Tag Archives: Electricity (electrodeposition) could help fight coastal (beach) erosion

Electrodeposition and the creation of nanostructures

Caption: In-situ liquid-cell transmission electron microscopy electrodeposition of PtNi [platinum-nickel] nanoparticle films on a carbon electrode during cyclic voltammetry. The electron beam (here in green color) illuminated the electrode (here in orange color) submerged in the platinum and nickel salt solution, enhancing the growth of the PtNi nanoparticle film (grey color) on the electrode. The film thickness increases with each cycle and by the fourth cycle reaction-rate limited growth of branched and porous structures were observed. Credit: Designed by: Weronika Wojtowicz: wojtowicz.vika@gmail.com; water background from https://pl.freepik.com.

This work comes from Poland according to a November 13, 2024 news item on phys.org, Note: A link has been removed,

Metallic nanoparticles, consisting of a few to several thousand atoms or simple molecules, are attracting significant interest. Electrodes coated with layers of nanoparticles (nanolayers) are particularly useful in areas such as energy production, serving as catalysts.

A convenient method for producing such layers on electrodes is electrodeposition, the subtle complexities of which have just been revealed by an international team of researchers led by scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Krakow. Their paper is published in the journal Nano Letters.

Research on nanoparticles is yielding promising results for technologies related to energy, medicine, and electronics. One of the key challenges is effectively controlling the synthesis and growth of nanostructures. An international team of scientists, led by researchers from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Krakow, conducted an advanced experiment demonstrating the electrodeposition process of a platinum-nickel (PtNi) nanolayer on an electrode. Utilizing state-of-the-art imaging techniques, the researchers had a unique opportunity to observe in real-time how structures form at the atomic level, which is a significant step towards better designing materials with precisely controlled properties.

A November 13 ,2024 The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences press release (also on EurekAlert), which originated the news item, describes electrodeposition and how this research was conducted,

Electrodeposition is a rapid and convenient method for producing nanostructures. It involves immersing an electrode in a metal salt solution, from which the layer is to be grown, followed by applying an appropriate voltage that causes ions near the electrode surface to reduce, initiating layer growth. To closely examine the process of electrodeposition, transmission electron microscopy (TEM) techniques are essential. TEM allows for imaging materials with sub-angstrom resolution (i.e., less than one ten-millionth of a millimeter) since it uses an electron beam with a much shorter wavelength than visible light. Ideally, it would be possible to observe, in real-time, how nucleation (the initial growth stage where nanoparticle seeds form) and layer growth occur on the electrode. However, TEM imaging comes with certain limitations: the samples need to be as thin as possible and entirely dry. To overcome these challenges and enable the imaging of chemical reactions, the researchers utilized thus a special imaging technique in a liquid cell flow chamber.

“The flow cell consists of two silicon chips equipped with a 50-nanometer-thick SiN [silicon nitride]x membrane. This membrane is electron-transparent, and an additional electrode is placed on its surface. By applying a voltage, the microscope user can observe how the layer grows on the electrode. Experiments using such a cell require a special holder for flow experiments in the TEM”, explains Prof. Magdalena Parlińska-Wojtan, Ph.D., Eng. (IFJ PAN).

Experiments conducted at the Silesian University of Technology using a TEM microscope confirmed that the PtNi layer indeed grows directly on the electrode, providing crucial insights into the fundamentals of the entire process. An alternative mechanism would involve nanoparticles first forming in the electrolyte and then drifting toward the electrode to attach. This effect was also observed, but only in areas illuminated by the beam, due to the fact that the electron beam interacts with water, behaving like a reducing agent. Subsequent ‘dry’ observations revealed that the layer is actually composed of spherical nanoparticles with diameters of several tens of nanometers. Further magnification of TEM images showed that the surface of these nanoparticles consists of densely branched, fine dendritic structures (multiple branching).

“As part of our collaboration with the Fritz Haber Institute of the Max Planck Society in Berlin, we conducted an additional experiment by extending the reaction time and reducing the rate of voltage changes. This allowed us to observe additional effects: the nucleation of individual nanoparticles, which rapidly grow and merge to form a continuous layer. During voltage changes in subsequent electrodeposition cycles, the nanoparticles undergo alternating growth and dissolution. However, growth is a faster process than dissolution, which ultimately results in a stable layer”, explains Prof. Parlińska-Wojtan.

As part of the research, another experiment was conducted in liquid environment using a different, but also unique, apparatus: a scanning transmission X-ray microscope (STXM), available at the National Synchrotron Radiation Center SOLARIS in Kraków. During STXM imaging, X-ray radiation is used. The resulting images do not have as high a resolution as the ones from electron microscopy, but they reveal other properties of the materials under study, such as the oxidation states of atoms in nanoparticles. The result of electrodeposition is not always pure metal; sometimes it is a metal oxide. Depending on whether it is a metal or an oxide (and the oxidation state of the oxide), materials absorb X-ray radiation at different energies. An STXM image taken with the appropriate energy beam allows for a detailed investigation of the produced nanoparticles. The STXM microscope at the SOLARIS center in Kraków also enabled an experiment in a liquid environment using a flow cell nearly identical to the one used in the TEM. The authors thus performed PtNi electrodeposition inside the STXM and, in real time, investigated the range of X-ray absorption by the nanoparticles. In this way, they determined that the layer actually consists of nickel(II) oxide and metallic platinum.

“Conducting an experiment using microscopic techniques in a liquid environment is quite a challenge. Nevertheless, our team succeeded in producing the expected PtNi layer using two different techniques, and the obtained results were complementary”, says Prof. Parlińska-Wojtan, emphasizing: “Such research is important for several reasons. The technical reason is that we are still exploring the capabilities and limitations of relatively new, high-end measurement tools. There was also a more important scientific reason: understanding the fundamental factors that govern the synthesis, growth, and properties of nanostructures. This knowledge may help in the future in the fabrication of nanostructured materials tailored better for applications such as fuel cells or medicine”.

The research results were published in Nano Letters and the journal’s editorial board recognized their work by featuring the accompanying graphic on the cover of one of their issues.

The Henryk Niewodniczański Institute of Nuclear Physics (IFJ PAN) is currently one of the largest research institutes of the Polish Academy of Sciences. A wide range of research carried out at IFJ PAN covers basic and applied studies, from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly publication output of IFJ PAN includes over 600 scientific papers in high-impact international journals. Each year the Institute hosts about 20 international and national scientific conferences. One of the most important facilities of the Institute is the Cyclotron Centre Bronowice (CCB), which is an infrastructure unique in Central Europe, serving as a clinical and research centre in the field of medical and nuclear physics. In addition, IFJ PAN runs four accredited research and measurement laboratories. IFJ PAN is a member of the Marian Smoluchowski Kraków Research Consortium: “Matter-Energy-Future”, which in the years 2012-2017 enjoyed the status of the Leading National Research Centre (KNOW) in physics. In 2017, the European Commission granted the Institute the HR Excellence in Research award. As a result of the categorization of the Ministry of Education and Science, the Institute has been classified into the A+ category (the highest scientific category in Poland) in the field of physical sciences.

Here’s a link to and a citation for the paper,

Understanding the Growth of Electrodeposited PtNi Nanoparticle Films Using Correlated In Situ Liquid Cell Transmission Electron Microscopy and Synchrotron Radiation by Magdalena Parlinska-Wojtan, Tomasz Roman Tarnawski, Joanna Depciuch, Maria Letizia De Marco, Kamil Sobczak, Krzysztof Matlak, Mirosława Pawlyta, Robin E. Schaeublin, and See Wee Chee. Nano Lett. 2024, 24, 40, 12361–12367 DOI: https://doi.org/10.1021/acs.nanolett.4c02228 Published: August 15, 2024

This paper is open access.

About the same time in August 2024 that this paper from the Polish Academy of Sciences was published In Nano Letters there was another electrodeposition paper published by researchers at Northwestern University, which is mentioned in my August 23, 2024 posting, “Electricity (electrodeposition) could help fight coastal (beach) erosion.”

FrogHeart’s 2024 comes to an end as 2025 comes into view

First, thank you to anyone who’s dropped by to read any of my posts. Second, I didn’t quite catch up on my backlog in what was then the new year (2024) despite my promises. (sigh) I will try to publish my drafts in a more timely fashion but I start this coming year as I did 2024 with a backlog of two to three months. This may be my new normal.

As for now, here’s an overview of FrogHeart’s 2024. The posts that follow are loosely organized under a heading but many of them could fit under other headings as well. After my informal review, there’s some material on foretelling the future as depicted in an exhibition, “Oracles, Omens and Answers,” at the Bodleian Libraries, University of Oxford.

Human enhancement: prosthetics, robotics, and more

Within a year or two of starting this blog I created a tag ‘machine/flesh’ to organize information about a number of converging technologies such as robotics, brain implants, and prosthetics that could alter our concepts of what it means to be human. The larger category of human enhancement functions in much the same way also allowing a greater range of topics to be covered.

Here are some of the 2024 human enhancement and/or machine/flesh stories on this blog,

Other species are also being rendered ‘machine/flesh’,

The year of the hydrogel?

It was the year of the hydrogel for me (btw, hydrogels are squishy materials; I have more of a description after this list),

As for anyone who’s curious about hydrogels, there’s this from an October 20, 2016 article by D.C.Demetre for ScienceBeta, Note: A link has been removed,

Hydrogels, materials that can absorb and retain large quantities of water, could revolutionise medicine. Our bodies contain up to 60% water, but hydrogels can hold up to 90%.

It is this similarity to human tissue that has led researchers to examine if these materials could be used to improve the treatment of a range of medical conditions including heart disease and cancer.

These days hydrogels can be found in many everyday products, from disposable nappies and soft contact lenses to plant-water crystals. But the history of hydrogels for medical applications started in the 1960s.

Scientists developed artificial materials with the ambitious goal of using them in permanent contact applications , ones that are implanted in the body permanently.

For anyone who wants a more technical explanation, there’s the Hydrogel entry on Wikipedia.

Science education and citizen science

Where science education is concerned I’m seeing some innovative approaches to teaching science, which can include citizen science. As for citizen science (also known as, participatory science) I’ve been noticing heightened interest at all age levels.

Artificial intelligence

It’s been another year where artificial intelligence (AI) has absorbed a lot of energy from nearly everyone. I’m highlighting the more unusual AI stories I’ve stumbled across,

As you can see, I’ve tucked in two tangentially related stories, one which references a neuromorphic computing story ((see my Neuromorphic engineering category or search for ‘memristors’ in the blog search engine for more on brain-like computing topics) and the other is intellectual property. There are many, many more stories on these topics

Art/science (or art/sci or sciart)

It’s a bit of a surprise to see how many art/sci stories were published here this year, although some might be better described as art/tech stories.

There may be more 2024 art/sci stories but the list was getting long. In addition to searching for art/sci on the blog search engine, you may want to try data sonification too.

Moving off planet to outer space

This is not a big interest of mine but there were a few stories,

A writer/blogger’s self-indulgences

Apparently books can be dangerous and not in a ‘ban [fill in the blank] from the library’ kind of way,

Then, there are these,

New uses for electricity,

Given the name for this blog, it has to be included,

  • Frog saunas published September 15, 2024, this includes what seems to be a mild scientific kerfuffle

I’ve been following Lomiko Metals (graphite mining) for a while,

Who would have guessed?

Another bacteria story,

New crimes,

Origins of life,

Dirt

While no one year features a large number of ‘dirt’ stories, it has been a recurring theme here throughout the years,

Regenerative medicine

In addition to or instead of using the ‘regenerative medicine’ tag, I might use ’tissue engineering’ or ’tissue scaffolding’,

To sum it up

It was an eclectic year.

Peering forward into 2025 and futurecasting

I expect to be delighted, horrified, thrilled, and left shaking my head by science stories in 2025. Year after year the world of science reveals a world of wonder.

More mundanely, I can state with some confidence that my commentary (mentioned in the future-oriented subsection of my 2023 review and 2024 look forward) on Quantum Potential, a 2023 report from the Council of Canadian Academies, will be published early in this new year as I’ve almost finished writing it.

As for more about the future, I’ve got this, from a December 3, 2024 essay (Five ways to predict the future from around the world – from spider divination to bibliomancy) about an exhibition by Michelle Aroney (Research Fellow in Early Modern History, University of Oxford) and David Zeitlyn (Professor of Social Anthropology, University of Oxford) in The Conversation (h/t December 3, 2024 news item on phys.org), Note: Links have been removed

Some questions are hard to answer and always have been. Does my beloved love me back? Should my country go to war? Who stole my goats?

Questions like these have been asked of diviners around the world throughout history – and still are today. From astrology and tarot to reading entrails, divination comes in a wide variety of forms.

Yet they all address the same human needs. They promise to tame uncertainty, help us make decisions or simply satisfy our desire to understand.

Anthropologists and historians like us study divination because it sheds light on the fears and anxieties of particular cultures, many of which are universal. Our new exhibition at Oxford’s Bodleian Library, Oracles, Omens & Answers, explores these issues by showcasing divination techniques from around the world.

1. Spider divination

In Cameroon, Mambila spider divination (ŋgam dù) addresses difficult questions to spiders or land crabs that live in holes in the ground.

Asking the spiders a question involves covering their hole with a broken pot and placing a stick, a stone and cards made from leaves around it. The diviner then asks a question in a yes or no format while tapping the enclosure to encourage the spider or crab to emerge. The stick and stone represent yes or no, while the leaf cards, which are specially incised with certain meanings, offer further clarification.

2. Palmistry

Reading people’s palms (palmistry) is well known as a fairground amusement, but serious forms of this divination technique exist in many cultures. The practice of reading the hands to gather insights into a person’s character and future was used in many ancient cultures across Asia and Europe.

In some traditions, the shape and depth of the lines on the palm are richest in meaning. In others, the size of the hands and fingers are also considered. In some Indian traditions, special marks and symbols appearing on the palm also provide insights.

Palmistry experienced a huge resurgence in 19th-century England and America, just as the science of fingerprints was being developed. If you could identify someone from their fingerprints, it seemed plausible to read their personality from their hands.

3. Bibliomancy

If you want a quick answer to a difficult question, you could try bibliomancy. Historically, this DIY [do-it-yourself] divining technique was performed with whatever important books were on hand.

Throughout Europe, the works of Homer or Virgil were used. In Iran, it was often the Divan of Hafiz, a collection of Persian poetry. In Christian, Muslim and Jewish traditions, holy texts have often been used, though not without controversy.

4. Astrology

Astrology exists in almost every culture around the world. As far back as ancient Babylon, astrologers have interpreted the heavens to discover hidden truths and predict the future.

5. Calendrical divination

Calendars have long been used to divine the future and establish the best times to perform certain activities. In many countries, almanacs still advise auspicious and inauspicious days for tasks ranging from getting a haircut to starting a new business deal.

In Indonesia, Hindu almanacs called pawukon [calendar] explain how different weeks are ruled by different local deities. The characteristics of the deities mean that some weeks are better than others for activities like marriage ceremonies.

You’ll find logistics for the exhibition in this September 23, 2024 Bodleian Libraries University of Oxford press release about the exhibit, Note: Links have been removed,

Oracles, Omens and Answers

6 December 2024 – 27 April 2025
ST Lee Gallery, Weston Library

The Bodleian Libraries’ new exhibition, Oracles, Omens and Answers, will explore the many ways in which people have sought answers in the face of the unknown across time and cultures. From astrology and palm reading to weather and public health forecasting, the exhibition demonstrates the ubiquity of divination practices, and humanity’s universal desire to tame uncertainty, diagnose present problems, and predict future outcomes.

Through plagues, wars and political turmoil, divination, or the practice of seeking knowledge of the future or the unknown, has remained an integral part of society. Historically, royals and politicians would consult with diviners to guide decision-making and incite action. People have continued to seek comfort and guidance through divination in uncertain times — the COVID-19 pandemic saw a rise in apps enabling users to generate astrological charts or read the Yijing [I Ching], alongside a growth in horoscope and tarot communities on social media such as ‘WitchTok’. Many aspects of our lives are now dictated by algorithmic predictions, from e-health platforms to digital advertising. Scientific forecasters as well as doctors, detectives, and therapists have taken over many of the societal roles once held by diviners. Yet the predictions of today’s experts are not immune to criticism, nor can they answer all our questions.

Curated by Dr Michelle Aroney, whose research focuses on early modern science and religion, and Professor David Zeitlyn, an expert in the anthropology of divination, the exhibition will take a historical-anthropological approach to methods of prophecy, prediction and forecasting, covering a broad range of divination methods, including astrology, tarot, necromancy, and spider divination.

Dating back as far as ancient Mesopotamia, the exhibition will show us that the same kinds of questions have been asked of specialist practitioners from around the world throughout history. What is the best treatment for this illness? Does my loved one love me back? When will this pandemic end? Through materials from the archives of the Bodleian Libraries alongside other collections in Oxford, the exhibition demonstrates just how universally human it is to seek answers to difficult questions.

Highlights of the exhibition include: oracle bones from Shang Dynasty China (ca. 1250-1050 BCE); an Egyptian celestial globe dating to around 1318; a 16th-century armillary sphere from Flanders, once used by astrologers to place the planets in the sky in relation to the Zodiac; a nineteenth-century illuminated Javanese almanac; and the autobiography of astrologer Joan Quigley, who worked with Nancy and Ronald Reagan in the White House for seven years. The casebooks of astrologer-physicians in 16th- and 17th-century England also offer rare insights into the questions asked by clients across the social spectrum, about their health, personal lives, and business ventures, and in some cases the actions taken by them in response.

The exhibition also explores divination which involves the interpretation of patterns or clues in natural things, with the idea that natural bodies contain hidden clues that can be decrypted. Some diviners inspect the entrails of sacrificed animals (known as ‘extispicy’), as evidenced by an ancient Mesopotamian cuneiform tablet describing the observation of patterns in the guts of birds. Others use human bodies, with palm readers interpreting characters and fortunes etched in their clients’ hands. A sketch of Oscar Wilde’s palms – which his palm reader believed indicated “a great love of detail…extraordinary brain power and profound scholarship” – shows the revival of palmistry’s popularity in 19th century Britain.

The exhibition will also feature a case study of spider divination practised by the Mambila people of Cameroon and Nigeria, which is the research specialism of curator Professor David Zeitlyn, himself a Ŋgam dù diviner. This process uses burrowing spiders or land crabs to arrange marked leaf cards into a pattern, which is read by the diviner. The display will demonstrate the methods involved in this process and the way in which its results are interpreted by the card readers. African basket divination has also been observed through anthropological research, where diviners receive answers to their questions in the form of the configurations of thirty plus items after they have been tossed in the basket.

Dr Michelle Aroney and Professor David Zeitlyn, co-curators of the exhibition, say:

Every day we confront the limits of our own knowledge when it comes to the enigmas of the past and present and the uncertainties of the future. Across history and around the world, humans have used various techniques that promise to unveil the concealed, disclosing insights that offer answers to private or shared dilemmas and help to make decisions. Whether a diviner uses spiders or tarot cards, what matters is whether the answers they offer are meaningful and helpful to their clients. What is fun or entertainment for one person is deadly serious for another.

Richard Ovenden, Bodley’s [a nickname? Bodleian Libraries were founded by Sir Thomas Bodley] Librarian, said:

People have tried to find ways of predicting the future for as long as we have had recorded history. This exhibition examines and illustrates how across time and culture, people manage the uncertainty of everyday life in their own way. We hope that through the extraordinary exhibits, and the scholarship that brings them together, visitors to the show will appreciate the long history of people seeking answers to life’s biggest questions, and how people have approached it in their own unique way.

The exhibition will be accompanied by the book Divinations, Oracles & Omens, edited by Michelle Aroney and David Zeitlyn, which will be published by Bodleian Library Publishing on 5 December 2024.

Courtesy: Bodleian Libraries, University of Oxford

I’m not sure why the preceding image is used to illustrate the exhibition webpage but I find it quite interesting. Should you be in Oxford, UK and lucky enough to visit the exhibition, there are a few more details on the Oracles, Omens and Answers event webpage, Note: There are 26 Bodleian Libraries at Oxford and the exhibition is being held in the Weston Library,

EXHIBITION

Oracles, Omens and Answers

6 December 2024 – 27 April 2025

ST Lee Gallery, Weston Library

Free admission, no ticket required

Note: This exhibition includes a large continuous projection of spider divination practice, including images of the spiders in action.

Exhibition tours

Oracles, Omens and Answers exhibition tours are available on selected Wednesdays and Saturdays from 1–1.45pm and are open to all.

These free gallery tours are led by our dedicated volunteer team and places are limited. Check available dates and book your tickets.

You do not need to book a tour to visit the exhibition. Please meet by the entrance doors to the exhibition at the rear of Blackwell Hall.

Happy 2025! And, once again, thank you.

Nano-treatment could help save mangroves from deadly disease

Seems to be my week for coastal erosion. First, there was my August 23, 2024 posting “Electricity (electrodeposition) could help fight coastal (beach) erosion” and today, August 30, 2024, I’m featuring news I got about a month ago (late July 2024) regarding a special formula to help save mangroves on the Florida coast and other coasts where they are found.

A July 26, 2024 news item on ScienceDaily features news from the University of Central Florida, Note: Links have been removed,

Mangroves and palm trees are hallmarks of the Sunshine State not just for their beauty but for their immense importance to Florida’s coastlines.

Mangroves are crucial because they naturally protect coastal shores from storm damage and serve as vital wildlife habitats around the world.

Scientists at the University of Central Florida are working to preserve mangroves in Florida and across the world from an increasingly prevalent disease-causing variety of fungi that lies dormant but becomes active when the tree is exposed to stressors such as temperature fluctuation, pests or other diseases.

A July 26, 2024 University of Central Florida (UCF) news release by Eddy Duryea (also on EurekAlert), which originated the news item, describes the disease (which hasn’t yet been formally named) and gives some details about the proposed treatment, Note: Links have been removed,

The disease does not yet have an official name, but it is being referred to by scientists as “Mangrove CNP.” It is caused by a group of fungal pathogens, including Curvularia, Neopestalotiopsis, and Pestalotiopsis, that causes yellowing and spots, and gradually weaken the mangrove until it ultimately dies.

Melissa Deinys, a UCF undergraduate researcher, and Jorge Pereira, a UCF graduate research assistant, are working to help turn the tide by developing and testing a promising nutritional cocktail comprised of nanoparticles to strengthen mangroves and counter the pathogens. The work is through UCF professor Swadeshmukul Santra’s Materials Innovation for Sustainable Agriculture (MISA) center at UCF, which is a U.S. Department of Agriculture-National Institute of Food and Agricultural recognized Center of Excellence.

Mangrove CNP in Florida was first identified as causing mangrove die-offs by Deinys in 2019 in Miami through her work with Fairchild Tropical Botanic Garden. Later, the Marine Resources Council, a non-profit organization dedicated to the protection and restoration of Florida’s Indian River Lagoon, verified and cited her efforts.

Deinys and collaborators with the MRC and Fairchild Tropical Botanic Garden have determined that about 80% of the mangroves they had sampled have tested positive for at least one of the fungal pathogen species. She says they have sampled over 130 mangroves between the Indian River Lagoon and Miami mangrove populations.

The researchers are treating the mangroves by soaking them in a nutrient solution called “Mag Sun” (MgSuN), which is comprised of magnesium and sulfur nanoparticles. The mixture is a refinement of a previous graduate student’s formula that destroyed bacteria on tomatoes, Pereira says.

“The reason why we choose magnesium is because it is more environmentally friendly, and plants need a lot of magnesium,” he says. “I combined our magnesium formulation with a sodium polysulfide. Sulfur is one of those elements that is ubiquitous in the environment, and the idea is that you can combine both to actually enhance the anti-microbial capacity for both bacteria and fungi and you also supply key nutrients to the plants so that they can grow greener and leafier.”

During lab tests, the researchers say they observed growth inhibition of up to 95% when treated with MgSuN at varying concentrations compared to the untreated control.

The formula acts as a sort of antibiotic and multivitamin, and it has shown great potential in bolstering the health of infected mangroves at nurseries across Florida, Pereira says.

“We’ve done some experiments, and we have tested both in vitro and in plants,” he says. “We’re working with the nurseries, and we’ve seen it does kill the pathogens with no detrimental effects to the mangroves while kickstarting their health. They look great after treatment.”

Deinys is continuing her work with the Fairchild Tropical Botanic Garden, MRC and nurseries across Florida while staying the course on her path to graduation and furthering her research at UCF.

She began studying the fungal pathogens in 2018 in Miami prior to being enrolled at UCF and has seen the mangroves become increasingly affected by the pathogens’ opportunistic nature.

“Back at the botanical gardens where I started, I would see the plants have these pathogens but not to a detrimental effect where we now see these organisms collapsing,” she says. “A mangrove nursery [The Marine Resources Council] had reached out to us, and they told us they had an insect infestation and then the whole population got wiped out by the pathogen. We’re also getting reports from places like Tampa that say areas that have more runoff are having more pathogen-related deterioration compared to 10 years ago.”

The fungi have been well-documented for some time, but volatile temperature changes, frequent storms and other increasing stressors open the door to the fungi taking a hold of the mangroves, Deinys says.

“They’re called opportunistic, and they’re called that for a reason,” she says. “They see a change in the plant and that’s when they start to take effect.”

How the pathogens are acquired is something that remains unclear, Deinys says. Researchers hypothesize it may be introduced through water, wind or insects, but further studies are needed to determine how it is acquired since it poses threat to mangrove health.

“You have to study all possibilities to determine what is the vector,” Deinys says. “We’ve seen papers and literature in other countries that have shown these pathogens for a long time. It’s been difficult because there is a disconnect in mangrove communities because we’re worlds apart and with different languages.”

The MgSuN nutrient solution is a treatment, but not a cure, Deinys says. There still are ample stressors that should be managed and mitigated, such as human-caused habitat destruction, in addition to treating the pathogens.

“I think there’s a big restoration effort to repopulate mangroves,” she says. “But first we need to look at the health of these mangroves and the health of the ecosystem before we determine what more we should do. We’re working with mangrove nurseries to see if we can together develop solutions.”

Maintaining and restoring mangroves is an essential component of ecological stewardship, and it’s a passion that Deinys hopes to continue throughout her career.

“I started this project my freshman year,” she says. “I didn’t want to leave what I was doing, and I came here with a mission. I met with Dr. Santra, our PI, and he wanted to help. He gave me a lot of freedom, and I’m really grateful.”

Deinys says that her research at UCF has been incredibly gratifying.

“There is a sense of community here that I found,” she says. “I joined the lab, and it felt like I found my family and that’s one of the best things to have come out of this experience. This has been one of my life’s passions, and I hope I’ll always stay with this project even after.”

Santra is encouraged by the research conducted by Pereira and Deinys, and he is hopeful it continues to bolster mangrove ecosystems.

“The UCF MISA center is dedicated to solving global problems that threaten agricultural sustainability,” he says. “We are excited to have another crop protection tool in our toolbox for protecting mangroves. I see the future of MagSun as a broad-spectrum fungicide, where GRAS (Generally Recognized As Safe) materials are empowered through nanotechnology.”

Further studies are needed to pinpoint which stressors are affecting the mangroves the most so that scientists can better preserve them, Pereira says.

“It’s very important to understand the stressors, and we need to really address if it’s a change in temperature, if it’s runoff or if it’s an additional pathogen,” he says. “In the meantime, we need to do something to prevent this damage from occurring.”

Researchers’ Credentials

Deinys graduated from BioTECH @ Richmond Heights High School, a conservation biology magnet school, where she began her research journey at Fairchild Tropical Botanic Garden and specialized in botany. In Fall 2022, Deinys joined UCF and became a member of the Santra Lab the following spring. She is an undergraduate research assistant working towards her bachelor’s degree in biotechnology.

Pereira graduated from Universidad Nacional Autónoma de Honduras with a degree in industrial chemistry. He joined Santra’s lab in 2020 and is currently a graduate research assistant and working toward his doctoral degree in chemistry.

Santra holds a doctorate in chemistry from the Indian Institute of Technology Kanpur. After graduating, he worked at the University of Florida (UF) as a postdoctoral researcher and later as a research assistant professor at the UF Department of Neurological Surgery and Particle Engineering Research Center. In 2005, Santra joined UCF as an assistant professor at the NanoScience Technology Center, the Department of Chemistry and the Burnett School of Biomedical Sciences. He is the director of the UCF Materials Innovation for Sustainable Agriculture center, a USDA-NIFA-recognized Center of Excellence.

They don’t seem to have published a paper about their work but there is this video,