Tag Archives: electrical conductivity

Manipulating graphene’s conductivity with honey

Honey can be used for many things, to heal wounds, for advice (You catch more flies with honey), to clean your hair (see suggestion no. 19 here) and, even, scientific inspiration according to a Sept. 22, 2017 news item on phys.org,

Dr. Richard Ordonez, a nanomaterials scientist at the Space and Naval Warfare Systems Center Pacific (SSC Pacific), was having stomach pains last year. So begins the story of the accidental discovery that honey—yes, the bee byproduct—is an effective, non-toxic substitute for the manipulation of the current and voltage characteristics of graphene.

The news item was originated by a Sept. 22, 2017 article by Katherine Connor (who works for  the US Space and Naval warfare Center) and placed in cemag.us,

Ordonez’ lab mate and friend Cody Hayashi gave him some store-bought honey as a Christmas gift and anti-inflammatory for his stomach, and Ordonez kept it near his work station for daily use. One day in the lab, the duo was investigating various dielectric materials they could use to fabricate a graphene transistor. First, the team tried to utilize water as a top-gate dielectric to manipulate graphene’s electrical conductivity. This approach was unsuccessful, so they proceeded with various compositions of sugar and deionized water, another electrolyte, which still resulted in negligible performance. That’s when the honey caught Ordonez’ eye, and an accidental scientific breakthrough was realized.

The finding is detailed in a paper in Nature Scientific Reports, in which the team describes how honey produces a nanometer-sized electric double layer at the interface with graphene that can be used to gate the ambipolar transport of graphene.

“As a top-gate dielectric, water is much too conductive, so we moved to sugar and de-ionized water to control the ionic composition in hopes we could reduce conductivity,” Ordonez explains. “However, sugar water didn’t work for us either because, as a gate-dielectric, there was still too much leakage current. Out of frustration, literally inches away from me was the honey Cody had bought, so we decided to drop-cast the honey on graphene to act as top-gate dielectric — I thought maybe the honey would mimic dielectric gels I read about in literature. To our surprise — everyone said it’s not going to work — we tried and it did.”

Image of the liquid-metal graphene field-effect transistor (LM-GFET) and representation of charge distribution in electrolytic gate dielectrics comprised of honey. Image: Space and Naval Warfare Systems Center

 

Ordonez, Hayashi, and a team of researchers from SSC Pacific, in collaboration with the University of Hawai′i at Mānoa, have been developing novel graphene devices as part of a Navy Innovative Science and Engineering (NISE)-funded effort to imbue the Navy with inexpensive, lightweight, flexible graphene-based devices that can be used as next-generation sensors and wearable devices.

“Traditionally, electrolytic gate transistors are made with ionic gel materials,” Hayashi says. “But you must be proficient with the processes to synthesize them, and it can take several months to figure out the correct recipe that is required for these gels to function in the environment. Some of the liquids are toxic, so experimentation must be conducted in an atmospheric-controlled environment. Honey is completely different — it performs similarly to these much more sophisticated materials, but is safe, inexpensive, and easier to use. The honey was an intermediate step towards using ionic gels, and possibly a replacement for certain applications.”

Ordonez and Hayashi envision the honey-based version of graphene products being used for rapid prototyping of devices, since the devices can be created quickly and easily redesigned based on results. Instead of having to spend months developing the materials before even beginning to incorporate it into devices, using honey allows the team to get initial tests underway without waiting for costly fabrication equipment.

Ordonez also sees a use for such products in science, technology, engineering, and math (STEM) outreach efforts, since the honey is non-toxic and could be used to teach students about graphene.

This latest innovation and publication was a follow-on from the group’s discovery last year that liquid metals can be used in place of rigid electrodes such as gold and silver to electrically contact graphene. This, coupled with research on graphene and multi-spectral detection, earned them the Federal Laboratory Consortium Far West Regional Award in the category of Outstanding Technology Development.

SSC Pacific is the naval research and development lab responsible for ensuring Information Warfare superiority for warfighters, including the areas of cyber, command and control, intelligence, surveillance and reconnaissance, and space systems.

Here’s a link to and a citation for the paper,

Rapid Fabrication of Graphene Field-Effect Transistors with Liquid-metal Interconnects and Electrolytic Gate Dielectric Made of Honey by Richard C. Ordonez, Cody K. Hayashi, Carlos M. Torres, Jordan L. Melcher, Nackieb Kamin, Godwin Severa, & David Garmire. Scientific Reports 7, Article number: 10171 (2017) doi:10.1038/s41598-017-10043-4 Published online: 31 August 2017

This paper is open access.

Saving silver; a new kind of electrode

An Aug. 1, 2015 news item on Nanotechnology Now highlights work from Germany’s Helmholtz-Zentrum Berlin für Materialien und Energie (Helmholtz Zentrum Berlin),

The electrodes for connections on the “sunny side” of a solar cell need to be not just electrically conductive, but transparent as well. As a result, electrodes are currently made either by using thin strips of silver in the form of a coarse-meshed grid squeegeed onto a surface, or by applying a transparent layer of electrically conductive indium tin oxide (ITO) compound. Neither of these are ideal solutions, however. This is because silver is a precious metal and relatively expensive, and silver particles with nanoscale dimensions oxidise particularly rapidly; meanwhile, indium is one of the rarest elements on earth crust and probably will only continue to be available for a few more years.

Manuela Göbelt on the team of Prof. Silke Christiansen has now developed an elegant new solution using only a fraction of the silver and entirely devoid of indium to produce a technologically intriguing electrode. The doctoral student initially made a suspension of silver nanowires in ethanol using wet-chemistry techniques. She then transferred this suspension with a pipette onto a substrate, in this case a silicon solar cell. As the solvent is evaporated, the silver nanowires organise themselves into a loose mesh that remains transparent, yet dense enough to form uninterrupted current paths.

A July 31, 2015 Helmholtz Zentrum Berlin press release (also on EurekAlert), which originated the news item, describes the work in more detail,

Subsequently, Göbelt used an atomic layer deposition technique to gradually apply a coating of a highly doped wide bandgap semiconductor known as AZO. AZO consists of zinc oxide that is doped with aluminium. It is much less expensive than ITO and just as transparent, but not quite as electrically conductive. This process caused tiny AZO crystals to form on the silver nanowires, enveloped them completely, and finally filled in the interstices. The silver nanowires, measuring about 120 nanometres in diameter, were covered with a layer of about 100 nanometres of AZO and encapsulated by this process.

Quality map calculated

Measurements of the electrical conductivity showed that the newly developed composite electrode is comparable to a conventional silver grid electrode. However, its performance depends on how well the nanowires are interconnected, which is a function of the wire lengths and the concentration of silver nanowires in the suspension. The scientists were able to specify the degree of networking in advance with computers. Using specially developed image analysis algorithms, they could evaluate images taken with a scanning electron microscope and predict the electrical conductivity of the electrodes from them.

“We are investigating where a given continuous conductive path of nanowires is interrupted to see where the network is not yet optimum”, explains Ralf Keding. Even with high-performance computers, it still initially took nearly five days to calculate a good “quality map” of the electrode. The software is now being optimised to reduce the computation time. “The image analysis has given us valuable clues about where we need to concentrate our efforts to increase the performance of the electrode, such as increased networking to improve areas of poor coverage by changing the wire lengths or the wire concentration in solution”, says Göbelt.

Practical aternative to conventional electrodes

“We have developed a practical, cost-effective alternative to conventional screen-printed grid electrodes and to the common ITO type that is threatened however by material bottlenecks”, says Christiansen, who heads the Institute of Nanoarchitectures for Energy Conversion at HZB and additionally directs a project team at the Max Planck Institute for the Science of Light (MPL).

Only a fraction of silver, nearly no shadow effects

The new electrodes can actually be made using only 0.3 grams of silver per square metre, while conventional silver grid electrodes require closer to between 15 and 20 grams of silver. In addition, the new electrode casts a considerably smaller shadow on the solar cell. “The network of silver nanowires is so fine that almost no light for solar energy conversion is lost in the cell due to the shadow”, explains Göbelt. On the contrary, she hopes “it might even be possible for the silver nanowires to scatter light into the solar cell absorbers in a controlled fashion through what are known as plasmonic effects.”

Here’s a link to and a citation for the paper,

Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes by Manuela Göbelt, Ralf Keding, Sebastian W. Schmitt, Björn Hoffmann, Sara Jäckle, Michael Latzel, Vuk V. Radmilović, Velimir R. Radmilović,  Erdmann Spiecker, and Silke Christiansen. Nano Energy Volume 16, September 2015, Pages 196–206 doi:10.1016/j.nanoen.2015.06.027

This paper is behind a paywall.