Tag Archives: ENPRA

Summary of EHS studies on nanotechnology funded through Europe’s 7th Framework Programme

I was a little shocked to see how many EHS (environment, health, and safety) projects focussed on nanotechnology that the European Union (EU) funded as part of its overarching science funding efforts, the 7th Framework Program, due to be superseded in the near future (2013)) by the Horizon 2020 program. The June 18, 2012 Nanowerk Spotlight article submitted by NanoTrust, Austrian Academy of Sciences provides the reasoning for the EU  effort (Note: I have removed footnotes.),

The Action Plan, presented by the EU Commission in 2004, envisioned integrating “the social dimension into a responsible technology development” and strengthening efforts related to “health, safety, environmental aspects and consumer protection“.

This encompassed (1) the systematic study of safety-relevant aspects at the earliest possible date, (2) integrating health- and environment-relevant aspect in research and development, (3) conducting targeted studies on toxicology and ecotoxicology and, finally, (4) adapting risk assessment approaches to nano-specific aspects in all phases of product life-cycles.

The primary goal was to improve the competitiveness of European industry. The draft presented in mid-2011 for the planned research priorities continues this strategic focus.

The EU Parliament had already discussed the Nano Action Plan developed by the Commission before the start of the current Framework Program. From the onset, the relevant parliamentary resolution called for an improved coordination with the Member States and more risk research, consideration of the precautionary principle and a deepened dialogue with citizens.

The EU Parliament clearly felt that the rules require urgent adaptations in order to adequately consider nano-risks: In the resolution of April 2009 the parliamentarians underlined the existence of a considerable “lack of information about the use and safety of nanomaterials that are already on the market”.

The overall scope of the projects on nanotechnology, materials and production (NMP) funded by the 7th RP is listed at about 3.475 mill. €. According to EU sources, about 102 mill. € were earmarked for safety aspects (nanosafety research).The comparison with the much more modest Nano-EHS-budget in the past clearly shows the change here (5th RP: about 2.5 mill. €, 6th RP 6 about 30 mill. €).

The publication from where this information was drawn is no.30 in the NanoTrust Dossier series. It was published in May 2012 (from pp. 2-6),

ENNSATOX

Title: Engineered Nanoparticle Impact on Aquatic Environments: Structure, Activity and Toxicology

Coordinator: Andrew Nelson,
Centre for Molecular Nanosciences (CMNS), School of Chemistry, University of Leeds, UK
Duration: July 2009 to July 2012
Project costs: 3,655 mill. €
EU funding: 2,816 mill. €
Homepage: www.ennsatox.eu

The goal of ENNSATOX is to investigate the environmental effects of various synthetic nanoparticles from the time of their release to their potential uptake by organisms, particularly in rivers and lakes. …

ENPRA

Title: Risk Assessment of Engineered Nanoparticles

Coordinator: Lang Tran,
Institute of Occupational Medicine (IOM), Edinburg, UK
Duration: July 2009 to July 2012
Project costs: 5,13 mill. €
EU funding: 3,7 mill. €
Homepage: www.enpra.eu

ENPRA is examining the impacts of selected and commercially used nanomaterials, whereby the different target organs (lungs, cardiovascular system, kidneys etc.) and different mechanisms of damage (see Nano Trust-Dossier 012en) are being determined. …

HINAMOX

Title: Health Impact of Engineered Metal and Metal Oxide Nanoparticles Response, Bioimaging and Distribution at Cellular and Body Level

Coordinator: Sergio E. Moya,
Centro de Investigación Cooperativa en Biomateriales (Spanien)
Duration: October 2009 to October 2012
Project costs: 2.93 mill. €
EU funding: 2.3 mill. €
Homepage: www.hinamox.eu

HINAMOX deals with the impacts of several metal-oxide nanoparticles – TiO2, ZnO, Al2O3, CeO2 etc. – on human health and on biological systems. …

InLiveTox

Title: Intestinal, Liver and Endothelial Nanoparticle Toxicity – development and evaluation of a novel tool for high-throughput data generation

Coordinator: Martha Liley,
CSEM (Centre Suisse d’Electronique et de Microtechnique SA)
Duration: May 2009 to July 2012
Project costs: 3.42 mill. €
EU funding: 2.4 mill. €
Homepage: www.inlivetox.eu

In InLiveTox, an improved in-vitro model is being developed to describe the effects of nanoparticles taken up via food, especially effects on the gastrointestinal tract and the liver.  …

MARINA

Title: Managing Risks of Nanomaterials

Coordinator: Lang Tran,
IOM (Institute of Occupational Medicine) Edinburgh, UK
Duration: November 2011 to November 2015
Project costs: 12.48 Mio. €
EU funding: 9.0 mill. €
Homepage: www.marina-fp7.eu and http://www.iom-world.org

A total of almost 50 industrial companies (including BASF) and scientific facilities are combined in the very large joint project MARINA, coordinated by the Institute of Occupational Medicine of the University of Edinburgh; other organizations that are involved in employee protection and occupational safety are also participating (FIOH/Finland, IST/Switzerland, RIVM/The Netherlands). …

ModNanoTox

Title: Modelling nanoparticle toxicity: principles, methods, novel approaches Toxicology

Coordinator: Eugenia Valsami-Jones,
Natural History Museum, London, UK
Duration: November 2011 to November 2013
Project costs: 1.28 mill. €
EU funding: 1.0 mill. €
Homepage: (under construction) lib.bioinfo.pl/projects/view/32734

The goal of ModNanoTox is to develop welldocumented models on the long-term behavior of synthetic nanoparticles in organisms and in the environment. …

NanEx

Title: Development of Exposure Scenarios for Manufactured Nanomaterials

Coordinator: Martie van Tongeren,
Institute of Occupational Medicine (IOM), Edinburgh UK
Duration: December 2009 to November 2010
Project costs: 1.01 mill. €
EU funding: 0.95 mill. €
Homepage: www.nanex-project.eu, lib.bioinfo.pl/projects/view/12016

In NanEx, a catalog of realistic scenarios is being developed for potential impacts of synthetic nanoparticles at industrial workplaces, of various uses by consumers as well as of delayed releases into the environment. …

NANODEVICE

Title: Modelling Novel Concepts, Methods and Technologies for the Production of Portable, Easy-to-Use Devices for the Measurement and Analysis of Airborne Nanoparticles in Workplace Air

Coordinator: Kai Savolainen,
Finnish Institute for Occupational Health (FIOH), Finland
Duration: April 2009 to April 2013
Project costs: 12.28 mill. €
EU funding: 9.49 mill. €
Homepage: www.nano-device.eu

Due to the lack of robust and inexpensive instruments, the nanoparticle concentrations in the air at the workplace cannot be measured at the present time. NANODEVICE is devoted to studying innovative concepts and practicable methods for identifying synthetic nanomaterials, methods that can also be used at the workplace. …

NanoFATE

Title: Nanoparticle Fate Assessment and Toxicity in the Environment

Coordinator: Klaus Svendsen,
NERC (Centre for Ecology and Hydrology),
Wallingford, UK
Duration: April 2010 to April 2014
Project costs: 3.25 mill. €
EU funding: 2.50 mill. €
Homepage: www.nanofate.eu

NanoFATE is devoted to systematically deepening our knowledge about the behavior and the fate of synthetic nanoparticles that enter the environment. …

Nanogenotox

Title: Towards a method for detecting the potential genotoxicity of nanomaterials

Coordinator: Anses – French Agency for Food, Environmental and Occupational Health Safety
Duration: March 2010 to March 2014
Project costs: 6.0 mill. € EU funding: 2.90 mill. € (as co-funding though the program
EU-Health & Consumers)
Homepage: www.nanogenotox.eu/

Nanogenotox is not directly a part of the 7th RP but rather a Joint Action, about half of which is funded by the participating European states. The task of this project is to study the gene toxicity (i.e. the damaging effect on the genetic material of organisms) of selected nanomaterials. …

NanoHouse

Title: Cycle of Nanoparticle-Based Products used in House-Coating

Coordinator: Francois Tardif,
CEA (Commissariat à l’Énergie Atomique et aux Energies Alternatives), Grenoble, Frankreich
Duration: January 2010 to July 2013
Project costs: 3.1 mill. €
EU funding: 2.4 mill. €
Homepage: www-nanohouse.cea.fr

The task of NanoHouse is to comprehensively evaluate environmentally relevant and health-related effects of nanoproducts used in house construction; the focus is on paints and coatings with TiO2- and nanosilver components, whose impacts and fates are being more closely examined. …

NanoImpactNet

Title: The European Network on the Health and Environmental Impact of Nanomaterials

Coordinator: Michael Riediker,
Institut universitaire romand der Santé au Travail, Schweiz (IST)
Duration: April 2008 to April 2012
Project costs: 3.19 mill. €
EU funding: 2.0 mill. €
Homepage: www.nanoimpactnet.eu

This large network of partner institutes from numerous countries is designed mainly to exchange information about new knowledge as well as knowledge gaps in the health- and environment-related impacts of nanoparticles. …

NanoLyse

Title: Nanoparticles in Food: Analytical Methods for Detection and Characterisation

Coordinator: Stefan Weigel,
RIKILT – Institute of Food Safety, Niederlande
Duration: January 2010 to October 2013
Project costs: 4.05 mill. €
EU funding: 2.95 mill. €
Homepage: www.nanolyse.eu

The goal of NanoLyse is to develop approved methods for analyzing synthetic nanomaterials in food and drinks. …

NANOMMUNE

Title: Comprehensive Assessment of Hazardous Effects of Engineered Nanomaterials on the Immune System Toxicology

Coordinator: Bengt Fadeel,
Karolinsk  Institutet, Stockholm
Duration: September 2008 to September 2011 (completed)
Project costs: 4.31 mill. €
EU funding: 3.36 mill. €
Homepage: www.nanommune.eu

NANOMMUNE examined the influence of synthetic nanomaterials on the immune system and their potential negative health effects. …

NanoPolyTox

Title: Toxicological impact of nanomaterials derived from processing, weathering and recycling of polymer nanocomposites used in various industrial applications

Coordinator: Socorro Vázquez-Campos,
LEITAT Technological Centre, Barcelona, Spain
Duration: May 2010 to May 2013
Project costs: 3.30 mill. €
EU funding: 2.43 mill. €
Homepage: www.nanopolytox.eu

NanoPolyTox is tasked with determining the changes in the physical and toxic properties of three different nanomaterials (nanotubes, nano-clay minerals, metal-oxide nanoparticles) that are used in combination with polymers as filling materials.  …

NanoReTox

Title: The reactivity and toxicity of engineered nanoparticles: risks to the environment and human health

Coordinator: Eugenia Valsami-Jones,
Natural History Museum, London, UK
Duration: December 2008 to December 2012
Project costs: 5.19 mill. €
EU funding: 3.19 mill. €
Homepage: www.nanoretox.eu

NanoReTox is designed to better describe the EHS-risks of synthetic nanomaterials based on new research results. …

NanoSustain

Title: Development of sustainable solutions for nanotechnology-based products based on hazard characterization and LCA

Coordinator: Rudolf Reuther,
NordMilijö AB, Sweden
Duration: May 2010 to May 2013
Project costs: 3.2 mill. €
EU funding: 2.5 mill. €
Homepage: www.nanosustain.eu

NanoSustain is designed to develop innovative solutions for all phases in dealing with nanotechnology products – up until the landfill or recycling stage. Four nanomaterials are being examined in greater detail: nano-cellulose, CNT, nano-TiO2, as well as nano-ZnO. …

NanoTransKinetics

Title: Modelling basis and kinetics of nanoparticle interaction with membranes, uptake into cells, and sub-cellular and inter-compartmental transport

Coordinator: Kenneth Dawson,
University College, Dublin, Ireland
Duration: November 2011 to November 2014
Project costs: 1.3 mill. €
EU funding: 0.99 mill. €
Homepage: www.nanotranskinetics.eu

The aim of NanoTransKinetics is to substantially improve the models used to describe biological (and therefore also toxic) interrelationships between nanoparticles and living organisms.  …

NanoValid

Title: Development of reference methods for hazard identification, risk assessment and LCA of engineered nanomaterials

Coordinator: Rudolf Reuther,
NordMiljö AB, Sweden
Duration: November 2011 to November 2015
Project costs: 13.4 mill. €
EU funding: 9.6 mill. €
Homepage: www.nanovalid.eu

The aim of NanoValid is to develop reference methods and materials to identify and assess the risks of synthetic nanomaterials in close cooperation with the similarly oriented project MARINA (see above). …

NEPHH

Title: Nanomaterials-related environmental pollution and health hazards throughout their life-cycle

Coordinator: EKOTEK S.L. (Spanien)
Duration: September 2009 to September 2012
Project costs: 3.1 mill. €
EU funding: 2.5 mill. €
Homepage: www.nephh-fp7.eu

NEPHH seeks to better estimate the environmental and health-related risks of nanostructures over the course of their use. …

NeuroNano

Title: Do nanoparticles induce neurodegenerative diseases? Understanding the origin of reactive oxidative species and protein aggregation and mis-folding phenomena in the presence of nanoparticles

Coordinator: Kenneth Dawson,
University College, Dublin, Ireland
Duration: February 2009 toFebruary 2012
Project costs: 4.8 mill. €
EU funding: 2.5 mill. €
Homepage: www.neuronano.eu

To date, the full details on the factors that allow nanoparticles to pass the blood-brain barrier are unknown15. NeuroNano examines the effect of nanoparticle size, shape and composition, along with the role of the adsorbed corona of biomolecules (see above). …

QNano

Title: A pan-european infrastructure for quality in nanomaterials safety testing

Coordinator: Kenneth Dawson,
University College, Dublin, Ireland
Duration: February 2011 to February 2015
Project costs: 9.2 mill. €
EU funding: 7.0 mill. €
Homepage: www.qnano-ri.eu

Rather than being devoted to a separate research topic, QNano is designed to interlink and support facilities that provide the necessary infrastructure for investigating and characterizing nanosubstances. …

That’s quite the list, eh?

Nano regulatory frameworks are everywhere!

The scene around nanotechnology regulatory frameworks has been frantic (by comparison with any other time period during the 3 years I’ve been blogging about nano) in the last month or so. This is my second attempt this month at pulling together information about nanotechnology regulatory frameworks (my June 9, 2011 posting).

I’ll start off slow and easy with this roundup of sorts with a brief look at the international scene, move on to US initiatives, offer a brief comment on the Canadian situation, and wrap up with Europe.

International

Dr. Andrew Maynard at the University of Michigan Risk Science Center (UMRSC) blog has written a commentary about the ISO’s (*International Organization for Standardization) latest set of nanotechnology guidelines in his May 27, 2011 posting.  From the posting,

ISO/TR 31321:2011: Nanotechnologies – Nanomaterial risk evaluation is unashamedly based on the Environmental Defense Fund/DuPont Nano Risk Framework. Much of the structure and content reflects that of the original – a testament to the thought and effort that went into the first document. …The ISO report is written in a much tighter style than that of the original document, and loses some of the occasionally long-winded expositions on what should be done and why. And the ISO document is more compact – 66 pages as opposed to 104. But from a comparative reading, surprisingly little has been changed from the 2007 document.

It’s build around a framework of six steps:

  1. describe materials and applications
  2. material profiles
  3. evaluate risks
  4. assess risk management options
  5. decide, document, and act
  6. review and adapt

From the posting,

Inherent to this framework is the need to make situation-specific decisions that are guided by the Technical Report but not necessarily prescribed by it, and the need to constantly review and revise procedures and decisions. This built-in flexibility and adaptability makes ISO/TR 31321 a powerful tool for developing tailored nanomaterial management strategies that are responsive to new information as it becomes available. It also presents an integrative approach to using materials safely, that deals with the need to make decisions under considerable uncertainty by blurring the line between risk assessment and risk management.

Andrew’s view of these guidelines is largely positive and you can get more details and history by viewing his original commentary. (I first mentioned these new ISO guidelines in my May 18, 2011 posting.)

Sticking with the international scene (in this case, ISO), there was a June 13, 2011 news item on Nanowerk about a new ISO general liability classification for nanotechnology and alternative energy (from the news item),

The new classifications to address the growing use of nanotechnology are Nanomaterial Distributors and Nanomaterial Manufacturing. The once-limited use of nanotechnology in electronics and information technology industries is now swiftly permeating the consumer marketplace, from cosmetics to clothing and more. The Nanomaterial Distributors classification applies to risks that sell nanomaterials to others, and the Nanomaterial Manufacturing classification applies to risks that manufacture or engineer nanomaterials for others.

“With heightened interest to reduce the carbon footprint, establish energy independence, and increase the use of renewable resources, alternative power is a priority for many,” said Beth Fitzgerald, vice president of commercial lines and modeling at ISO. “In response to the growing demand for alternative energy, ISO introduced classifications for risks in three main areas: biofuels, solar energy, and wind energy. The new classifications will allow for future evaluation of the loss experience of those emerging markets.”

The biofuels classifications consist of Biofuels Manufacturing and Biofuels Distributors. Since ethanol already has a widespread and accepted use, a further distinction is made between “ethanol” and “biofuels other than ethanol.”

The solar energy classifications include Solar Energy Farms, Solar Energy Equipment Dealers or Distributors, and Solar Energy Equipment Manufacturing. The wind energy classifications include Wind Turbine Contractors – Installation, Service, or Repair and onshore and offshore Wind Farms.

* I have for many years understood that ISO is the International Standards Organization and I see from a note on the UMRSC blog that these days it is the International Organization for Standardization.

US

On the US front, three different agencies have made announcements that in one way or another will have an impact on the nanotechnology regulatory frameworks in that country.

The White House Emerging Technologies Interagency Policy Coordination Committee (ETIPC) recently released a set of principles for the regulation and oversight of nanotechnology applications and guidance for the development and implementation of policies at the agency level. From the June 9, 2011 news item on Nanowerk,

The realization of nanotechnology’s full potential will require continued research and flexible, science-based approaches to regulation that protect public health and the environment while promoting economic growth, innovation, competitiveness, exports, and job creation.

In furtherance of those goals, the White House Emerging Technologies Interagency Policy Coordination Committee (ETIPC) has developed a set of principles (pdf) specific to the regulation and oversight of applications of nanotechnology, to guide the development and implementation of policies at the agency level.

These principles reinforce a set of overarching principles (pdf) for the regulation and oversight of emerging technologies released on March 11, 2011. They also reflect recommendations from a report on nanotechnology (pdf) by the President’s Council of Advisors on Science and Technology. The report encourages Federal support for the commercialization of nanotech products and calls for the development of rational, science- and risk-based regulatory approaches that would be based on the full array of a material’s properties and their plausible risks and not simply on the basis of size alone.

You can read more about the guidelines at Nanowerk or on the Environemental Expert website here.

Back over on the UMRSC blog, Dr. Andrew Maynard had these comments in his June 13, 2011 posting,

In a joint memorandum, the Office of Science and Technology Policy, the Office of Management and Budget and the Office of the United States Trade Representative laid out Policy Principles for the U.S. Decision Making Concerning Regulations and Oversight of Applications of Nanotechnology and Nanomaterials.

Reading through it, a number of themes emerge, including:

  • Existing regulatory frameworks provide a firm foundation for the oversight of nanomaterials, but there is a need to respond to new scientific evidence on potential risks, and to consider administrative and legal modifications to the regulatory landscape should the need arise.
  • Regulatory action on nanomaterials should be based on scientific evidence of risk, and not on definitions of materials that do not necessarily reflect the evidence-based likelihood of a material causing harm.
  • There should be no prior judgement on whether nanomaterials are intrinsically benign or harmful, in the absence of supporting scientific evidence.
  • Transparency and communication are important to ensuring effective evidence-based regulation.

Overall, this is a strong set of policy principles that lays the groundwork for developing regulation that is grounded in science and not swayed by speculative whims, and yet is responsive and adaptive to emerging challenges. Gratifyingly, the memorandum begins to touch on some of the concerns I have expressed previously about approaches to nanomaterial regulation that seem not to be evidence-based. There is a reasonable chance that they will help move away from the dogma that engineered nanomaterials should be regulated separately because they are new, to a more nuanced and evidence-based approach to ensuring the safe use of increasingly sophisticated materials. Where it perhaps lacks is in recognizing the importance of other factors in addition to science in crafting effective regulation, and in handling uncertainty in decision making.

June 9, 2011 was quite the day as in addition to the White House documents, the US Environmental Protection Agency (EPA) and the US Food and Drug Administration (FDA) both announced public consultations on nanotechnology regulation.

From the June 9, 2011 news item on Nanowerk about the US EPA public consultation,

The U.S. Environmental Protection Agency announced today it plans to obtain information on nanoscale materials in pesticide products. Under the requirements of the law, EPA will gather information on what nanoscale materials are present in pesticide products to determine whether the registration of a pesticide may cause unreasonable adverse effects on the environment and human health. The proposed policy will be open for public comment.

“We want to obtain timely and accurate information on what nanoscale materials may be in pesticide products, “said Steve Owens assistant administrator for EPA’s Office of Chemical Safety and Pollution Prevention. “This information is needed for EPA to meet its requirement under the law to protect public health and the environment.”

Comments on the Federal Register notice will be accepted until 30 days after publication. The notice will be available at www.regulations.gov in docket number EPA–HQ–OPP–2010-0197. More information or to read the proposed notice: http://www.epa.gov/pesticides/regulating/nanotechnology.html [Pesticides; Policies Concerning Products Containing Nanoscale Materials; Opportunity for Public Comment]

The US FDA has taken a more complicated approach to its public consultation with two notices being issued about the same consultation. The June 9, 2011 news item on Nanowerk had this to say,

The U.S. Food and Drug Administration today released draft guidance to provide regulated industries with greater certainty about the use of nanotechnology, which generally involves materials made up of particles that are at least one billionth of a meter in size. The guidance outlines the agency’s view on whether regulated products contain nanomaterials or involve the application of nanotechnology.

The draft guidance, “Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology”, is available online and open for public comment. It represents the first step toward providing regulatory clarity on the FDA’s approach to nanotechnology.

Specifically, the agency named certain characteristics – such as the size of nanomaterials used and the exhibited properties of those materials – that may be considered when attempting to identify applications of nanotechnology in regulated products.

“With this guidance, we are not announcing a regulatory definition of nanotechnology,” said Margaret A. Hamburg, MD, Commissioner of Food and Drugs. “However, as a first step, we want to narrow the discussion to these points and work with industry to determine if this focus is an appropriate starting place.”

Then there was a June 15, 2011 news item on Nanowerk offering more details about the draft guidance announcement of June 9, 2011,

The guidelines list things that might be considered when deciding if nanotechnology was used on a product regulated by FDA—including the size of the nanomaterials that were used, and what their properties are.

And FDA wants industry leaders and the public to weigh-in.

Nanotechnology—the science of manipulating materials on a scale so small that it can’t be seen with a regular microscope—could have a broad range of applications, such as increasing the effectiveness of a particular drug or improving the packaging of food or cosmetics. “Nanotechnology is an emerging technology that has the potential to be used in a broad array of FDA-regulated medical products, foods, and cosmetics,” says Carlos Peña, director of FDA’s emerging technology programs. “But because materials in the nanoscale dimension may have different chemical, physical, or biological properties from their larger counterparts, FDA is monitoring the technology to assure such use is beneficial.”

In other words, using nanotechnology can change the way a product looks or operates, Peña says.

Although the technology is still evolving, it’s already in use as display technology for laptop computers, cell phones, and digital cameras. In the medical community, a number of manufacturers have used nanotechnology in:

  • Drugs
  • Medical imaging
  • Antimicrobial materials
  • Medical devices
  • Sunscreens

Andrew Maynard in his previously noted June 13, 2011 posting on on the UMRSC blog had this to say  about the EPA’s draft document,

This is a long and somewhat convoluted document, that spends some time outlining what the agency considers is an engineered nanomaterial, and reviewing nanomaterial hazard data.

Reading the document, EPA still seems somewhat tangled up with definitions of engineered nanomaterials. After outlining conventional attributes associated with engineered nanomaterials, including structures between ~1 – 100 nm and unique or novel properties, the document states,

“These elements do not readily work in a regulatory context because of the high degree of subjectivity involved with interpreting such phrases as “unique or novel properties” or “manufactured or engineered to take advantage of these properties” Moreover the contribution of these subjective elements to risk has not been established.”

This aligns with where my own thinking has been moving in recent years. Yet following this statement, the document reverts back to considering nanoparticles between 1 – 100 nm as the archetypal nanomaterial, and intimates “novel” properties such as “larger surface area per unit volume and/or quantum effects” as raising new risk concerns.

Canadian segue

I’ll point out here that Health Canada’s Interim Policy definition also adheres to the 1 to 100 nm definition for a nanomaterial, a concern I expressed in my submission to the public consultation held last year. Interestingly, since 29 submissions does seem particularly daunting to read there has yet to be any public response to these submissions. Not even a list of which agencies and individuals made submissions.

Back to US

Andrew also comments on the FDA document,

The FDA Guidance for Industry: Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology is a very different kettle of fish to the EPA document. It is overtly responsive to the White House memo; it demonstrates a deep understanding of the issues surrounding nanotechnology and regulation; and it is mercifully concise.

To be fair, the scope of the draft guidance is limited to helping manufacturers understand how the agency is approaching nanotechnology-enabled products under their purview. But this is something it does well.

One of the more significant aspects of the guidance is the discussion on regulatory definitions of nanomaterials. Following a line of reasoning established some years ago, the agency focuses on material properties rather than rigid definitions:

“FDA has not to date established regulatory definitions of “nanotechnology,” “nanoscale” or related terms… Based on FDA’s current scientific and technical understanding of nanomaterials and their characteristics, FDA believes that evaluations of safety, effectiveness or public health impact of such products should consider the unique properties and behaviors that nanomaterials may exhibit”

I recommend reading the full text of Andrew’s comments.

Europe

Meanwhile, there was a June 10, 2011 news item on Nanowerk about the availability of  28 presentations from a May 10-12, 2011 joint European workshop hosted by the Engineered NanoParticle Risk Assessment (ENPRA) FP (Framework Programme) 7 project and the European Commission’s Joint Research Centre. From the news item about the Challenges of Regulation and Risk Assessment of Nanomaterials workshop,

Twenty-eight presentations delivered at the Joint JRC Nano event and 2nd ENPRA Stakeholders Workshop are now available on-line: ENPRA Workshop 2011 – Programme with Presentations.

The workshop (by invitation only) involved about 90 participants, from industry, government, NGOs, and academia. …

During two days and a half, 34 experts from 26 different organisations informed the participants on the latest scientific progress in the field of nanoparticles risk assessment produced within national and European projects, and first results of ENPRA FP7 project were presented in detail. In addition, recent developments concerning legislation in the EU and beyond were discussed.

Amongst other participants, you can include representatives of EU Associate and Candidate Countries, environment and workers’ protection organisations, CAIQ (Chinese Academy of Inspection and Quarantine), US-EPA, ECHA, and EFSA.

To close this piece (and I want to do that very badly), I’m going to give Tim Harper at his TNT blog (on the Cientifica website) the final word from his June 10, 2011 posting,

The White House Emerging Technologies Interagency Policy Coordination Committee (ETIPC) has developed a set of principles (pdf) specific to the regulation and oversight of applications of nanotechnology, to guide the development and implementation of policies at the agency level.

I’m glad to see that it addresses those two old bugbears, the confusion between risk and hazard and the prejudging of issues without reference to scientific evidence …

It is an approach which appears to diverge slightly from the European adoption of the precautionary principle …

As with any regulation, the problems will arise not from the the original wording, but through its (mis)interpretation and inconsistent application.

Liquid lenses and integrated research into nanotechnology safety

A flexible, fluid micro lens has been created by engineers at Penn State University. Here’s why it’s interesting news (from Nanowerk News),

Like tiny Jedi knights, tunable fluidic micro lenses can focus and direct light at will to count cells, evaluate molecules or create on-chip optical tweezers, according to a team of Penn State engineers. They may also provide imaging in medical devices, eliminating the necessity and discomfort of moving the tip of a probe.

For more about the work, go here. On a sidenote, this is the first time I’ve seen a Star Wars metaphor used. Depending on the nature of the breakthrough, you usually get Spiderman, Harry Potter, or Star Trek if they’re using a science fiction metaphor.

In other news, the Institute of Occupational Medicine (IOM) in Scotland will be leading a multi-million Euro project, Engineered NanoParticle Risk Assessment (ENPRA). From Nanowerk News (again),

The 3 ½ year IOM-led project, worth €3.7 million, harnesses the knowledge and capabilities of 15 European and 6 US partners including three US Federal Agencies: EPA, NIOSH and NIH-NIEHS. Under the coordination of Dr Lang Tran, IOM’s Director of Computational Toxicology, ENPRA will utilise the latest advances within in vitro, in vivo and in silico approaches to nanotechnology environment, health & safety (EHS) research to realise its aims.

There’s more about the project here. For anyone not familiar with the US abbreviations, EPA = Environmental Protection Agency, NIOSH = National Institute of Occupational Safety and Health, and NIH-NIEHS = National Institutes of Health – National Institute of Environmental Health and Safety.

I don’t know but this seems like a lot of governments and it could take them years to figure out what the multiple agency abbreviations stand for. Even so, bravo for taking the first steps.