devices.

The article can be found here,

Nanoscience of an Ancient Pigment by Darrah Johnson-McDaniel, Christopher A. Barrett, Asma Sharafi, and Tina T. Salguero. J. Am. Chem. Soc., 2013, 135 (5), pp 1677–1679 DOI: 10.1021/ja310587c Publication Date (Web): December 10, 2012

Copyright © 2012 American Chemical Society

The article is behind a paywall but the abstract is open to everyone and there is this image,

Credit: Researchers at the University of Georgia [downloaded from http://pubs.acs.org.proxy.lib.sfu.ca/doi/full/10.1021/ja310587c#]

Credit: Researchers at the University of Georgia [downloaded from http://pubs.acs.org.proxy.lib.sfu.ca/doi/full/10.1021/ja310587c#]

If I understand this rightly, Egyptian blue can be categorized as both a traditional pigment and a structural color due to nanoscale structures. (I recently wrote about structure, color, and the nanoscale in a Feb. 7, 2013 posting.)

As these things do from time to time, it reminded me of a song,

Enjoy!

Nanotechnology in the developing world/global south

Sometimes it’s called the ‘developing world’, sometimes it’s called the ‘global south’ and there have been other names before these. In any event, the organization, Nanotechnology for Development (Nano-dev) has released a policy brief about nanotechnology and emerging economies (?). Before discussing the brief, I have found a little information on the organization. From the Nano-dev home page,

Nanotechnology for development is a research project that aims at understanding how nanotechnology can contribute to development. By investigating way people deal with nanotechnology in Kenya, India and the Netherlands, the project will flesh out appropriate ways for governing nanotechnology for development.

Nanotechnology is a label for technologies at the nano-scale, roughly between 1 and 100 nanometers. This is extremely small. By comparison, the diameter of one human hair is about 60,000 nanometers. At this scale materials acquire all sorts of new characteristics that can be used in a wide range of novel applications. This potentially includes cheaper and more efficient technologies that can benefit the world’s poor, such as cheap water filters, efficient solar powered electricity, and portable diagnostic tests.

The four team members on the Nano-dev project are (from the Project Team page):

Pankaj Sekhsaria’s project seeks to understand the cultures of innovation in nanotechnology research in India, particularly in laboratories. He has a Bachelors Degree in Mechanical Engineering from Pune University in India and a MA in Mass Communication from the Jamia Milia Islamia in New Delhi, India.

Trust Saidi’s research is on travelling nanotechnologies. He studied BSc in Geography and Environmental Studies at Zimbabwe Open University, BSc Honours in Geography at University of Zimbabwe, MSc in Public Policy and Human Development at Maastricht Graduate School of Governance, Maastricht University.

Charity Urama’s project investigates the role of knowledge brokerage in nanotechnology for development. She obtained her BSc Botany from the faculty of Biological Sciences, University of Nigeria, Nsukka and MSc from the school of Biological and Environmental Sciences, Faculty of Life sciences, University of Aberdeen (UK).

Koen Beumer focuses on the democratic risk governance of nanotechnologies for development. Koen Beumer studied Arts and Culture (BA) and Cultures of Arts, Science and Technology (MPhil, cum laude) at Maastricht University.

According to the April 4, 2012 news item on Nanowerk about the brief,

The key message of the policy brief is that nanotechnology can have both positive and negative consequences for countries in the global South. These should be pro-actively dealt with.

The positive consequences of nanotechnology include direct benefits in the form of solutions to the problems of the poor and indirect benefits in the form of economic growth. The negative consequences of nanotechnology include direct risks to human health and the environment and indirect risks such as a deepening of the global divide. Core challenges to harnessing nanotechnology for development include risk governance, cultures of innovation, knowledge brokerage and travelling technology.

What I found particularly interesting in the policy brief is the analysis of nanotechnology efforts in countries that are not usually mentioned  (from the policy brief),

There are large differences amongst countries in the global South. Some countries, like India, Egypt, Brazil and South Africa, have invested substantial sums of money through dedicated programs. Often these are large countries with emerging economies. Dedicated programs and strategies have been generated with strong political support.

In other countries in the global South things look different. Several African countries, like Nigeria, Kenya, Uganda and Zimbabwe have expressed their interest in nanotechnologies and some activities can indeed be observed. But generally this activity does not exceed the level of individual researchers and incidental funding. [p. 3]

In addition to the usual concerns expressed over human health, they mention this risk,

Furthermore, properties at the nano-scale may be used to imitate the properties of rare minerals, thus affecting the export rates of their main producers, usually countries in the global South. Nanotechnologies may thus have reverse effects on material demands and consequently on the export of raw materials by countries in the global South (Schummer 2007). [p. 3]

Interesting thought that nanotechnology research could pose a risk to the economic welfare of countries that rely on the export of raw materials. Canada, anyone? If you think about it, all the excitement over nanocellulose doesn’t have to be an economic boon for ‘forestry-based’ countries. If cellulose is the most abundant polymer on earth what’s stop other countries from using their own nanocellulose. After all, Brazilian researchers are working on nanocellulose fibres derived from pineapples and bananas (my Mar. 28, 2011 and June 16, 2011 postings).

One final thing from the April 4, 2012 news item on Nanowerk,

The NANO-DEV project is partnership of three research institutes led by Maastricht University, the Netherlands. Besides Maastricht University, it includes the University of Hyderabad (India) and the African Technology Policy Studies Network (Kenya).

YouTube space lab contest winners

The YouTube Space Lab contest (mentioned here in an Oct. 12, 2011 posting) recently announced its two global winners (winners will get to have their research carried out on the space station). From the March 22, 2012 Space Adventures press release,

YouTube, Lenovo, and Space Adventures today announced the two global winners of YouTube Space Lab (youtube.com/spacelab), the worldwide science competition that challenged 14-18 year-olds to design a science experiment that can be performed in space.

Amr Mohamed from Egypt (17-18 year old age group) and Dorothy Chen and Sara Ma from the U.S. (14-16 year old age group) were awarded the honor at a ceremony in Washington, DC, attended by members of Space Lab partners including the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Japan Aerospace Exploration Agency (JAXA).  The students will have their experiments conducted by astronauts 250 miles above Earth aboard the International Space Station (ISS) and live streamed to the world on a Lenovo ThinkPad laptop via YouTube later this year.

Amr Mohamed, 18, from Alexandria, Egypt, came up with an experiment to explore the question: “Can you teach an old spider new tricks?”  Amr proposed investigating the effects of microgravity on the way the zebra spider catches its prey and whether it could adapt its behavior in this environment.  “The idea of sending an experiment into space is the most exciting thing I have ever heard in my life,” said Amr. “Winning YouTube Space Lab means everything to me, to my family, and to the people of the Middle East.”

Dorothy Chen and Sara Ma, both 16, who attend Troy High School in Troy, Michigan, created an experiment that asks: “Could alien superbugs cure disease on Earth?”  Dorothy and Sara want to send bacteria to the space station to see if introducing different nutrients and compounds can block their growth in the hopes of providing new tools to fight germs on Earth.  “The idea that something that is your experiment being sent up into space and actually becoming a reality is incredible,” said Sara. “I definitely want to pursue science as a career,” added Dorothy.

The global winners were in Washington, DC, with the regional winners, from the article by Nidhi Subbaraman on the Fast Company website,

Six teens between the ages of 14 and 18 from the U.S., Spain, Egypt, India, and New Zealand were just rewarded for their stellar science projects with a Zero-G flight above Washington, D.C., courtesy of Space Adventures.

… [Four regional winners:]

  • Patrick Zeng and Derek Chan from New Zealand hoped to see if heat transfers between hot and cold fluids would occur differently in a gravity-free environment. The results of their experiment could lead to more efficient heating and cooling systems here on Earth.
  • Spanish middle schoolers Laura Calvo and María Vilas wanted to test how weightless liquids behave–their surface behavior in low gravity have valuable insights into the construction of microelectronics.
  • Emerald Bresnahan, from the U.S., was curious to see how snowflakes would form in space.
  • Indian mechanical engineer in training Sachin Kukke is studying magnetic liquids called ferro fluids, towards understanding if they can absorb heat from the engines of spaceships, pushing them further into space.

You can find the contest videos (190 of them) here at YouTube Space Lab.  To whet your appetite, here’s the video from Amr Mohamed,

Congratulations to everyone who entered the contest.

Nano in Egypt and in Iran

It’s great to get some information about what’s going on in Egypt and Iran with regard to nanotechnology and Julian Taub at the Scientific American blog network has posted a couple of very interesting interviews about what’s happening in those countries.  From Taub’s Jan. 12, 2012 posting (Felafel Tech: Nanotechnology in Egypt), here’s a description of his interview subject,

Dr. Mohamed Abdel-Mottaleb is the leading nanotechnology consultant in Egypt and Director of the Nano Materials Masters Program and the founding director for the Center of Nanotechnology at Nile University. He also helped write a chapter for NATO Science for Peace on nanomaterial consumer applications, as well as numerous research papers and articles on the issue of nanotechnology for developing countries. I sit down with him to discuss the importance of nanotechnology, the state of technological progress and public nanotechnology education after the revolution, and Egypt’s future role in the global nanotechnology landscape.

After talking about the impact that the recent revolution has had on the nanotech industry (briefly: not much since there wasn’t much of a nanotech industry in the first place) in Egypt, Abdel-Mottaleb discusses the impact on nanotechnology research at his center,

It has slowed things significantly, because now our students have to try to use facilities wherever available in Egypt. This always depends on the availability of the equipment and the response costs for us to use the equipment and the facilities at other universities or research centers. We’ve rented some labs from some companies located near the university, which are not even adequate. Our research has slowed down, students are frustrated but committed to finish and go to work, and contribute to the society and to Egypt. It has affected us deeply, negatively, but we are committed to solve it.

A significant hurdle we are facing now is the fact that the Egyptian government has stopped our move into our new campus. Since 2007, we have been operating out of temporary facilities and awaiting the completion the campus. The government has granted Ahmed Zewail (1999 Nobel Laureate in Chemistry) the full use of our campus, and since May 2010, he is refusing to allow the university to move into the facilities. This is despite the fact that the facilities were partly funded by donations to the university and the facilities remain unused to date.  Several rounds of negotiations have failed due to his insistence on shutting down the university. He plans to build a new university (Zewail University). It is very difficult to us to understand his position and intentions. We hope that the international community will support us and not allow the shutting down of a very young and successful university.

In answer to a question from Taub about the best way to advance Egyptian R&D (research and development) in nanotechnology,

I think we need a national nano initiative. It needs specific and measurable targets that all the resources that are going to be allocated for nanotechnology are going to be put into that area, and achieving targets. We need a significant collaboration with the international community. We need to find a way to establish such bi-lateral collaboration schemes, and in the end, we need the facilities. We have a huge untapped human resource power here, I mean, it’s really wonderful to see a fresh graduate from university writing a full proposal and standing up and defending it on a very scientific level, and really holding a sound argument. Unfortunately they are unable to execute these proposals because of the lack of funding and the lack of facilities.

This is really the way out, and nanotechnology can affect the culture in this region. You can use the interdisciplinary thinking and push the idea that you cannot do something on your own, you need collaborations, you need to blend other disciplines, and this is very similar to having foreigners or people in different language speaking countries having to find a way to work together. Nanotechnology really instills that into the minds of the students, and gives them the opportunity to question and challenge the conditions or the dogmas they have, whether it is about science, or culture, or politics. Nanotechnology is a wonderful venue to promote intercultural dialogue, and interfaith dialogue. You can really see the opportunities.

I find that last bit about nanotechnology’s  interdisciplinary nature as having an impact on dialogue in many spheres (Abdel-Mottaleb mentions science, culture, and politics) quite interesting and something I’ve not seen in either the Canadian or US discourses.

Egypt and nanotechnology were previously mentioned  in my Nov. 21, 2011 posting (Egyptian scientists win cash prize for innovation: a nano test for Hepatitis C) and I have also mentioned Egypt, science, and the revolution in my Feb. 4, 2011 posting (Brief bit about science in Egypt and brief bit about Iran’s tech fair in Syria). That gives me a tidy segue to Taub’s Jan. 13, 2012 posting (Science and Sanctions: Nanotechnology in Iran).

Here’s a little bit about  Dr. Abdolreza Simchi, the interview subject, from Taub’s introduction,

Dr. Simchi is a distinguished nanotechnology researcher heading the Research Center for Nanostructured and Advanced Materials (RCNAM) at the Department of Material Science and Engineering of Sharif University, where he focuses on biomedical engineering and sustainable technology. Nanotechnology is a new and interdisciplinary field where scientists can engineer atom and molecules on the nanoscale, fifty thousand times thinner than a human hair.

Dr. Simchi represents a bridge between Iran and the West. He has received many awards for his work, not only from Iran, but also from Germany, the UK, and the UN. He earned his PhD in a joint program between Sharif University and the University of Vienna and then worked at the German technology institute Fraunhofer at the beginning of his career.

Before excerpting a few more items from Taub’s post, I’m going to introduce a little information about Iran and its nanotechnology initiative from Tim Harper, Chief Executive Officer (CEO) of Cientifica. I interviewed Tim in my July 15, 2011 posting (Tim Harper, Cientifica’s CEO, talks about their latest report on global nanotechnology funding and economic impacts), where he mentioned Iran briefly and, after his visit to Iran’s Nano 2011 exhibition, he discussed it more extensively on his own blog. From Tim’s Nov. 17, 2011 posting on TNTLog,

Iran has always been a source of fascination, a place of ancient culture and history and now a country making a lot of noise about science and technology, so I was pleased to be invited by the Iran Nanotechnology Initiative Council to attend the Iran Nano 2011 exhibition in Tehran.

The unique aspect of Iranian nanotechnology is that because of the various international sanctions over the past thirty years it’s not the kind of place where you can just order an AFM or an electron microscope from a major US or Japanese supplier. As a result there was lots of home made kit on display, from sputtering systems, through surface analysis to atomic force microscopes.

So, Iranian scientists have engineered their way around the embargo on selling high tech equipment of Iran – and there was no shortage of high-end laptops on display either – but so often science is not about how much stuff you have in your lab, but what you can do with it.

Here’s what Dr. Simchi had to say about sanctions in Taub’s interview (Jan. 13, 2012 posting),

I believe sanction has two faces. On one hand, it restricts the accessibility to facilities, equipment, and materials. This part is certainly disturbing the progress. However, I see another side that somehow is good! The sanction has limited the mobility of our students and experts. I believe the strength of the country is its talented and brilliant students and well-established academic media. This is the most important difference between Iran and other neighboring countries. Over three million students have now enrolled in Iranian Universities. Hundred thousands are now registered at graduate levels. This is a true strength and advantage of Iran. As far as the American and European banning of the mobility of Iranian students via visa restriction, we enjoy more and more from forced-prohibited brain drain.

What is the wonder in rapid development of Iran in scientific publication when thousands of talented graduate students join the university annually? This is a direct consequence of well-educated students, working hard even in a tough condition.  I am personally an example of this scenario (although I am not belonging to the upper 10% of talented scientists in Iran). I was unable to go to the US to visit Standford University due to the September 11 tragedy and was twice refused a visa to visit UC Berkeley. What would have happened if I had been successful to go to the US and possibly settle down? Up to now, I have graduated many talented students at SUT. They are really brilliant and I am very proud of them. Some of them left the country to continue their studies in Europe and the US but many are living in Iran and truly contribute to nanotechnology development.  Since my research area is not strategic and has no dual applications (mainly biomaterials and green technologies), I enjoy collaborating with many scientists in the US, Canada, Europe, South Korea, and Japan.

Simchi’s research focus is interesting in light of his specialty (from Taub’s Jan. 13, 2012 posting),

I am principally a metallurgist, and specifically a particulate materials scientist. However, I always look at science and technology side-by-side and shoulder-to-shoulder. In fact, it is of prime importance to me, as an engineer, to see where and how my research output might be utilized; the maximum and direct benefit for the nation and human beings are my utmost aims. In simple words, I look towards the national interests. My people suffer from cancer (Iran is a country with high-cancer risk), environmental pollution (for instance, Tehran is one of the most polluted cities in the world), and limited water resources (dry lands). Therefore, I keep trying to combine my knowledge on particulate materials with nanotechnology, i.e. size effect, to improve healthcare via biomedical applications of materials, and to combat environmental problems. I am particularly interested in developing nanoparticles for diagnosis and therapy and to use them in tissue engineering applications.

As for what Iran is doing with regard to commericalization, Tim notes this (from the Nov. 17, 2011 posting at TNTlog),

In terms of commercial products there were many on display. Agriculture was well represented, with fertilisers, pesticides, coatings to reduce fruit spoilage and even catalytic systems to remove ethylene from fruit storage facilities. Construction materials were another large area, with a wide range of building materials on display. Absent were areas such as semiconductors and medical devices, but once again their absence illustrates that INIC [Iran Nanotechnology Initiative Council] is focussing much more on the solutions demanded by Iranian industry rather than trying to compete with more advanced economies.

Tim’s view that the absence of medical devices at the exhibition he visited is evidence that INIC is focussed on industry solutions suggests Dr. Simchi’s interests in biomedical and tissue engineering applications may prove a little challenging to pursue. In any event, I heartily recommend reading Taub’s interviews and Tim’s posting in their entirely.

Egyptian scientists win cash prize for innovation: a nano test for Hepatitis C

A team of Egyptian scientists won the $10,000 prize for 3rd place at Intel’s 7th Annual Global Challenge held at the University of California at Berkeley. The team,  Dr Hassan M E Azzazy, Tamer M Samir, Sherif Mohamed Shawky, Mai M H Mansour and Ahmed H Tolba, won both an Intel Global Challenge Prize and 1st place in the Arab Technology Business Plan Competition for its Hepatitis C test. From the Nov. 16, 2011 article by Georgina Enzer for ITP.net,

The team developed a Hepatitis C test which uses gold nanoparticles to detect Hepatitis C in less than an hour, and at one-tenth the cost of current commercial tests. The team won a $10,000 prize for their innovation.

The Intel Global Challenge at UC Berkeley encourages student entrepreneurs and rewards innovative ideas that have the potential to have a positive impact on society.

The Egypt team, NanoDiagX, led by Dr Hassan M E Azzazy, Tamer M Samir, Sherif Mohamed Shawky, Mai M H Mansour and Ahmed H Tolba won first place in the 7th Arab Technology Business Plan Competition 2011, organised by the Arab Science and Technology Foundation (ASTF) in partnership with Intel Corporation. The regional competition, which was also in partnership with the United Nations Industrial Development Organisation (UNIDO), features 50 projects from 50 Arab entrepreneurs across 15 countries.

U.S. President Barak Obama has recognized the team’s achievements, from the Nov. 19, 2011 news item on Egypt.com

U.S. President Barack Obama honored the Egyptian team that won third prize of Intel’s Global Leadership after discovering a new cure for hepatitis C virus with nanotechnology.

The Egyptian team, Nano-Diagx, is the first Arab team to win the competition, organized by the Arab Organization for Science and Technology in cooperation with Intel and UNIDO.

Azazi [Dr. Hassan Azazi] said his team s most important advantage is the spirit of teamwork, which is uncommon in the culture of the Arab region.

He added the project used nanotechnology and gold to develop a cure for HIV hepatitis, which affects more than 200 million people worldwide and more than 100,000 Egyptians annually, particularly in cancer cases and cirrhosis of the liver.

It should be mentioned 28 technological projects participated in Intel’s World Challenge this year. The projects are all from 22 countries; Egypt, Saudi Arabia, Lebanon, Thailand, America, Portugal, Russia, Turkey, India, Uruguay, China, Japan, Brazil, Taiwan, Philippines, Turkey, Argentina, Chile, Poland, Denmark and Israel.

I came to the conclusion that the team was successful in two competitions, Intel’s World Challenge which attracted 28 entries and the Arab Technology Business Plan Competition which attracted 50 entries even though it’s not stated explicitly in the materials I have read.

Congratulations to the Egyptian team’s accomplishments which become even more noteworthy when you realize the working conditions for many scientists in Egypt. In a Feb. 4, 2011 posting, I excerpted parts of an interview in Nature magazine about Egypt and science,

The article goes on to recount a Q & A (Questions and Answers) session with Michael Harms of the German Academic Exchange Service offering his view from Cairo,

How would you describe Egyptian science?

There are many problems. Universities are critically under-funded and academic salaries are so low that most scientists need second jobs to be able to make a living. [emphasis mine] Tourist guides earn more money than most scientists. You just can’t expect world-class research under these circumstances. Also, Egypt has no large research facilities, such as particle accelerators. Some 750,000 students graduate each year and flood the labour market, yet few find suitable jobs – one reason for the current wave of protests.

If you are interested, here’s the article, ‘Deep fury’ of Egyptian scientists.

Praise the lord and pass the nano Viagra

I guess all the hype about Viagra (used for male erectile dysfunction) fooled me as until now, I believed it was a miracle drug that worked relatively well. Apparently, it has many side effects, takes too long to become active, and doesn’t last long enough. Consequently, researchers in Egypt are working on a solution, transdermal ‘nanocarriers’ on human skin as delivery agents for the drug. From the July 26, 2011 news item on Azonano,

Pharmaceutical scientist Yosra S.R. Elnaggar of Alexandria University and professors there and at Alexandria and Pharos University, explain how previous attempts to create a Viagra transdermal application have been hampered by the properties of the drug itself. The drug has low oil and water solubility and is loathe to cross membranes, such as human skin, because of this. However, it is possible to encapsulate the drug in nanoemulsion based systems that can cross membranes readily. As such, the team has investigated two types of nanocarriers made using fat-like lipid molecules – the first made by forming an emulsion with the drug using a surfactant compound to allow the lipid molecules and drug to mix, much as soap will emulsify oil and water. The second option is a self-emulsifying nanocarrier that has its own inbuilt surfactant.

This project reminds me a little of the nano patch vaccine that Mark Kendall and his team in Australia are working on. Success for that project means eliminating needles (and attendant injuries), refrigeration for vaccines, and the need for an expert to administer the vaccine. In the hotter regions of the planet, a nano patch vaccine would be a good solution for the refrigeration and drug administration issues. My most recent posting about Kendall’s work, which they are trying to commercialize, is from October 29, 2010.

Brief bit about science in Egypt and brief bit about Iran’s tech fair in Syria

I came across (via Twitter) this article  in Nature magazine about scientists in Egypt and their response to the current protests, ‘Deep fury’ of Egyptian scientists,

As the protests against President Hosni Mubarak gather pace across Egypt, the growing possibility of regime change is inspiring hope among many sectors of the population. The swelling number of protestors has seen academics add their voices to the call for change (see ‘Scientists join protests on streets of Cairo to call for political reform’).

The article goes on to recount a Q & A (Questions and Answers) session with Michael Harms of the German Academic Exchange Service offering his view from Cairo,

How would you describe Egyptian science?

There are many problems. Universities are critically under-funded and academic salaries are so low that most scientists need second jobs to be able to make a living. [emphasis mine] Tourist guides earn more money than most scientists. You just can’t expect world-class research under these circumstances. Also, Egypt has no large research facilities, such as particle accelerators. Some 750,000 students graduate each year and flood the labour market, yet few find suitable jobs – one reason for the current wave of protests.

But there are some good scientists here, particularly those who have been able to study and work abroad for a while. The Egyptian Ministry of Higher Education has started some promising initiatives. For example, in 2007 it created the Science and Technology Development Fund (STDF), a Western-style funding agency. And Egypt is quite strong in renewable energies and, at least in some universities, in cancer research and pharmaceutical research.

(Harms has more interesting comments in the article.) I must say the bit about needing 2nd jobs was an eye-opener for me.

There’s been some talk about the role that social media may or may not played in the civil unrest in Tunisia and Egypt. Jenara Nerenberg in her article, Iran Tech Expo Features Nuclear Might, Doubts, Concerns, for Fast Company, highlights comments from a Nobel Laureate who has no doubts that social media played a role in those countries and suggests the same could occur in Iran.

In fact, Iran is holding a five-day technology fair (starting this Saturday, Feb. 5, 2011) boasting its accomplishments. It has held such fairs before but for the first time Iran is holding its fair in another country, Syria. From Nerenberg’s  Feb. 3, 2011 article,

“Technological achievements” appears to be handy code words for nuclear achievements, based on recent reports and statements. [sic] But rockets, satellites, nanotechnology, and aerospace technology are all expected to be exhibited.

The event also comes at a time when there is growing use of consumer technology for political purposes, as seen in the case of Tunisia and Egypt. Nobel Laureate Shirin Ebadi, in reference to recent events in those two countries, said, “I can tell you that thanks to technology dictators can’t get a good night’s sleep. As to what is going to happen in the future it is too early to say. But I can say the people in Iran are extremely unhappy with the current situation. Iran is like the fire underneath the ashes and the ashes can suddenly make way for the fire at the slightest event.”

I present these two bits because they point to the fact that science and technology are deeply entwined in society and have social impacts that we don’t always understand very well. There have been social uprising and revolutions that owed nothing to “consumer technology”. There are many questions to be asked including, does scientific or technological change somehow foment social unrest? Perhaps we should be calling on the philosophers.