Tag Archives: EPSRC

Cold Water Washing Initiative

Are diamonds going to be everywhere including our clothes detergents? From the June 26, 2012 news item on physorg.com,

Nanodiamonds, pieces of carbon less than ten-thousandths the diameter of a human hair, have been found to help loosen crystallized fat from surfaces in a project led by research chemists at the University of Warwick that transforms the ability of washing powders to shift dirt in eco friendly low temperature laundry cycles.

The June 26, 2012 news release on EurekAlert provides some information about current issues with detergents and coldwater washing,

These new findings tackle a problem that forces consumers to wash some of their laundry at between 60 and 90 degrees centigrade more than 80 times a year. Even with modern biological washing powders, some fats and dirt cannot be removed at the lower temperatures many prefer to use for their weekly wash.

A desire to reduce the significant energy burden of regular high temperature washes, and understand the behaviour of these new materials, brought University of Warwick scientists and colleagues at Aston University together in a project funded by the UK Engineering and Physical Sciences Research Council (EPSRC) and P&G plc.

This “Cold Water Cleaning Initiative” funded a group of chemists, physicists and engineers led by Dr Andrew Marsh in the University of Warwick’s Department of Chemistry to explore how new forms of carbon might work together with detergents in everyday household products.

Here according to researcher Andrew Marsh is what happens when you add nanodiamonds to your detergent/washing powder (from the June 26, 2012 news release),

“We found that the 5 nanometre diamonds changed the way detergents behaved at 25 degrees centigrade, doubling the amount of fat removed when using one particular commercial detergent molecule. Even at temperatures as low as 15 degrees centigrade, otherwise hard-to-remove fat could be solubilised from a test surface. The physical and chemical insight already gained paves the way for future research to explore how this unique behaviour might be exploited in other ways.”

There is no mention of what happens to the clothing when exposed to nanodiamonds in the wash water.

What is Dr. Who’s sonic screwdriver?

Dr. Who, a British Broadcasting Corporation science fiction television programme, has an enormous following worldwide. I am not one of those followers as you might have guessed from the headline, which means I didn’t understand this pop culture reference, from the April 23, 2012 news item on Nanowerk,

For fans of the hit series Doctor Who, the Sonic Screwdriver will be a familiar device. But now an international team of EU-funded researchers has taken equipment designed for magnetic resonance imaging (MRI)-guided focused ultrasound surgery and demonstrated a real Sonic Screwdriver, lifting and spinning a free-floating 10 cm-diameter rubber disk with an ultrasound beam.

I’m going to concentrate on the project first since this EU (European Union) funded project has a somewhat confusing configuration, which I’ll try to tease apart later in this posting. From the news item,

Dr Mike MacDonald, of the Institute for Medical Science and Technology (IMSAT) in the [University of Dundee, Scotland] United Kingdom, comments: ‘This experiment not only confirms a fundamental physics theory but also demonstrates a new level of control over ultrasound beams which can also be applied to non-invasive ultrasound surgery, targeted drug delivery and ultrasonic manipulation of cells.’

The theory the team were testing had not previously been proved in a single experiment; it is valid for both sound and light, and is used in fields like quantum communications and biophotonics. The theory states that the ratio of angular momentum to energy in a vortex beam is equal to the ratio of the number of intertwined helices to the frequency of the beam.

Dr Christine Demore from IMSAT comments: ‘For the first time, our experimental results confirm directly the validity of this fundamental theory. Previously this ratio could only be assumed from theory as the angular momentum and power in a beam had only ever been measured independently.’

The ultrasound beam generated by the researchers resembles the ‘double-helix’ structure of DNA but with many more twisted strands, or helices. This vortex beam generates a rotating, angular component of momentum that can exert torque on an object. In the recent publication, they showed how they could generate vortex beams with many intertwined helices, using a 1 000-element ultrasound transducer array as an acoustic hologram. These beams are so powerful they can levitate and spin the 90 g-disk made of ultrasonic absorber in water.

Here’s a 30 secs. video of the ‘sonic screwdriver’,

Ray Walters in his April 20, 2012 article  for Geek.com offers a description using measurements that are more commonly used in Canada and the US for what we’re seeing in the video [I have removed a link from the following passage],

Depicted in the video above, the “Sonotweezers” [aka, sonic screwdriver] project as it’s officially known, uses an ultrasound beam that is structured like a strand of DNA. The difference being that there are many more twisted strands that can be used to bring torque to bear on objects for movement. The team has used its device to levitate and spin a 3.17 ounce, 10cm diameter rubber disk that was suspended in water.

To make this happen, the research team used a 1000-element ultrasound transducer array to create what’s called an acoustic hologram.

The project known as ‘Sonotweezers’ at the University of Dundee,  is part of a larger European Union project, Nanoporation, which is investigating drug delivery to cancer cell using MRI (magnetic resonance imaging) and guided focused ultrasound. The larger project includes a couple of Israeli teams, neither of which seem to be involved with the Sonotweezers/sonic screwdriver project. I gather some of the funding for the Sonotweezers project comes from the UK’s Engineering and Physical Sciences Ressearch Council (EPSRC). You can find out more about the Scottish team at the University of Dundee, Sonotweezers, and EPSRC in the April 19, 2012 press release on the University of Dundee website.

Care to commercialize graphene in the UK?

The UK’s Engineering and Physical Sciences Research Council (EPSRC) has announced a call for proposals for research that is directly linked to commercializing graphene. From the Feb. 28, 2012 news item on Nanowerk,

The aim of the call, where there will be up to £20 million of funding available, is to focus research on manufacturing processes and technologies linked to graphene in order to accelerate the development and generation of novel devices, applications technologies and systems.

In 2010 the Nobel Prize for Physics was awarded to UK researchers Andre Geim and Kostya Novoselov from the University of Manchester, who demonstrated graphene in 2004. EPSRC has funded their work for over a decade.

The call is divided into two parts: research programmes and equipment bids. EPSRC is committing £10 million to the call, with up to £10 million more available by the Department for Business, Innovation and Skills (BIS) to fund the capital equipment as part of either research programmes or for equipment-only bids.

Proposals for research programmes should range between £1.5 million and £3 million and should seek to understand how to commercialise and enhance the ‘manufacturability’ of graphene as the material of choice. Programmes should have an emphasis on applications, strongly align with industry needs and foster an environment of collaboration across the UK. The programmes of research should also focus on developing people to stimulate the future sustainability of UK graphene engineering research and future commercialisation opportunities across a variety of sectors.

Proposals for equipment are to allow groups with existing capability in graphene research to help researchers advance the commercialisation of graphene and improve the emphasis on applications.

There’s a 10 pp. PDF description for the call, which includes gems like this, as well as, details about the call,

Recognising this opportunity, on 3 October 2011, the Chancellor (George Osborne, UK’s Chancellor of the Exchequer [roughly equivalent to a Minister of Finance]) pledged a £50M investment to establish the UK as a graphene research and technology ‘hub’ with the aim to capture the commercial benefits of graphene (http://www.epsrc.ac.uk/newsevents/news/2012/Pages/graphenehub.aspx). The chancellor stated “We will fund a national research programme that will take this Nobel prize-winning discovery from the British laboratory to the British factory floor…” “We’re going to get Britain making things again.” (p. 2)

There’s a six-page PDF called an Expression of Interest for interested parties to fill out. For anyone who experiences difficulties filling out PDF forms and/or submitting them, there is a set of guidelines.

Frankly, I found the description for eligibility in the EPSRC Funding Guide a little confusing but it seems a fairly safe guess that pretty much everyone involved in the proposed project, investigators, postdoctoral students, and research assistants must be resident in the UK.

It’s fascinating to track this graphene effort, which seems designed to lift the UK from its economic doldrums, from afar. It seems there’s some sort of announcement on this front on a weekly basis, at least (my most recent posting about these efforts is Feb. 21, 2012).

My experience with these kinds of announcements is that they are often recycled. For example, an announcement is made in Oct. 2011 about government funding for graphene research then months later, a research funding agency announces a call for proposals with references to the amount of research money available. Next on the agenda will be an announcement of the recipients for the grants. This practice can make it seem as if the second and third announcement are for new funds when it is money that was promised months before.

Funding competition for nanotechnology-enabled healthcare solutions in UK

This UK funding competition for nanotechnology-enabled healthcare projects is the first time I’ve seen where they offer the academic and business funding together.  From the Sept. 14, 2011 news item on Nanowerk,

The Technology Strategy Board in partnership with the Engineering and Physical Sciences Research Council (EPSRC) is to invest up to £9m in grant funding to support highly innovative, business led collaborative research projects focussed on nanoscale technology-enabled solutions for the healthcare sector.

The competition encourages applications for business-led projects focussing on the targeted delivery of therapeutic agents and diagnostics, where nanoscale technologies are at the heart of the innovation.

Here are some more details from the Technology Strategy Board Competition page,

Up to £3m will be invested by the Technology Strategy Board for business and up to £6m by EPSRC for academia.

All projects must be business-led and collaborative, with at least one partner drawn from large or small businesses, academia, research and technology organisations, or not-for-profit organisations. We will invest in projects requiring a public sector funding contribution of typically between £500,000 and £2m over the whole project. We intend to invest in projects that, in the main, will contain a mix of applied research (attracting up to 50% public funding), and industry-orientated basic research (attracting up to 75% public funding).

The competition opens on 1 November 2011 and the deadline for registration is noon on 6 December 2011. A briefing day will be held on 15 November 2011.

To clarify my initial statement, I have seen situations where they cobble together funds from various agencies to cover the research and the business aspects of a project but I haven’t seen a joint offering here in Canada, at the federal level.

Democracy, participation, and science culture

Should citizens have any input into how science research is funded? Dan Hind in his Dec. 14, 2010 article, Time to democratise science, for New Scientist argues yes persuasively (from the article),

THE natural and social sciences exert a huge influence on the ways our societies develop. At present most of the funding for scientific research is controlled by the state and the private economy. Perhaps it is time to look at their track record and consider an alternative.

Science is not, and can never be, disinterested insofar as its objectives are concerned. Decisions to fund this research instead of that research can never be purely technical. Assessments of what is likely to produce interesting or useful knowledge are inevitably alloyed with the desires of those who control the money to develop particular forms of knowledge and with them new resources of power.

Given the mixed track record of the patrons of science it is surely time to consider an alternative. If we are serious about science as a public good, we should give the public control over the ways in which some – and I stress “some” – of its money is spent.

At the end of the article there is this note about the author,

Dan Hind is author of The Return of the Public (Verso), which argues for a new kind of participatory politics

There does seem to be seem sort of trend towards more participatory science as per citizen science or crowdsourced science projects such as Foldit (my Aug. 6, 2010 posting) and Phylo (my Dec. 3, 2010 posting).I’m not sure how much traction participatory science research funding is going to find. That said, there was a UK project run by EPSRC (Engineering and Physical Sciences Research) where members of the public were allowed to ‘vote’ on particular projects. You can read more about the project in the May 25, 2009 news item on Nanowerk describing the grants that were chosen. From the news item,

Ten research grants to help solve some of the biggest health problems facing the UK have been awarded by the Engineering and Physical Sciences Research Council (EPSRC)

The projects focus on developing new techniques for screening and treating major public health issues such as cancer, stroke, AIDS, influenza, MRSA and dementia.

The grants, worth £16.5m, have been given by the EPSRC, acting as the lead Research Council in a cross Research Council Programme called “Nanoscience through Engineering to Application.”

Segue: As for participatory politics (as per Dan Hind), I’ve noticed a local (Vancouver, Canada) backlash response to the notion of public consultations (city government officials want to increase population densities). Oddly enough, when people take the time to participate in a ‘consultation’ they expect that at least some of their comments will have an impact on the decisions that are being made. I gather some experts find this irksome and a challenge to their professional authority.

Back to the main topic: My impression is that the UK enjoys a science culture that is not to be found in Canada—not yet, anyway. There is discussion about public dialogue and engagement in science not just in the UK but elsewhere too that simply doesn’t exist in Canada. Yes, there are a few fragile attempts at creating a science culture here. I’m thinking of the Café Scientifique groups, Canada’s National Science and Technology Week, and the open houses put on by the universities but there really isn’t much.

The Year of Science (a science culture project) was declared in the province of British Columbia (BC) in the fall of 2010. From my Oct. 14, 2010 posting,

To inspire young minds across the province and foster a culture of research and innovation Premier Gordon Campbell today proclaimed the 2010-2011 school year as the Year of Science in B.C.

It’s good to see these kinds of initiatives, unfortunately this particular one is undercut by news such as this (from the Dec. 2, 2010 article, Teacher blasts cuts to Vancouver school science budgets; School science budgets slashed by 56 per cent compared to last year, by Naiobh O’Connor for the Vancouver Courier),

School science budgets were slashed by 56 per cent compared to last year and the district now allots only $4.61 per student each year to cover expenses—far below what Mike Hengeveld, Templeton secondary’s science department head and teacher, argues is adequate.

Limited budgets mean it’s difficult to replace equipment like broken beakers or to buy new equipment. Hengeveld even worries about buying a dozen eggs for a relatively cheap egg drop experiment or what’s needed to grow crystals for chemistry class.

“If I went and bought iodized salt or de-iodized salt and [students] make a solution by heating stuff in a beaker—which I hope doesn’t break—if I spend 15 bucks on salt at the store, I’ve blown three or four students’ worth of budget for them to learn how to grow crystals. It’s neat, but I can’t do that in a science class every day. I would just completely and totally run out of money and that’s just on cheap stuff,” he said.

I’m not trying to fault the Year of Science initiative just pointing out that the initiative is problematic when the science education budget for schools cannot support even simple research projects.

This is a larger issue that I can adequately cover in this posting but I did want to draw attention to some of the fragilities of the Canadian situation (and our own situation in BC) vis à vis creating a science culture and/or democratizing science.

Meanwhile, I read with some envy a report titled, International Comparison of Public Dialogue on Science and Technology,  from a UK organization, Sciencewise-ERC – the UK’s national centre for public dialogue in policy making involving science and technology issues. Canada is not mentioned and I imagine that’s due to the fact that we don’t have any public dialogue to speak of.

ETA Mar.3.11: I made some minor changes for clarity (added Segue: and Back to the main topic: and removed an extra space.

UK’s National Gallery holds an art/science exhibition

Priceless art works need to be restored, cleaned, and, sometimes even centuries later, authenticated. Art conservators at the UK’s National Gallery have been collaborating for years with EPSRC (Engineering and Physical Sciences Research Council) scientists to find ways to make these activities less damaging. Generally, this is not considered the most exciting topic but in a bold move, the National Gallery has opened an exhibition (Close Examination) featuring their art/science collaboration with EPSRC. From the news item on physorg.com,

Close Examination explores the pioneering work of the National Gallery’s Scientific Department by presenting the varied and fascinating stories behind more than 40 paintings in the National Gallery’s collection. The exhibition is arranged over six rooms, representing some of the major challenges faced by Gallery experts: Deception and Deceit; Transformations and Modifications; Mistakes; Secrets and Conundrums; Redemption and Recovery; and a special focus room relating to Botticelli. [emphases mine] The exhibition features works by Raphael, Dürer, Gossaert, Rembrandt and others.

The partnership between the National Gallery and EPSRC has highlighted the contribution that science and scientists make in the world of art and shows the intellectual value that emerges when scientific and artistic traditions come together. EPSRC, together with Arts and Humanities Research Council, funds a Science and Heritage Programme which aims to increase knowledge and the resilience of our cultural heritage in the face of twenty first century challenges.

I came across a similar collaboration between the Art Institute of Chicago and a chemist at Northwestern University who’d created a technique for another use altogether that the Institute’s conservators adapted. From The Nanotech Mysteries wiki page,

Richard Van Duyne, then a chemist at Northwestern University, developed the technique in 1977. Van Duyne’s technology, based on Raman spectroscopy which has been around since the 1920s, is called surface-enhanced Raman spectroscopy’ or SERS “[and] uses laser light and nanoparticles of precious metals to interact with molecules to show the chemical make-up of a particular dye.”

The conservators at the Institute were able to scrape off the most minute amounts of paint from a Winslow Homer painting in their efforts to examine the pigments and eventually restore the painting to its original colours. You can go here to see the painting that the conservators were trying to restore and to slide a button that will change the colours to their original shades.