Tag Archives: ERC

SEMANTICS, a major graphene project based in Ireland

A Jan. 28, 2015 news item on Nanowerk profiles SEMANTICS, a major graphene project based in Ireland (Note: A link has been removed),

Graphene is the strongest, most impermeable and conductive material known to man. Graphene sheets are just one atom thick, but 200 times stronger than steel. The European Union is investing heavily in the exploitation of graphene’s unique properties through a number of research initiatives such as the SEMANTICS project running at Trinity College Dublin.

A Dec. 16, 2014 European Commission press release, which originated the news item, provides an overview of the graphene enterprise in Europe,

It is no surprise that graphene, a substance with better electrical and thermal conductivity, mechanical strength and optical purity than any other, is being heralded as the ‘wonder material’ of the 21stcentury, as plastics were in the 20thcentury.

Graphene could be used to create ultra-fast electronic transistors, foldable computer displays and light-emitting diodes. It could increase and improve the efficiency of batteries and solar cells, help strengthen aircraft wings and even revolutionise tissue engineering and drug delivery in the health sector.

It is this huge potential which has convinced the European Commission to commit €1 billion to the Future and Emerging Technologies (FET) Graphene Flagship project, the largest-ever research initiative funded in the history of the EU. It has a guaranteed €54 million in funding for the first two years with much more expected over the next decade.

Sustained funding for the full duration of the Graphene Flagship project comes from the EU’s Research Framework Programmes, principally from Horizon 2020 (2014-2020).

The aim of the Graphene Flagship project, likened in scale to NASA’s mission to put a man on the moon in the 1960s, or the Human Genome project in the 1990s, is to take graphene and related two-dimensional materials such as silicene (a single layer of silicon atoms) from a state of raw potential to a point where they can revolutionise multiple industries and create economic growth and new jobs in Europe.

The research effort will cover the entire value chain, from materials production to components and system integration. It will help to develop the strong position Europe already has in the field and provide an opportunity for European initiatives to lead in global efforts to fully exploit graphene’s miraculous properties.

Under the EU plan, 126 academics and industry groups from 17 countries will work on 15 individual but connected projects.

The press release then goes on to describe a new project, SEMANTICS,

… this is not the only support being provided by the EU for research into the phenomenal potential of graphene. The SEMANTICS research project, led by Professor Jonathan Coleman at Trinity College Dublin, is funded by the European Research Council (ERC) and has already achieved some promising results.

The ERC does not assign funding to particular challenges or objectives, but selects the best scientists with the best ideas on the sole criterion of excellence. By providing complementary types of funding, both to individual scientists to work on their own ideas, and to large-scale consortia to coordinate top-down programmes, the EU is helping to progress towards a better knowledge and exploitation of graphene.

“It is no overestimation to state that graphene is one of the most exciting materials of our lifetime,” Prof. Coleman says. “It has the potential to provide answers to the questions that have so far eluded us. Technology, energy and aviation companies worldwide are racing to discover the full potential of graphene. Our research will be an important element in helping to realise that potential.”

With the help of European Research Council (ERC) Starting and Proof of Concept Grants, Prof. Coleman and his team are researching methods for obtaining single-atom layers of graphene and other layered compounds through exfoliation (peeling off) from the multilayers, followed by deposition on a range of surfaces to prepare films displaying specific behaviour.

“We’re working towards making graphene and other single-atom layers available on an economically viable industrial scale, and making it cheaply,” Prof. Coleman continues.

“At CRANN [Centre for Research on Adaptive Nanostructures and Nanodevices at Trinity College Dublin], we are developing nanosheets of graphene and other single-atom materials which can be made in very large quantities,” he adds. “When you put these sheets in plastic, for example, you make the plastic stronger. Not only that – you can massively increase its electrical properties, you can improve its thermal properties and you can make it less permeable to gases. The applications for industry could be endless.”

Prof. Coleman admits that scientists are regularly taken aback by the potential of graphene. “We are continually amazed at what graphene and other single-atom layers can do,” he reveals. “Recently it has been discovered that, when added to glue, graphene can make it more adhesive. Who would have thought that? It’s becoming clear that graphene just makes things a whole lot better,” he concludes.

So far, the project has developed a practical method for producing two-dimensional nanosheets in large quantities. Crucially, these nanosheets are already being used for a range of applications, including the production of reinforced plastics and metals, building super-capacitors and batteries which store energy, making cheap light detectors, and enabling ultra-sensitive position and motion sensors. As the number of application grows, increased demand for these materials is anticipated. In response, the SEMANTICS team has scaled up the production process and is now producing 2D nanosheets at a rate more than 1000 times faster than was possible just a year ago.

I believe that new graphene production process is the ‘blender’ technique featured here in an April 23, 2014 post. There’s also a profile of the ‘blender’ project  in a Dec. 10, 2014 article by Ben Deighton for the European Commission’s Horizon magazine (Horizon 2020 is the European Union’s framework science funding programme). Deighton’s article hosts a video of Jonathan Coleman speaking about nanotechnology, blenders, and more on Dec. 1, 2014 at TEDxBrussels.

NUSIKIMO: plasma and nanotechnology applications

NUKISIMO's plama and nanotechnology applications? Credit: Shutterstock [downloaded from http://cordis.europa.eu/fetch?CALLER=EN_NEWS&ACTION=D&RCN=36206]

NUKISIMO’s plama and nanotechnology applications? Credit: Shutterstock [downloaded from http://cordis.europa.eu/fetch?CALLER=EN_NEWS&ACTION=D&RCN=36206]

It looks like a jewel, doesn’t it? Unfortunately, there’s no explanation for why this image is offered as an illustration for an Oct. 31, 2013 OORDIS news release (h/t phys.org) about plasma and nanotechnology applications, being worked on as part of the NUSIKIMO (‘Numerical simulations and analysis of kinetic models – applications to plasma physics and nanotechnology’) project,

Plasma is one of the four fundamental states of matter, alongside solid, liquid and gas. Ubiquitous in form, plasma is an ionised gas so energised that electrons have the capacity to break free from their nucleus.

Scientists are keen to shed light on the motion of particles in plasma physics, as well as the dynamics of rarefied gas – a gas whose pressure is much lower than atmospheric pressure. How can this be done? An EU-funded team of researchers has come up with a solution.

Prof. Francis Filbet from Université Claude Bernard Lyon 1 in France decided to tackle the question with mathematical and numerical analyses. He received an European Research Council (ERC) Starting Grant worth almost EUR 500 000 for the NUSIKIMO (‘Numerical simulations and analysis of kinetic models – applications to plasma physics and nanotechnology’) project. Prof Filbet and his research team modelled non-stationary collisional plasma with supercomputers, putting regimes and instabilities under the microscope.

One of the challenges researchers undertook was to approximate kinetic models and to develop novel techniques that could make numerical analysis in kinetic theory possible.

To do this, the team is working on adapting averaging lemmas (proven statements used for obtaining proof of other statements) to examine kinetic equations, including the Boltzmann equation. Devised in 1872, the seven-dimensional equation is used to model the behaviour of gases, but solving it has proved problematic as numerical capabilities fail to capture the complexities involved.

The NUSIKIMO team is also examining asymptotic preserving schemes, which can be described as performant procedures able to solve ‘singularly perturbed problems’ – those for which the character of the problem changes intermittently.

Such problems contain small parameters that cannot be approximated by setting the parameter value to zero. For comparison, an approximation for regular perturbation problems can be obtained when small parameters are set to zero.

Asymptotic preserving schemes were established to help scientists deal with singularly perturbed problems. This is especially the case when they are dealing with kinetic models in a diffusive environment.

Prof. Filbet and his team are developing a method to control numerical entropy (classical thermodynamics) production. Being able to control entropy production, which determines the performance of thermal machines, is an important feature for stability analysis – an assessment that helps us understand what happens to a system when it is perturbed. The researchers believe nonlinear equations could therefore be treated with a strategy based on asymptotic preserving schemes.

Applying these equations to plasma physics is one of the NUSIKIMO goals. The team is evaluating energy transport and seeking to determine the efficiency of plasma heating. The researchers are also looking into the measures required to secure fusion conditions through the interaction of intense, short laser pulses, and schemes like inertial confinement fusion or fast ignition.

Another objective is to apply the equations to microelectromechanical systems (MEMS). Prof. Filbet and his team are developing theoretical and numerical methods to investigate gaseous and liquid flows in micro devices. The key element here is the development of numerical methods. The researchers say: using numerical methods, rather than analytical methods, make modelling the three-dimensional flow geometries in MEMS configurations possible.

The project end date is December 2013 but in the meantime, you can get more information about NUSIKIMO here.

Nanodiamonds detect the iron in your blood

Too little iron in the blood can lead to anemia and too much can signal problems with the immune system; German researchers have devised a promising new technique for detecting the amount of iron in the blood according to an Oct. 2, 2013 news item on ScienceDaily,

Lack of iron — caused by malnutrition — can lead to anemia while an increased level of iron may signal the presence of an acute inflammatory response. Therefore, the blood iron level is an important medical diagnostic agent. Researchers at Ulm University [Germany], led by experimental physicist Fedor Jelezko, theoretical physicist Martin Plenio and chemist Tanja Weil, have developed a novel biosensor for determination of iron content that is based on nanodiamonds.

Here’s an image of microscopic diamonds before they’ve been ground down to the nanoscale,

(Photo: Fedor Jelezko): Microscope picture of small diamonds, 100 microns in diameter. Specific lattice defects do not only impart colour on the diamonds but also provide the basis for the magnetic field sensor. In their experiments the team at Ulm ground down these diamonds to a size of 20 nanometers (as a comparison, a human hair has a diameter of 70 microns and is therefore 3000 times thicker than the nanodiamonds).

(Photo: Fedor Jelezko): Microscope picture of small diamonds, 100 microns in diameter. Specific lattice defects do not only impart colour on the diamonds but also provide the basis for the magnetic field sensor. In their experiments the team at Ulm ground down these diamonds to a size of 20 nanometers (as a comparison, a human hair has a diameter of 70 microns and is therefore 3000 times thicker than the nanodiamonds).

The Oct. 2, 2013 University of Ulm news release (on the Alpha Galileo Foundation website,) which originated the news item, describes the problem the scientists were addressing and their solution,

“Standard blood tests do not capture — as one might expect — free iron ions in the blood, because free iron is toxic and is therefore hardly detectable in blood,” explains Professor Tanja Weil, director of the Institute for Organic Chemistry III, University of Ulm. These methods are based on certain proteins instead that are responsible for the storage and transport of iron. One of these proteins is Ferritin that can contain up to 4,500 magnetic iron ions. Most standard tests are based on immunological techniques and estimate the iron concentration indirectly based on different markers. Results from different tests may however lead to inconsistent results in some clinical situations.

The Ulm scientists have developed a completely new approach to detect Ferritin. This required a combination of several new ideas. First, each ferritin-bound iron atom generates a magnetic field but as there are only 4,500 of them, the total magnetic field they generate is very small indeed and therefore hard to measure. This indeed, posed the second challenge for the team: to develop a method that is sufficiently sensitive to detect such weak magnetic fields. This they achieved by making use of a completely new, innovative technology based on tiny artificial diamonds of nanometer size. Crucially these diamonds are not perfect —colorless and transparent — but contain lattice defects which are optically active and thus provide the color of diamonds.

“These color centers allow us to measure the orientation of electron spins in external fields and thus measure their strength” explains Professor Fedor Jelezko, director of the Ulm Institute of Quantum Optics. Thirdly, the team had to find a way to adsorb ferritin on the surface of the diamond. “This we achieved with the help of electrostatic interactions between the tiny diamond particles and ferritin proteins,” adds Weil. Finally, “Theoretical modeling was essential to ensure that the signal measured is in fact consistent with the presence of ferritin and thus to validate the method,” states Martin Plenio, director of the Institute for Theoretical Physics. Future plans of the Ulm team include the precise determination of the number of ferritin proteins and the average iron load of individual proteins.

As the news release notes, this research is part of a larger project,

The demonstration of this innovative method, reported in Nano Letters [journal], represents a first step towards the goals of their recently awarded BioQ Synergy Grant. [10.3 million Euro which the scientists were awarded last December 2012 by the European Research Council] The focus of this project is the exploration of quantum properties in biology and the creation of self-organized diamond structures.

“Diamond sensors can thus be applied in biology and medicine,” say the Ulm scientists. But their new invention has its limits “. Whether the children have actually eaten their spinach cannot be detected with the diamond sensor, that’s still the prerogative of parents “, confesses quantum physicist Plenio

Here’s a link to and a citation for the paper,

Detection of a Few Metallo-Protein Molecules Using Color Centers in Nanodiamonds by A. Ermakova, G. Pramanik, J.-M. Cai, G. Algara-Siller,  U. Kaiser, T. Weil, Y.-K. Tzeng, H. C. Chang, L. P. McGuinness, M. B. Plenio, B. Naydenov, and F. Jelezko. Nano Lett., 2013, 13 (7), pp 3305–3309 DOI: 10.1021/nl4015233 Publication Date (Web): June 5, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.

2.5M Euros for Ireland’s John Boland and his memristive nanowires

The announcement makes no mention of the memristor or neuromorphic engineering but those are the areas in which  John Boland works and the reason for his 2.5M Euro research award. From the Ap. 3, 2013 news item on Nanowerk,

Professor John Boland, Director of CRANN, the SFI-funded [Science Foundation of Ireland] nanoscience institute based at Trinity College Dublin, and a Professor in the School of Chemistry has been awarded a €2.5 million research grant by the European Research Council (ERC). This is the second only Advanced ERC grant ever awarded in Physical Sciences in Ireland.

The Award will see Professor Boland and his team continue world-leading research into how nanowire networks can lead to a range of smart materials, sensors and digital memory applications. The research could result in computer networks that mimic the functions of the human brain and vastly improve on current computer capabilities such as facial recognition.

The University of Dublin’s Trinity College CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices) April 3, 2013 news release, which originated the news item,  provides details about Boland’s proposed nanowire network,

Nanowires are spaghetti like structures, made of materials such as copper or silicon. They are just a few atoms thick and can be readily engineered into tangled networks of nanowires. Researchers worldwide are investigating the possibility that nanowires hold the future of energy production (solar cells) and could deliver the next generation of computers.

Professor Boland has discovered that exposing a random network of nanowires to stimuli like electricity, light and chemicals, generates chemical reaction at the junctions where the nanowires cross. By controlling the stimuli, it is possible to harness these reactions to manipulate the connectivity within the network. This could eventually allow computations that mimic the functions of the nerves in the human brain – particularly the development of associative memory functions which could lead to significant advances in areas such as facial recognition.

Commenting Professor John Boland said, “This funding from the European Research Council allows me to continue my work to deliver the next generation of computing, which differs from the traditional digital approach.  The human brain is neurologically advanced and exploits connectivity that is controlled by electrical and chemical signals. My research will create nanowire networks that have the potential to mimic aspects of the neurological functions of the human brain, which may revolutionise the performance of current day computers.   It could be truly ground-breaking.”

It’s only in the news release’s accompanying video that the memristor and neuromorphic engineering are mentioned,

I have written many times about the memristor, most recently in a Feb. 26, 2013 posting titled, How to use a memristor to create an artificial brain, where I noted a proposed ‘blueprint’ for an artificial brain. A contested concept, the memristor has attracted critical commentary as noted in a Mar. 19, 2013 comment added to the ‘blueprint’  post,

A Sceptic says:

….

Before talking about blueprints, one has to consider that the dynamic state equations describing so-called non-volatile memristors are in conflict with fundamentals of physics. These problems are discussed in:

“Fundamental Issues and Problems in the Realization of Memristors” by P. Meuffels and R. Soni (http://arxiv.org/abs/1207.7319)

“On the physical properties of memristive, memcapacitive, and meminductive systems” by M. Di Ventra and Y. V. Pershin (http://arxiv.org/abs/1302.7063)

AAAS 2013 meeting in Boston,US and Canadian research excellence

The 2013 annual meeting for the American Association for the Advancement of Science (AAAS) will be held in Boston, Massachusetts from Feb. 14 – 18, 2013 with a much better theme this year, The Beauty and Benefits of Science, than last year’s, Flattening the World. (It didn’t take much to improve the theme, eh?)

Plenary speakers range from AAAS’s president, William N. Press to Nathan Myhrvold, a venture capitalist to astrophysicist, Robert Kirshner to Cynthia Kenyon, a molecular biologist to Sherry Turkle. From the AAAS webpage describing Turkle’s 2013 plenary lecture,

Sherry Turkle

Abby Rockefeller Mauzé Professor of the Social Studies of Science and Technology in the Program in Science, Technology, and Society, MIT

The Robotic Moment: What Do We Forget When We Talk to Machines?

Dr. Turkle is founder and director of the MIT Initiative on Technology and Self. She received a joint doctorate in sociology and personality psychology from Harvard University and is a licensed clinical psychologist. Her research focuses on the psychology of human relationships with technology, especially in the realm of how people relate to computational objects. She is an expert on mobile technology, social networking, and sociable robotics and a regular media commentator on the social and psychological effects of technology. Her most recent book is Alone Together: Why We Expect More from Technology and Less from Each Other.

Given my experience last year in the 2012 meeting media room, I’m surprised to see a social media session is planned, from the session webpage,

Engaging with Social Media
Communicating Science
Thursday, February 14, 2013: 3:00 PM-4:30 PM
Ballroom A (Hynes Convention Center)

In a constantly changing online landscape, what is the best way for scientists and engineers to engage the public through social media? This session will discuss how people are accessing science information via blogs and social networks and the importance of researchers getting involved directly. [emphasis mine]  Speakers will address the ways that researchers can create meaningful interactions with the public through social media.

Organizer: Cornelia Dean, The New York Times
Co-Organizer: Dennis Meredith, Science Communication Consultant
Moderator: Carl Zimmer, Independent Science Journalist

Speakers:
XXXX Scicurious, Neurotic Physiology
Science Blogging for Fun and Profit
Christie Wilcox, University of Hawaii
Science in a Digital Age
Dominique Brossard, University of Wisconsin
Science and the Public in New Information Environments

I’d love to see how the theme of ‘researcher engaging directly’ gets developed. In theory, I have no problems with the concept. Unfortunately, those words are sometimes code for this perspective, ‘only experts (scientists/accredited journalists) should discuss or write about science’. A couple of quick comments, my Jan. 13, 2012 posting featured an interview with Carl Zimmer, this session’s moderator, about his science tattoo book and Dominique Brossard, one of the speakers, was last mentioned here in my Jan. 24, 2013 posting titled, Tweet your nano, in the context of a research study on social media and nanotechnology.

In keeping with the times (as per my Jan. 28, 2013 posting about the colossal research prizes for the Graphene and Human Brain Project initiatives), the 2012 AAAS annual meeting features a Brain Function and Plasticity thread or subtheme. There’s this session amongst others,

The Connectome: From the Synapse to Brain Networks in Health and Disease
Brain Function and Plasticity
Saturday, February 16, 2013: 8:30 AM-11:30 AM
Room 304 (Hynes Convention Center)

A series of innovative studies are being done to map the brain from the molecular to the systems level both structurally and functionally. At the synaptic level, how neurotransmitters, their receptors, and signaling pathways influence neural function and plasticity is becoming much better understood. Integrating neuronal function at the level of single neurons and groups of neurons into larger circuits at the anatomical level in the mammalian brain, while a daunting task, is being studied by advanced imaging techniques requiring vast amounts of information storage and processing. To integrate local circuit function with whole brain function, understanding the structure and processing of brain networks is critical. A major project to accomplish this task, the Human Connectome Project, is in the process of integrating the structure and function of brain networks using the most advanced imaging and analysis techniques in 1,200 people, including twins and their nontwin siblings. This step will allow for major new insights into not only brain structure and function, but also their genetic underpinnings. Comparing this information in both the normal brain and in different brain disorders such as neurodegenerative diseases is providing novel insights into how understanding brain function from the molecular to the systems level will provide insights into normal brain function and disease pathogenesis as well as provide new treatment strategies.

Organizer:

David Holtzman, Washington University

Speakers:

Mark F. Bear, Massachusetts Institute of Technology
Molecules and Mechanisms Involved in Synaptic Plasticity in Health and Disease
Jeff Lichtman, Harvard University
Connectomics: Developing a Wiring Diagram for the Mammalian Brain
Steve Petersen, Washington University
The Human Connectome Project
Marcus E. Raichle, Washington University
The Brain’s Dark Energy and the Default Mode Network
Nicole Calakos, Duke University
Synaptic Plasticity in the Basal Ganglia in Health and Disease
William W. Seeley, University of California
Brain Networks: Linking Structure and Function in Neurodegenerative Diseases

Then, there’s this session featuring graphene,

What’s Hot in Cold
Sunday, February 17, 2013: 8:30 AM-11:30 AM
Room 308 (Hynes Convention Center)

The study of ultracold atoms and molecules is now the frontier of low-temperature science, reaching temperatures of a few hundred picokelvin above absolute zero. This field was made possible by a technique that did not exist 30 years ago: laser cooling of atoms. It is hardly obvious that the laser, which produces the most intense light on Earth and is routinely used in industrial applications for cutting and welding medal, would also provide the most powerful coolant. Such are the surprises of science, where a breakthrough in one area transforms others in unexpected ways. Since 1997, eight Nobel Laureates in physics have been recognized for contributions to ultracold atomic and molecular science, which has become one of the most vibrant fields in physics, cutting across traditional disciplinary boundaries, e.g., atomic, molecular, and optical; condensed matter; statistical physics; and nuclear and particle physics. This field builds on two accomplishments that it was the first to achieve: first, the production of quantum degenerate matter using a wide range of elements and, second, exquisite control of quantum degenerate matter at the atomic level. These have led to record low temperatures, ultraprecise atomic clocks, and new forms of quantum matter that generalize ideas from magnetism superconductivity and graphene physics.

Organizer:

Charles W. Clark, Joint Quantum Institute

Speakers:

Markus Greiner, Harvard University
Quantum Simulation: A Microscopic View of Quantum Matter
Ana Maria Rey, University of Colorado
Atomic Clocks: From Precise Timekeepers to Quantum Simulators
Daniel Greif, ETH Zurich
Exploring Dirac Points with Ultracold Fermions in a Tunable Honeycomb Lattice
Gretchen Campbell, Joint Quantum Institute
Superflow in Bose-Einstein Condensate Rings: Tunable Weak Links in Atom Circuits
Benjamin Lev, Stanford University
New Physics in Strongly Magnetic Ultracold Gases

Amongst all these other sessions, there’s a session about Canadian science,

Introduction to Canadian Research Excellence: Evidence & Examples
Friday, February 15, 2013: 11:00 AM-12:00 PM
Room 205 (Hynes Convention Center)

The Canada Pavilion in the Exhibit Hall gives a taste of what lies north of Boston and the 49th parallel. Join us at this workshop to learn about opportunities in Canada for research and study. Canada recently completed a comprehensive analysis of its domestic science and technology strengths. The final report of the expert panel of the Council of Canadian Academies will be presented, including the use of global benchmarks and insights on international collaborations. Two of the drivers for Canadian excellence will be introduced: large-scale science facilities in key fields and a system of targeted fellowships and research chairs that recruit globally.

Coordinator:

Tim Meyer, TRIUMF

Presenters:

Tim Meyer, TRIUMF,
Chad Gaffield, Social Sciences and Humanities Research Council of Canada
Eliot Phillipson, University of Toronto

“Introduced,” really? Large scale science facilities are not new in Canada or anywhere else for that matter and the programmes of targeted fellowships have been around long enough and successful enough that it is being copied.

First, there was the Canada Research Chair programme, which was instituted in 2000. From the About Us page (Note: A link has been removed),

The Canada Research Chairs program stands at the centre of a national strategy to make Canada one of the world’s top countries in research and development. [emphasis mine]

In 2000, the Government of Canada created a permanent program to establish 2000 research professorships—Canada Research Chairs—in eligible degree-granting institutions across the country.

The Canada Research Chairs program invests $300 million per year to attract and retain some of the world’s most accomplished and promising minds.

This was programme was followed up with the Canada Excellence Research Chairs Program in 2008, from the Background page (Note: A link has been removed),

Launched in 2008, the Canada Excellence Research Chairs (CERC) Program supports Canadian universities in their efforts to build on Canada’s growing reputation as a global leader in research and innovation. The program awards world-renowned researchers and their teams up to $10 million over seven years to establish ambitious research programs at Canadian universities. These awards are among the most prestigious and generous available globally.

In May 2010, the first group of Canada Excellence Research Chairs was announced. Selected through a rigorous, multilevel peer review process, these chairholders are helping Canada build a critical mass of expertise in the four priority research areas of the federal government’s science and technology strategy …

Here’s an excerpt from my Feb. 21, 2012 posting,

Canadians have been throwing money at scientists for some years now (my May 20, 2010 posting about the Canada Excellence Research Chairs programme). We’ve attempted to recruit from around the world with our ‘research chairs’ and our ‘excellence research chairs’ and our Network Centres of Excellence (NCE) all serving as enticements.

The European Research Council (ERC) has announced that they will be trying to beat us at our own game at the AAAS 2012 annual meeting in Vancouver (this new ERC programme was launched in Boston, Massachusetts in January 2012).

The Canadian report these folks will be discussing was released in Sept. 2012 and was  featured here in a two-part commentary,

The State of Science and Technology in Canada, 2012 report—examined (part 1: the executive summary)

The State of Science and Technology in Canada, 2012 report—examined (part 2: the rest of the report)

My Sept. 27, 2012 posting features my response to the report’s launch on that day.

As for the AAAS 2013 annual meeting, there’s a lot, lot more of it and it’s worth checking out, if for no other reason than to anticipate the types of science stories you will be seeing in the coming months.

Canadian research (and other ‘excellence’) initiatives get some competition from the European Research Council

Canadians have been throwing money at scientists for some years now (my May 20, 2010 posting about the Canada Excellence Research Chairs programme). We’ve attempted to recruit from around the world with our ‘research chairs’ and our ‘excellence research chairs’ and our Network Centres of Excellence (NCE) all serving as enticements.

The European Research Council (ERC) has announced that they will be trying to beat us at our own game at the AAAS 2012 annual meeting in Vancouver (this new ERC programme was launched in Boston, Massachusetts in January 2012). From the Agence France Presse Feb. 20, 2012 news item on physorg.com,

The European Research Council launched an international campaign Sunday to court the world’s top scientists to work in Europe with grants of up to 3.5 million euro (4.6 million dollars) over five years.

The goal of the program is to boost the number of non-European researchers to over 500. Currently, just 100 of its 2,600 grant recipients are from outside Europe, said council secretary general Donald Dingwell.

Dingwell, who after Canada plans to visit South Africa, several Asian countries, Latin America, Russia and Ukraine, the United States and Mexico, said the main condition is that recipients spend half their time in Europe and be affiliated with a European institution.

ERC’s Dec. 2011 newsletter features an article, Going global; Making Europe a prime location for the best brains, where they outline the campaign which actually started in 2007 but this latest initiative (Destination Europe) offers a renewed and more aggressive approach (and similarities to the Canadian efforts) to attracting more scientists to Europe. From the article,

The ERC Secretary General Donald Dingwell has been given a key role in this venture. Originally from Canada and with ample international experience, he will be the ERC’s Ambassador worldwide … The US is undoubtedly a hotspot for talent and thus for the ERC, but also the BRICS countries (Brazil, Russia, India, China, and South Africa) and other top performers in science will be a priority in the years to come.

That’s a nice touch, having an expat Canadian lead your somewhat competitive initiative.