Tag Archives: electrochromic windows

US Army researchers look at nanotechnology for climate solutions

It’s been a few months since I first flagged this item for publication and things have changed somewhat in the US. It’s hard to be certain since webpages disappear sometimes but given the current frenzy to cut down on US government costs and the utter indifference (hostility?) the current president (Mr. Donald Trump) and his cohorts have shown towards environmental issues, it’s hard not to infer a message when a webpage hosting a commentary about US Army researchers working on nanotechnology solutions to climate change goes missing.

Luckily, articles about the commentary from the researchers were published elsewhere. From a December 25, 2024 article on statnano.com, Note: Links have been removed,

As part of the Nano4EARTH initiative, a national challenge launched by the White House and the National Nanotechnology Initiative, researchers are exploring how innovations at the nanoscale can lead to groundbreaking solutions for a more sustainable future.

Climate change poses a significant threat to national security, according to the Army’s published Climate Strategy. The Army has committed to aggressive goals to mitigate its own impact, including a 50% reduction in net greenhouse gas pollution by 2030 and net-zero emissions by 2050. Nanotechnology is seen as a critical tool in achieving these ambitious targets.

In a recent paper in the journal Nature Nanotechnology, co-author Dr. Mark Griep, a researcher with the DEVCOM Army Research Laboratory, said nano-enabled climate solutions are already transitioning to industrial scale-up, which will help reduce the “green premium” that can be limiting factor for widespread public adoption.

“The climate crisis demands bold, innovative solutions, and nanotechnology offers a unique opportunity to achieve the kind of step-changes needed to mitigate its effects,” Griep said. “By working collaboratively across sectors, we can harness the power of nanotechnology to create a more sustainable and resilient future for the Army and the nation.”

According to Griep, metal organic frameworks, known as MOFs [metal-organic frameworks], are being scaled up for greenhouse gases capture applications and should exceed the Department of Energy’s EarthShot carbon capture costs below $100 per ton and become a cost-effective technology.

Griep said he believes the Army can engineer MOFs with catalytic functions for CO2-to-fuel opportunities.

“This would allow for nano-enabled solutions that not only contribute to decarbonizing the Army fleet but simultaneously enabling operational advantage through new fuel sources,” he said.

“The Army is in a unique position to be an innovation leader for climate change solutions as the advanced technologies for achieving climate goals go hand-in-hand with increasing combat effectiveness,” Griep said. “Nano-enabled advancements to energy storage, water purification, and advanced structural materials will be game changers in the civilian world but play an even more crucial role in ensuring the Army’s operational resilience and capabilities in future combat environments.”

Other US government agencies were involved in the work including the US National Institute of Standards and Technology (NIST). Here’s an October 9, 2025 US NIST posting about the paper by Lawrence Goodman written in a Q&A (question and answer) format for the agency’s Taking Measure blog (also on EurekAlert but published as an October 15, 2024 article), Note: Links have been removed,

When we think about the climate crisis, we tend to think big — it’s a global problem that requires global solutions.

But NIST scientists James Warren and Craig Brown also want us to think small, very small. They’re thinking at the nano-level, which is anywhere between 1 and 100 nanometers. That’s about 1,000 times smaller than the width of a human hair.

In a just-published paper they co-authored with other federal government, industry and private foundation researchers, they call for a greater focus on nanotechnology’s potential role in combating climate change. 

You talk about using nanotechnology on windows to make buildings more energy efficient.

Warren: People are probably familiar with some of the coatings available now that selectively filter different types of sunlight. They work by allowing visible light to pass through while blocking certain wavelengths of infrared light that generate heat inside a house or building.

These are called chromic nanocoatings, and they contain nano-sized particles that can absorb, reflect or transmit different wavelengths of light in much more complicated ways. They can change color or transparency in response to temperature or the amount of sunlight — perhaps darkening to keep the sun out of a house at peak midday heat to keep the people inside cool without having to crank up the air conditioning. A recent research paper said chromic windows controlled by electricity, known as electrochromic windows, have the potential to save up to 40% of energy demand for building heating and cooling.

Here’s a link to and a citation for the paper,

Nanotechnology solutions for the climate crisis by Maria Fernanda Campa, Craig M. Brown, Peter Byrley, Jason Delborne, Nicholas Glavin, Craig Green, Mark Griep, Tina Kaarsberg, Igor Linkov, Jeffrey B. Miller, Joshua E. Porterfield, Birgit Schwenzer, Quinn Spadola, Branden Brough & James A. Warren. Nature Nanotechnology volume 19, pages 1422–1426 (2024) DOI: https://doi.org/10.1038/s41565-024-01772-5 Published online: 09 October 2024 Issue Date: October 2024

This paper is open access.

It seems that Nano4EARTH is still a functioning part of the National Nanotechnology Initiative (NNI), which is itself still functioning, as of this writing on March 10, 2025.

Are electrochromic films like sunglasses for your windows?

According to a May 29, 2024 news item on ScienceDaily, elctrochromic film is like having a pair of sunglasses for your windows,

Advances in electrochromic coatings may bring us closer to environmentally friendly ways to keep inside spaces cool. Like eyeglasses that darken to provide sun protection, the optical properties of these transparent films can be tuned with electricity to block out solar heat and light. Now, researchers in ACS Energy Letters report demonstrating a new electrochromic film design based on metal-organic frameworks (MOFs) that quickly and reliably switch from transparent to glare-diminishing green to thermal-insulating red.

This seems to be a popular way to describe electrochomic film as the title for my February 1, 2010 posting suggests, “Window sunglasses; insect microids; open access to science research?; theatre and science.”

A May 29, 2024 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, offers more detail about how the electrochromic film works, Note: Links have been removed,

Hongbo Xu and colleagues used MOFs in their electrochromic film because of the crystalline substances’ abilities to form thin films with pore sizes that can be customized by changing the length of the organic ligand that binds to the metal ion. These features enable improved current flow, more precise control over colors and durability. In demonstrations, Xu’s MOF electrochromic film took 2 seconds to switch from colorless to green with an electric potential of 0.8 volts, and 2 seconds to switch to dark red with 1.6 V. The film maintained the green or red color for 40 hours when the potential dropped, unless a reverse voltage was applied to return the film to its transparent state. The film also performed reliably through 4,500 cycles of switching from colored to clear. With further optimization, the researchers say their tunable coatings could be used in smart windows that regulate indoor temperatures, as well as in smaller scale intelligent optical devices and sensors.

In addition to Xu’s MOF-based electrochromic film, several other research groups have reported electrochromic coating designs, including a UV-blocking but visually transparent radiative cooling film, a colorful plant-based film that gets cooler when exposed to sunlight, and a temperature-responsive film that turns darker in cold weather and lighter when it’s hot.

The authors acknowledge funding from the National Natural Science Foundation of China, Natural Science Foundation of Heilongjiang Province and the Scientific Research Startup Project of Quzhou University.

Here’s a link to and a citation for the paper,

Biphenyl Dicarboxylic-Based Ni-IRMOF-74 Film for Fast-Switching and High-Stability Electrochromism by Xueying Fan, Shen Wang, Mengyao Pan, Huan Pang, and Hongbo Xu. ACS Energy Lett. 2024, 9, 6, 2840–2847 DOI: https://doi.org/10.1021/acsenergylett.4c00492 Publication Date:May 29, 2024 Copyright © 2024 American Chemical Society

This paper is behind a paywall.

Excellent electrochromic smart window performance with yolk-shell NiO (nitrogen oxide) nanospheres

Electrochromic windows hold great promise where energy savings are concerned. So far, it’s still just a promise but perhaps the research in this April 17, 2023 news item on phys.org will help realize it, Note: Links have been removed,

Researchers from Tsinghua University synthesized porous yolk-shell NiO nanospheres (PYS-NiO NSs) via a solvothermal and subsequent calcination process of Ni-MOF. As the large specific surface areas and hollow porous nanostructures were conducive to ionic transport, PYS-NiO NSs exhibited a fast coloring/bleaching speed (3.6/3.9 s per one coloring/bleaching cycle) and excellent cycling stability (82% of capacity retention after 3000 cycles). These superior electrochromic (EC) properties indicated that the PYS-NiO NSs was a promising candidate for high performance EC devices.

Electrochromic (EC) materials (ECMs) are defined as the materials which have reversible changes in their colors and optical properties (transmittance, reflectance, and absorption) under different external voltages. Over the past decades, ECMs show promising advantages and application prospects in many fields such as smart windows, adaptive camouflage, electronic displays, and energy storage, etc., because of their excellent optical modulation abilities.

This image doesn’t seem all that helpful (to me) in understanding the research,

Caption: Porous yolk-shell nanospheres exhibit a fast coloring/bleaching speed. Credit: Baoshun Wang, Tsinghua University

An April 17, 2023 Particuology (journal) news release on EurekAlert, which originated the news item, does provide more detail, Note: Links have been removed,

Transition metal oxides (TMOs) are one of the most important ECMs which have been widely studied. They have many advantages such as rich nanostructure design, simple synthesis process, high security, etc. Among them, nickel oxide (NiO) is an attractive anode ECM and has attracted extensive research interest due to its high optical contrast, high coloring efficiency, low cost, etc. However, NiO-based ECMs still face the challenges of long EC switching times and poor cycling life which are caused by their poor ionic/electronic diffusion kinetics and low electrical conductivity.

Metal-organic frameworks (MOFs) have attracted enormous attention, because of their high porosity and large surface areas, and could be adjusted to achieve different properties by selecting different metal ions and organic bridging ligands. Due to the porosity and long-range orderliness, MOFs can provide fast and convenient channels for small molecules and ions to insert and extract during the transformation process. Therefore, MOFs can be used as effective templates for the preparation of hollow and porous TMOs with high ion transport efficiency, excellent specific capacitance, and electrochemical activities.

So the authors proposed a new strategy to design a kind of NiO with hollow and porous structure to obtain excellent EC performance and cyclic stability. As a proof-of-concept demonstration, the authors successfully synthesized MOFs-derived porous yolk-shell NiO nanospheres (PYS-NiO NSs) which exhibited excellent EC performance. Ni-organic framework spheres were prepared by a simple solvothermal method and then converted to PYS-NiO NSs by thermal decomposition. The PYS-NiO NSs exhibited relatively high specific surface areas and stable hollow nanostructures, which not only provided a large contact area between active sites and electrolyte ions in the EC process but also helped the NiO to accommodate large volume changes without breaking. Besides, the PYS-NiO NSs also shortened the ionic diffusion length and provided efficient channels for transferring electronics and ions. In addition, the coupling with carbon also rendered the PYS-NiO NSs with improved electronic conductivity and obtained better EC performance. The PYS-NiO NSs exhibited a fast coloring/bleaching speed (3.6/3.9 s). Besides, PYS-NiO NSs also exhibited excellent cycling stability (82% of capacity retention after 3000 cycles). These superior EC properties indicate that the PYS-NiO NSs is a promising candidate for high-performance EC devices. The as-prepared PYS-NiO NSs are believed to be a promising candidate for smart windows, displays, antiglare rearview mirrors, etc. More importantly, this work provides a new and feasible strategy for the efficient preparation of ECMs with fast response speed and high cyclic stability.

Particuology (IF=3.251) is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. Topics are broadly relevant to the production of materials, pharmaceuticals and food, the conversion of energy resources, and protection of the environment. For more information, please visit: https://www.journals.elsevier.com/particuology.

Here’s a link to and a citation for the paper, Note: There is an unusually long lead time between online access and print access,

Novel self-assembled porous yolk-shell NiO nanospheres with excellent electrochromic performance for smart windows by Baoshun Wang, Ya Huang, Siming Zhao, Run Li, Di Gao, Hairong Jiang, Rufan Zhang. Particuology Volume 84, January 2024, Pages 72-80 DOI: https://doi.org/10.1016/j.partic.2023.03.007 Available online: April 17, 2023

This paper is open access.

Spray-on coatings for cheaper smart windows

An August 6, 2020 RMIT University (Australia) press release (also on EurekAlert but published August 5, 2020) by Gosia Kaszubska announces a coating that makes windows ‘smart’,

A simple method for making clear coatings that can block heat and conduct electricity could radically cut the cost of energy-saving smart windows and heat-repelling glass [electrochromic windows?].

The spray-on coatings developed by researchers at RMIT are ultra-thin, cost-effective and rival the performance of current industry standards for transparent electrodes.

Combining the best properties of glass and metals in a single component, a transparent electrode is a highly conductive clear coating that allows visible light through.

The coatings – key components of technologies including smart windows, touchscreen displays, LED lighting and solar panels – are currently made through time-consuming processes that rely on expensive raw materials.

The new spray-on method is fast, scalable and based on cheaper materials that are readily available.

The method could simplify the fabrication of smart windows, which can be both energy-saving and dimmable, as well as low-emissivity glass, where a conventional glass panel is coated with a special layer to minimise ultraviolet and infrared light.

Lead investigator Dr Enrico Della Gaspera said the pioneering approach could be used to substantially bring down the cost of energy-saving windows and potentially make them a standard part of new builds and retrofits.

“Smart windows and low-E glass can help regulate temperatures inside a building, delivering major environmental benefits and financial savings, but they remain expensive and challenging to manufacture,” said Della Gaspera, a senior lecturer and Australian Research Council DECRA Fellow at RMIT.

“We’re keen to collaborate with industry to further develop this innovative type of coating.

“The ultimate aim is to make smart windows much more widely accessible, cutting energy costs and reducing the carbon footprint of new and retrofitted buildings.”

The new method can also be precisely optimised to produce coatings tailored to the transparency and conductivity requirements of the many different applications of transparent electrodes.

Global demand for smart glazing

The global market size for smart glass and smart windows is expected to reach $6.9 billion by 2022, while the global low-E glass market is set to reach an estimated $39.4 billion by 2024.

New York’s Empire State Building reported energy savings of $US2.4 million and cut carbon emissions by 4,000 metric tonnes after installing smart glass windows.

Eureka Tower in Melbourne features a dramatic use of smart glass in its “Edge” tourist attraction, a glass cube that projects 3m out of the building and suspends visitors 300m over the city. The glass is opaque as the cube moves out over the edge of the building and becomes clear once fully extended.

First author Jaewon Kim, a PhD researcher in Applied Chemistry at RMIT,  said the next steps in the research were developing precursors that will decompose at lower temperatures, allowing the coatings to be deposited on plastics and used in flexible electronics, as well as producing larger prototypes by scaling up the deposition.

“The spray coater we use can be automatically controlled and programmed, so fabricating bigger proof-of-concept panels will be relatively simple,” he said.

Caption: The ultra-thin clear coatings are made with a new spray-on method that is fast, cost-effective and scalable. Credit: RMIT University

That is an impressive level of transparency. As per usual, here’s a link to and a citation for the paper (should you wish to explore further),

Ultrasonic Spray Pyrolysis of Antimony‐Doped Tin Oxide Transparent Conductive Coatings by Jaewon Kim, Billy J. Murdoch, James G. Partridge, Kaijian Xing, Dong‐Chen Qi, Josh Lipton‐Duffin, Christopher F. McConville, Joel van Embden, Enrico Della Gaspera. Advanced Materials Interfaces DOI: https://doi.org/10.1002/admi.202000655 First published: 05 August 2020

This paper is behind a paywall.

View Dynamic Glass—intelligent windows sold commercially

At last, commercially available ‘smart’, that is, electrochromic windows.

An April 17, 2018 article by Conor Shine for Dallas News describes a change at the Dallas Fort Worth (DFW) International Airport that has cooled things down,

At DFW International Airport, the coolest seats in the house can be found near Gate A28.

That’s where the airport, working with California-based technology company View, has replaced a bank of tarmac-facing windows with panes coated in microscopic layers of electrochromic ceramic that significantly reduce the amount of heat and glare coming into the terminal.

The technology, referred to as dynamic glass, uses an electrical current to change how much light is let in and has been shown to reduce surface temperatures on gate area seats and carpets by as much as 15 degrees compared to standard windows. All that heat savings add up, with View estimating its product can cut energy costs by as much as 20 percent when the technology is deployed widely in a building.

At DFW Airport, the energy bill runs about $18 million per year, putting the potential savings from dynamic glass into the hundreds of thousands, or even millions of dollars, annually.

Besides the money, it’s an appealing set of characteristics for DFW Airport, which is North America’s only carbon-neutral airport and regularly ranks among the top large airports for customer experience in the world.

After installing the dynamic glass near Gate A28 and a nearby Twisted Root restaurant in September at a cost of $49,000, the airport is now looking at ordering more for use throughout its terminals, although how many and at what cost hasn’t been finalized yet.

On a recent weekday morning, the impact of the dynamic glass was on full display. As sunlight beamed into Gate A25, passengers largely avoided the seats near the standard windows, favoring shadier spots a bit further into the terminal.

A few feet away, the bright natural light takes on a subtle blue hue and the temperature near the windows is noticeably cooler. There, passengers seemed to pay no mind to sitting in the sun, with window-adjacent seats filling up quickly.

As View’s Jeff Platón, the company’s vice president of marketing, notes in the video, there are considerable savings to be had when you cut down on air conditioning,

View’s April 17, 2018 news release (PDF) about a study of their technology in use at the airport provides more detail,

View®, the leader in dynamic glass, today announced the results of a study on the impact of in-terminal passenger experience and its correlation to higher revenues and reduced operational expenses.The study, conducted at Dallas Fort Worth International Airport (DFW), found that terminal windows fitted with View Dynamic Glass overwhelmingly improved passenger comfort over conventional glass, resulting in an 83 percent increase in passenger dwell time at a preferred gate seat and a 102 percent increase in concession spending. The research study was conducted by DFW Airport, View, Inc., and an independent aviation market research group.

It’s been a long time (I’ve been waiting about 10 years) but it seems that commercially available ‘smart’ glass is here—at the airport, anyway.

ht/ April 20, 2018 news item on phys.org

‘Smart’ windows from Australia

My obsession with smart windows has been lying dormant until now. This February 25, 2018 RMIT University (Australia) press release on EurekAlert has reawkened it,

Researchers from RMIT University in Melbourne Australia have developed a new ultra-thin coating that responds to heat and cold, opening the door to “smart windows”.

The self-modifying coating, which is a thousand times thinner than a human hair, works by automatically letting in more heat when it’s cold and blocking the sun’s rays when it’s hot.

Smart windows have the ability to naturally regulate temperatures inside a building, leading to major environmental benefits and significant financial savings.

Lead investigator Associate Professor Madhu Bhaskaran said the breakthrough will help meet future energy needs and create temperature-responsive buildings.

“We are making it possible to manufacture smart windows that block heat during summer and retain heat inside when the weather cools,” Bhaskaran said.

“We lose most of our energy in buildings through windows. This makes maintaining buildings at a certain temperature a very wasteful and unavoidable process.

“Our technology will potentially cut the rising costs of air-conditioning and heating, as well as dramatically reduce the carbon footprint of buildings of all sizes.

“Solutions to our energy crisis do not come only from using renewables; smarter technology that eliminates energy waste is absolutely vital.”

Smart glass windows are about 70 per cent more energy efficient during summer and 45 per cent more efficient in the winter compared to standard dual-pane glass.

New York’s Empire State Building reported energy savings of US$2.4 million and cut carbon emissions by 4,000 metric tonnes after installing smart glass windows. This was using a less effective form of technology.

“The Empire State Building used glass that still required some energy to operate,” Bhaskaran said. “Our coating doesn’t require energy and responds directly to changes in temperature.”

Co-researcher and PhD student Mohammad Taha said that while the coating reacts to temperature it can also be overridden with a simple switch.

“This switch is similar to a dimmer and can be used to control the level of transparency on the window and therefore the intensity of lighting in a room,” Taha said. “This means users have total freedom to operate the smart windows on-demand.”

Windows aren’t the only clear winners when it comes to the new coating. The technology can also be used to control non-harmful radiation that can penetrate plastics and fabrics. This could be applied to medical imaging and security scans.

Bhaskaran said that the team was looking to roll the technology out as soon as possible.

“The materials and technology are readily scalable to large area surfaces, with the underlying technology filed as a patent in Australia and the US,” she said.

The research has been carried out at RMIT University’s state-of-the-art Micro Nano Research Facility with colleagues at the University of Adelaide and supported by the Australian Research Council.

How the coating works

The self-regulating coating is created using a material called vanadium dioxide. The coating is 50-150 nanometres in thickness.

At 67 degrees Celsius, vanadium dioxide transforms from being an insulator into a metal, allowing the coating to turn into a versatile optoelectronic material controlled by and sensitive to light.

The coating stays transparent and clear to the human eye but goes opaque to infra-red solar radiation, which humans cannot see and is what causes sun-induced heating.

Until now, it has been impossible to use vanadium dioxide on surfaces of various sizes because the placement of the coating requires the creation of specialised layers, or platforms.

The RMIT researchers have developed a way to create and deposit the ultra-thin coating without the need for these special platforms – meaning it can be directly applied to surfaces like glass windows.

Here’s a link to and a citation for the paper,

Insulator–metal transition in substrate-independent VO2 thin film for phase-change device by Mohammad Taha, Sumeet Walia, Taimur Ahmed, Daniel Headland, Withawat Withayachumnankul, Sharath Sriram, & Madhu Bhaskaran. Scientific Reportsvolume 7, Article number: 17899 (2017) doi:10.1038/s41598-017-17937-3 Published online: 20 December 2017

This paper is open access.

For anyone interested in more ‘smart’ windows, you can try that search term or ‘electrochromic’, ‘photochromic’, and ‘thermochromic’ , as well.

Self-shading electrochromic windows from the Massachusetts Institute of Technology

It’s been a while since I’ve had a story about electrochromic windows and I’ve begun to despair that they will ever reach the marketplace. Happily, the Massachusetts Institute of Technology (MIT) has supplied a ray of light (intentional wordplay). An Aug. 11, 2016 news item on Nanowerk makes the announcement,

A team of researchers at MIT has developed a new way of making windows that can switch from transparent to opaque, potentially saving energy by blocking sunlight on hot days and thus reducing air-conditioning costs. While other systems for causing glass to darken do exist, the new method offers significant advantages by combining rapid response times and low power needs.

Once the glass is switched from clear to dark, or vice versa, the new system requires little to no power to maintain its new state; unlike other materials, it only needs electricity when it’s time to switch back again.

An Aug. 11, 2016 MIT news release (also on EurekAlert), which originated the news item, explains the technology in more detail,

The new discovery uses electrochromic materials, which change their color and transparency in response to an applied voltage, Dinca [MIT professor of chemistry Mircea Dinca] explains. These are quite different from photochromic materials, such as those found in some eyeglasses that become darker when the light gets brighter. Such materials tend to have much slower response times and to undergo a smaller change in their levels of opacity.

Existing electrochromic materials suffer from similar limitations and have found only niche applications. For example, Boeing 787 aircraft have electrochromic windows that get darker to prevent bright sunlight from glaring through the cabin. The windows can be darkened by turning on the voltage, Dinca says, but “when you flip the switch, it actually takes a few minutes for the window to turn dark. Obviously, you want that to be faster.”

The reason for that slowness is that the changes within the material rely on a movement of electrons — an electric current — that gives the whole window a negative charge. Positive ions then move through the material to restore the electrical balance, creating the color-changing effect. But while electrons flow rapidly through materials, ions move much more slowly, limiting the overall reaction speed.

The MIT team overcame that by using sponge-like materials called metal-organic frameworks (MOFs), which can conduct both electrons and ions at very high speeds. Such materials have been used for about 20 years for their ability to store gases within their structure, but the MIT team was the first to harness them for their electrical and optical properties.

The other problem with existing versions of self-shading materials, Dinca says, is that “it’s hard to get a material that changes from completely transparent to, let’s say, completely black.” Even the windows in the 787 can only change to a dark shade of green, rather than becoming opaque.

In previous research on MOFs, Dinca and his students had made material that could turn from clear to shades of blue or green, but in this newly reported work they have achieved the long-sought goal of producing a coating that can go all the way from perfectly clear to nearly black (achieved by blending two complementary colors, green and red). The new material is made by combining two chemical compounds, an organic material and a metal salt. Once mixed, these self-assemble into a thin film of the switchable material.

“It’s this combination of these two, of a relatively fast switching time and a nearly black color, that has really got people excited,” Dinca says.

The new windows have the potential, he says, to do much more than just preventing glare. “These could lead to pretty significant energy savings,” he says, by drastically reducing the need for air conditioning in buildings with many windows in hot climates. “You could just flip a switch when the sun shines through the window, and turn it dark,” or even automatically make that whole side of the building go dark all at once, he says.

While the properties of the material have now been demonstrated in a laboratory setting, the team’s next step is to make a small-scale device for further testing: a 1-inch-square sample, to demonstrate the principle in action for potential investors in the technology, and to help determine what the manufacturing costs for such windows would be.

Further testing is also needed, Dinca says, to demonstrate what they have determined from preliminary testing: that once the switch is flipped and the material changes color, it requires no further power to maintain its new state. No extra power is needed until the switch is flipped to turn the material back to its former state, whether clear or opaque. Many existing electrochromic materials, by contrast, require a continuous voltage input.

In addition to smart windows, Dinca says, the material could also be used for some kinds of low-power displays, similar to displays like electronic ink (used in devices such as the Kindle and based on MIT-developed technology) but based on a completely different approach.

Not surprisingly perhaps, the research was partly funded by an organization in a region where such light-blocking windows would be particularly useful: The Masdar Institute, based in the United Arab Emirates, through a cooperative agreement with MIT. The research also received support from the U.S. Department of Energy, through the Center for Excitonics, an Energy Frontier Center.

Here’s a link to and a citation for the paper,

Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs by Khalid AlKaabi, Casey R. Wade, Mircea Dincă. Chem, Volume 1, Issue 2, 11 August 2016, Pages 264–272 doi:10.1016/j.chempr.2016.06.013

This paper is behind a paywall.

For those curious about the windows, there’s this .gif from MIT,

MIT_ElectrochromicWindows

Smart windows need anti-aging treatments

I’ve long been interested in electrochromic windows and this is the first I’ve heard of a problem with limited lifespans. Here’s more from an Oct. 1, 2015 news item on Nanowerk (Note: A link has been removed),

Electrochromic windows, so-called ‘smart windows’, share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University [Sweden] have now worked out an entirely new way to rejuvenate smart windows which have started to show signs of age. The study, published in Nature Materials (“Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films”), may open the way to other areas of application.

An Oct. 1, 2015 Uppsala University press release (also on EurekAlert), which originated the new item, describes previous work on electrochromic windows to provide context for the current research,

The electrochromic smart windows are controlled electrically. This kind of window is the result of research carried out at Uppsala University. Commercial production has recently been started by the company ChromoGenics AB.

The electrochromic smart window is made up of a series of thin layers on top of each other. The most important of these are two layers of tungsten oxide and nickel oxide, both about a third of a micrometer thick. They are separated by an electrolyte layer. The window’s opacity to visible light and solar energy varies when an electrical current flows between the oxide layers.

“The principle is the same as for an electric battery. Here the tungsten-oxide is the cathode and the nickel-oxide the anode. Opacity depends on how much the ‘battery’ is charged,” says Rui-Tao Wen, a doctoral student who carried out the study as part of his thesis.

The lifespan of both electric batteries and electrochromic smart windows is a well-known problem. They need to work after being charged and discharged many times if they are to be really profitable.

In the study, the researchers show that an electrochromic tungsten oxide layer which has been charged and discharged many times and has started to lose its capacity can be restored to its former high capacity. This is achieved by running a weak electric current through it while it is in light mode. This takes about an hour. In this way, the electric charge which has ‘fastened’ in the material is removed and the tungsten oxide layer is like new again.

“This is a new way to rejuvenate smart windows so that they last much longer. And the same principle might perhaps be used for electric batteries,” says Claes-Göran Granqvist, senior professor at the Ångström Laboratory, Uppsala University and one of the authors of the study.

Here’s a link to and a citation for the paper,

Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films by Rui-Tao Wen, Claes G. Granqvist, & Gunnar A. Niklasson. Nature Materials 14, 996–1001 (2015) doi:10.1038/nmat4368 Published online 10 August 2015

This paper is behind a paywall.

Smart windows from Texas (US)

I’ve been waiting for ‘smart’ windows and/or self-cleaning windows since 2008. While this research on ‘smart’ windows at the University of Texas at Austin looks promising I suspect it will be years before these things are in the marketplace. A July 22, 2015 news item on Nanotechnology Now announces the latest research,

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for heating and cooling buildings.

In 2013, chemical engineering professor Delia Milliron and her team became the first to develop dual-band electrochromic materials that blend two materials with distinct optical properties for selective control of visible and heat-producing near-infrared light (NIR). In a 2013 issue of Nature, Milliron’s research group demonstrated how, using a small jolt of electricity, a nanocrystal material could be switched back and forth, enabling independent control of light and energy.

A July 23, 2015 University of Texas at Austin news release, which originated the news item, provides more details about the research which has spawned two recently published papers,

The team now has engineered two new advancements in electrochromic materials — a highly selective cool mode and a warm mode — not thought possible several years ago.

The cool mode material is a major step toward a commercialized product because it enables control of 90 percent of NIR and 80 percent of the visible light from the sun and takes only minutes to switch between modes. The previously reported material could require hours.

To achieve this high performance, Milliron and a team, including Cockrell School postdoctoral researcher Jongwook Kim and collaborator Brett Helms of the Lawrence Berkeley National Lab, developed a new nanostructured architecture for electrochromic materials that allows for a cool mode to block near-infrared light while allowing the visible light to shine through. This could help reduce energy costs for cooling buildings and homes during the summer. The researchers reported the new architecture in Nano Letters on July 20.

“We believe our new architected nanocomposite could be seen as a model material, establishing the ideal design for a dual-band electrochromic material,” Milliron said. “This material could be ideal for application as a smart electrochromic window for buildings.”

In the paper, the team demonstrates how the new material can strongly and selectively modulate visible light and NIR by applying a small voltage.

To optimize the performance of electrochromics for practical use, the team organized the two components of the composite material to create a porous interpenetrating network. The framework architecture provides channels for transport of electronic and ionic change. This organization enables substantially faster switching between modes.
Smart Window

The researchers are now working to produce a similarly structured nanocomposite material by simple methods, suitable for low-cost manufacturing.

In a second research paper, Milliron and her team, including Cockrell School graduate student Clayton Dahlman, have reported a proof-of-concept demonstrating how they can achieve optical control properties in windows from a well-crafted, single-component film. The concept includes a simple coating that creates a new warm mode, in which visible light can be blocked, while near-infrared light can enter. This new setting could be most useful on a sunny winter day, when an occupant would want infrared radiation to pass into a building for warmth, but the glare from sunlight to be reduced.

In this paper, published in the Journal of the American Chemical Society, Milliron proved that a coating containing a single component ­— doped titania nanocrystals — could demonstrate dynamic control over the transmittance of solar radiation. Because of two distinct charging mechanisms found at different applied voltages, this material can selectively block visible or infrared radiation.

“These two advancements show that sophisticated dynamic control of sunlight is possible,” Milliron said. “We believe our deliberately crafted nanocrystal-based materials could meet the performance and cost targets needed to progress toward commercialization of smart windows.”

Interestingly, the news release includes this statement,

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest. The lead UT investigator involved with this project, Delia Milliron, is the chief scientific officer and owns an equity position in Heliotrope Technologies, an early-stage company developing new materials and manufacturing processes for electrochromic devices with an emphasis on energy-saving smart windows. Milliron is associated with patents at Lawrence Berkeley National Laboratory licensed to Heliotrope Technologies. Collaborator Brett Helms serves on the scientific advisory board of Heliotrope and owns equity in the company.

Here are links to and citations for the two papers,

Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance by Jongwook Kim, Gary K. Ong, Yang Wang, Gabriel LeBlanc, Teresa E. Williams, Tracy M. Mattox, Brett A. Helms, and Delia J. Milliron. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.5b02197 Publication Date (Web): July 20, 2015

Copyright © 2015 American Chemical Society

Spectroelectrochemical Signatures of Capacitive Charging and Ion Insertion in Doped Anatase Titania Nanocrystals by Clayton J. Dahlman, Yizheng Tan, Matthew A. Marcus, and Delia J. Milliron. J. Am. Chem. Soc., 2015, 137 (28), pp 9160–9166 DOI: 10.1021/jacs.5b04933 Publication Date (Web): July 8, 2015

Copyright © 2015 American Chemical Society

These papers are behind paywalls.

Smarter ‘smart’ windows

It seems to me we may have to find a new way to discuss ‘smart’ windows as there’s only one more category after the comparative  ‘smarter’ and that’s the superlative ‘smartest’. Lawrence Berkeley National Laboratory (Berkeley Lab), please, let’s stop the madness now! That said, the Berkeley Lab issued an Aug. 14, 2013 news release  (also on EurekAlert) about it’s latest work on raising the IQ of smart windows,

Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed a new material to make smart windows even smarter. The material is a thin coating of nanocrystals embedded in glass that can dynamically modify sunlight as it passes through a window. Unlike existing technologies, the coating provides selective control over visible light and heat-producing near-infrared (NIR) light, so windows can maximize both energy savings and occupant comfort in a wide range of climates.

Milliron’s research group is already well known for their smart-window technology that blocks NIR without blocking visible light. The technology hinges on an electrochromic effect, where a small jolt of electricity switches the material between NIR-transmitting and NIR-blocking states. This new work takes their approach to the next level by providing independent control over both visible and NIR light. The innovation was recently recognized with a 2013 R&D 100 Award and the researchers are in the early stages of commercializing their technology.

Independent control over NIR light means that occupants can have natural lighting indoors without unwanted thermal gain, reducing the need for both air-conditioning and artificial lighting. The same window can also be switched to a dark mode, blocking both light and heat, or to a bright, fully transparent mode.

“We’re very excited about the combination of unique optical function with the low-cost and environmentally friendly processing technique,” said Llordés, a project scientist working with Milliron. “That’s what turns this ‘universal smart window’ concept into a promising competitive technology.”

Here’s the specific technology that’s been developed, from the news release,

At the heart of their technology is a new “designer” electrochromic material, made from nanocrystals of indium tin oxide embedded in a glassy matrix of niobium oxide. The resulting composite material combines two distinct functionalities—one providing control over visible light and the other, control over NIR—but it is more than the sum of its parts. The researchers found a synergistic interaction in the tiny region where glassy matrix meets nanocrystal that increases the potency of the electrochromic effect, which means they can use thinner coatings without compromising performance. The key is that the way atoms connect across the nanocrystal-glass interface causes a structural rearrangement in the glass matrix. The interaction opens up space inside the glass, allowing charge to move in and out more readily. Beyond electrochromic windows, this discovery suggests new opportunities for battery materials where transport of ions through electrodes can be a challenge.

I notice they’re using indium, one of the ‘rare earths’. Last I heard, China, one of the main sources for ‘rare earths’, was limiting its exports so this seems like an odd choice of material. Perhaps now they’ve proved this can be done,  they’ll research for easily available substitutes. Here’s a link to and a citation for the published paper,

Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites by Anna Llordés, Guillermo Garcia, Jaume Gazquez, & Delia J. Milliron. Nature 500, 323–326 (15 August 2013) doi:10.1038/nature12398 Published online 14 August 2013

Finally, the researchers have provided an illustration of indium tin oxide nanocrystals,

Nanocrystals of indium tin oxide (shown here in blue) embedded in a glassy matrix of niobium oxide (green) form a composite material that can switch between NIR-transmitting and NIR-blocking states with a small jolt of electricity. A synergistic interaction in the region where glassy matrix meets nanocrystal increases the potency of the electrochromic effect. Courtesy Berkeley Lab

Nanocrystals of indium tin oxide (shown here in blue) embedded in a glassy matrix of niobium oxide (green) form a composite material that can switch between NIR-transmitting and NIR-blocking states with a small jolt of electricity. A synergistic interaction in the region where glassy matrix meets nanocrystal increases the potency of the electrochromic effect. Courtesy Berkeley Lab