Tag Archives: Emory University

Looking at glass on the molecular scale

Glass isn’t transparent (at the molecular scale) as it’s cooling and scientists have been curious about this transition from liquid to glass state. According to an Oct. 15, 2012 posting by Carol Clark for Emory University’s eScienceCommons, a team from Emory University (and New York University)  has cracked this mystery. First, here’s more about the mystery (from Clark’s article)

Scientists fully understand the process of water turning to ice. As the temperature cools, the movement of the water molecules slows. At 32 F, the molecules lock into crystal lattices, solidifying into ice. In contrast, the molecules of glasses do not crystallize.The movement of the glass molecules slows as the temperature cools, but they never lock into crystal patterns. Instead, they jumble up and gradually become glassier, or more viscous. No one understands exactly why.

The phenomenon leaves physicists to ponder the molecular question of whether glass is a solid, or merely an extremely slow-moving liquid.

This purely technical physics question has stoked a popular misconception: That the glass in the windowpanes of some centuries-old buildings is thicker at the bottom because the glass flowed downward over time.

“The real reason the bottom is thicker is because they hadn’t yet learned how to make perfectly flat panes of glass,” Weeks says [Emory physicist Eric Weeks]. “For practical purposes, glass is a solid and it will not flow, even over centuries. But there is a kernel of truth in this urban legend: Glasses are different than other solid materials.”

Speaking more technically about the transition,

“Cooling a glass from a liquid into a highly viscous state fundamentally changes the nature of particle diffusion,” says Emory physicist Eric Weeks, whose lab conducted the research. “We have provided the first direct observation of how the particles move and tumble through space during this transition, a key piece to a major puzzle in condensed matter physics.”

Weeks specializes in “soft condensed materials,” substances that cannot be pinned down on the molecular level as a solid or liquid, including everyday substances such as toothpaste, peanut butter, shaving cream, plastic and glass.

The scientists have prepared a video animation of what they believing is occurring as glass cools (no sound),

Here’s what the movie depicts (from the Clark article),

The movie and data from the experiment provide the first clear picture of the particle dynamics for glass formation. As the liquid grows slightly more viscous, both rotational and directional particle motion slows. The amount of rotation and the directional movements of the particles remain correlated.

“Normally, these two types of motion are highly coupled,” Weeks says. “This remains true until the system reaches a viscosity on the verge of being glass. Then the rotation and directional movements become decoupled: The rotation starts slowing down more.”

He uses a gridlocked parking lot as an analogy for how the particles are behaving. “You can’t turn your car around, because it’s not a sphere shape and you would bump into your neighbors. You have to wait until a car in front of you moves, and then you can drive a bit in that direction. This is directional movement, and if you can make a bunch of these, you may eventually be able to turn your car. But turning in a crowded parking lot is still much harder than moving in a straight line.”

There’s more about the work and team in Clark’s article. H/T to the Oct. 16, 2012 news item on Nanowerk for alerting me to this work. You can find the article the researchers have written at the Proceedings of the National Academy of Sciences (PNAS),

Decoupling of rotational and translational diffusion in supercooled colloidal fluids by Kazem V. Edmond, Mark T. Elsesser, Gary L. Hunter, David J. Pine, and Eric R. Weeks. Published online before print October 15, 2012, doi: 10.1073/pnas.1203328109 PNAS October 15, 2012

The article is behind a paywall.

Water, water, everywhere in cages, prisms, and books according to new study

Researchers at the University of California at San Diego (UCSD) and at Emory University (Georgia, US) have a better understanding of hexamers found in the smallest of water droplets. From the Aug.16, 2012 news item on Nanowerk,

A new study by researchers at the University of California, San Diego, and Emory University has uncovered fundamental details about the hexamer structures that make up the tiniest droplets of water, the key component of life – and one that scientists still don’t fully understand.

The Aug. 15, 2012 news release by Jan Zverina for UCSD offers an explanation for why scientists would put effort into understanding the structure of tiny water droplets,

“About 60% of our bodies are made of water that effectively mediates all biological processes,” said Francesco Paesani, one of the paper’s corresponding authors who is an assistant professor in the Department of Chemistry and Biochemistry at UC San Diego and a computational researcher with the university’s San Diego Supercomputer Center (SDSC). “Without water, proteins don’t work and life as we know it wouldn’t exist. Understanding the molecular properties of the hydrogen bond network of water is the key to understanding everything else that happens in water. And we still don’t have a precise picture of the molecular structure of liquid water in different environments.”

Researchers know that the unique properties of water are due to its capability of forming a highly flexible but still dense hydrogen bond network which adapts according to the surrounding environment. As described in the JACS [Journal of the American Chemical Society] paper, researchers have determined the relative populations of the different isomers of the water hexamer as they assemble into various configurations called ‘cage’, ‘prism’, and ‘book’.

Here in more technical terms is a discussion about the importance of water hexamers,

The water hexamer is considered the smallest drop of water because it is the smallest water cluster that is three dimensional, i.e., a cluster where the oxygen atoms of the molecules do not lie on the same plane. As such, it is the prototypical system for understanding the properties of the hydrogen bond dynamics in the condensed phases because of its direct connection with ice, as well as with the structural arrangements that occur in liquid water.

This system also allows scientists to better understand the structure and dynamics of water in its liquid state, which plays a central role in many phenomena of relevance to different areas of science, including physics, chemistry, biology, geology, and climate research. For example, the hydration structure around proteins affects their stability and function, water in the active sites of enzymes affects their catalytic power, and the behavior of water adsorbed on atmospheric particles drives the formation of clouds.

The scientists have provided an illustration of two water hexamer structures,

Three-dimensional representations of the prism (left) and cage (right) structures of the water hexamer, the smallest drop of water. The mesh contours represent the actual quantum-mechanical densities of the oxygen (red) and hydrogen (white) atoms. The small yellow spheres represent the hydrogen bonds between the six water molecules. Characterizing the hydrogen-bond topology of the water hexamer at the molecular level is key to understanding the unique and often surprising properties of liquid water, our life matrix. Images courtesy of Volodymyr Babin and Francesco Paesani, UC San Diego.

Here’s the full citation for the research paper if you want to follow up on it or you can read more in either the news item or news release,

The Water Hexamer: Cage, Prism, or Both. Full Dimensional Quantum Simulations Say Both; Yimin Wang, Volodymyr Babin, Joel M. Bowman, and Francesco Paesani; J. Am. Chem. Soc., 2012, 134 (27), pp 11116–11119 DOI: 10.1021/ja304528m

The article is behind a paywall.

Public opinion doesn’t shake easily; Wilson talk on Artificial Intelligence

Over on the Framing Science blog, Matthew C. Nisbet has posted about the impact that ClimateGate has not had on public opinion about climate change. From the post,

The full report [by Jon Krosnick, professor at Stanford University, on most recent public opinion poll about cljmate change and ClimateGate] should be read, but below I feature several key conclusions. Despite alarm over the presumed impact of ClimateGate, Krosnick’s  analysis reveals very little influence for this event. More research is likely to come on this issue and this is just the first systematic analysis to be released.

Yet there is an even more interesting question emerging here than the impact of ClimateGate on public opinion: If communication researchers have difficulty discerning a meaningful impact for ClimateGate, why do so many scientists and advocates continue to misread public opinion on climate change and to misunderstand the influence of the news media? As I argue below, an additional object of study in this case should be the factors shaping the perceptions of scientists and advocates.

—>Krosnick’s analysis estimates that the percentage of Americans who believe in global warming has only dropped 5% since 2008 and that ClimateGate has had no meaningful impact on trust in climate scientists which stands at 70% (essentially the same as the 68% level in 2008).

A 5% drop isn’t to be sneezed at but taken into perspective it is predictable and, assuming these are ‘good’ figures, then in the short term, there has not been an appreciable impact. Makes sense, doesn’t it? After all, most people don’t change their opinions that easily. Oh they might have a crisis of confidence or a momentary hysterical response (I confess) but most of our opinions about important issues tend to persist over time and in the face of contradictory evidence.

Nisbet’s post makes reference to some other work, this time on scientists’ ideologies (liberal or conservative [not the Canadian political parties]) done by the Pew Research Center and released in July 2009. (Nisbet’s comments on ideology and scientists here and the Pew Research Center study here) Intriguingly, there’s a larger percentage of scientists (50%) self-identified as liberal than members of the general public (20%).

According to work published shortly after and mentioned on this blog here in a comment about the public’s focus on the benefits of nanotechnology while scientists focus on risks and economic value, by Elizabeth Corley (Arizona State University), this difference in focus may have something to do with ideology,  from the news release,

Decision-makers often rely on the input of scientists when setting policies on nanotechnology because of the high degree of scientific uncertainty – and the lack of data – about its risks, Corley says.

“This difference in the way nanoscientists and the public think about regulations is important for policymakers (to take into consideration) if they are planning to include both groups in the policymaking process for nanotechnology,” says Corley.

The study also reveals an interesting divide within the group of nanoscientists. Economically conservative scientists were less likely to support regulations, while economically liberal scientists were more likely to do so.

This suggests that a more nuanced approach to measuring public perception may be emerging despite  the rather disappointing meta analysis by Dr. Terre Satterfield of public perceptions about nanotechnology benefits and risks (mentioned on this blog here).

On a completely other note, I recently attended a lecture/presentation by Elizabeth Wilson, professor of Women’s Studies at Emory University (Atlanta, Georgia, US) given at the Green College at the University of British Columbia about artificial intelligence circa the early 1960s, titled, “Extravagance of affect:; How to build an artificial mind. I’m not sure who this lecture was aimed at. While I was deeply thankful for her detailed explanations of basic concepts, presumably people in the field of Women’s Studies wouldn’t have needed so much explanation.  Conversely, her presentation had some gaps where she jumped over things which you can only do if your audience is well versed on the topic.

I haven’t seen much about emotions and artificial intelligence prior to this talk so maybe Wilson is forging into new territory and over time will get better at presenting her material to audiences who are not familiar with her specialty. In the meantime, I’m not sure what to make of her work.

Later this week, I’m hoping to be publishing an interview with Peter Julian the NDP member of Parliament (Canada) who recently tabled a member’s bill on nanotechnology.