Tag Archives: EU ObservatoryNano

Natural nanoparticles and perfluorinated compounds in soil

The claim in a Sept. 9, 2015 news item on Nanowerk is that ‘natural’ nanoparticles are being used to remove perfluorinated compounds (PFC) from soil,

Perfluorinated compounds (PFC) are a new type of pollutants found in contaminated soils from industrial sites, airports and other sites worldwide.

In Norway, The Environment Agency has published a plan to eliminate PFOS [perfluorooctanesulfonic acid or perfluorooctane sulfonate] from the environment by 2020. In other countries such as China and the United States, the levels are far higher, and several studies show accumulation of PFOS in fish and animals, however no concrete measures have been taken.

The Norwegian company, Fjordforsk AS, which specializes in nanosciences and environmental methods, has developed a method to remove PFOS from soil by binding them to natural minerals. This method can be used to extract PFOS from contaminated soil and prevent leakage of PFOS to the groundwater.

Electron microscopy images show that the minerals have the ability to bind PFOS on the surface of the natural nanoparticles. [emphasis mine] The proprietary method does not contaminate the treated grounds with chemicals or other parts from remediation process and uses only natural components.

Electron microscopy images and more detail can be found in the Nanowerk news item.

I can’t find the press release, which originated the news item but there is a little additional information about Fjoorkforsk’s remediation efforts on the company’s “Purification of perfluorinated compounds from soil samples” project page,

Project duration: 2014 –

Project leader: Manzetti S.

Collaborators: Prof Lutz Ahrens. Swedish Agricultural University. Prof David van der Spoel, Uppsala University.

Project description:

Perfluorinated compounds (PFCs) are emerging pollutants used in flame retardants on a large scale on airports and other sites of heavy industrial activity. Perfluroinated compounds are toxic and represent an ultra-persistent class of chemicals which can accumulate in animals and humans and have been found to remain in the body for over 5 years after uptake. Perfluorinated compounds can also affect the nerve-system and have recently been associated with high- priority pollutants to be discontinued and to be removed from the environment. Using non-toxic methods, this project develops an approach to sediment perfluorinated compounds from contaminated soil samples using nanoparticles, in order to remove the ecotoxic and ground-water contaminating potential of PFCs from afflicted sites and environments.

The only mineral that I know is used for soil remediation is nano zero-valent iron (nZVI). A very fast search for more information yielded a 2010 EMPA [Swiss Federal Laboratories for Materials Science and Technology] report titled “Nano zero valent iron – THE solution for water and soil remediation? ” (32 pp. pdf) published by ObservatoryNANO.

As for the claim that the company is using ‘natural’ nanoparticles for their remediation efforts, it’s not clear what they mean by that. I suspect they’re using the term ‘natural’ to mean that engineered nanoparticles are being derived from a naturally occurring material, e.g. iron.

Nanomaterials, nanomedicines and nanodefinitions

I was chatting earlier this week, in the most general way possible, with someone in Ottawa about nanotechnology and regulations.  The individual noted that nanotechnology initiatives in various countries and regions are attaining traction and I think the evidence is in the increased (and heated) discussion/debate about defining nanomaterials. The latest twist in the discussion comes from Alok Jha, a science writer for The Guardian. In his Sept. 6, 2011 article, Nanotechnoglogy world: Nanomedicine offers new cures, he tackles the topic from the nanomedicine perspective.

The EU ObservatoryNano organisation, which supports European policy makers through scientific and economic analysis of nanoscience and nanotechnology developments, produced a report on the ethics of nanotechnology written by Ineke Malsch, director of Malsch TechnoValuation. She says the problem with regulating medical nanotechnology can be how to define a product’s area of application. “The distinction between a medical device and a pharmaceutical is quite fuzzy. …”

How do you regulate a drug-releasing implant, for example? Is Cuschieri’s nano-carrier a pharmaceutical or a medical device? One of [the] key issues, says Malsch, is that there is the lack of common agreement or definition, at the international level, of what a nanoparticle is and what constitutes nanomedicines. “There is continuing discussion about these definitions which will hopefully be resolved before the end of the year.”

Current regulations are more than enough for current technologies, says Malsch, but she adds that this will need to be kept under review. But over-regulating now would also be a mistake. Pre-empting (and trying to pre-regulate) technology that does not yet exist is not a good idea, she says.

This view was backed up by Professor Andrew Maynard, the director of the Risk Science Centre, who says: “With policy-makers looking for clear definitions on which to build ‘nano-regulations’, there is a growing danger of science being pushed aside.”

This (the fuzzy distinction between a pharamaceutical and a medical device) certainly adds a new twist to the debate for me.

Also, I should note that this article’s banner says: Nanotechnology world, in association with Nano Channels.Tim Harper (Cientifica and TNTlog) noticed in an earlier Guardian article on nanotechnology (from his July 7, 2011 posting),

My delight at seeing a sensible piece about “nanotechnology in everyday life” by Colin Stuart (@skyponderer) published in the Guardian Newspaper turned to puzzlement when I noticed that the article was “Paid for by NanoChannels.”

There seems to be some distinction between “paid for” and “in association with,” but I can’t confirm that at this time. Now back to the topic.

In my August 31, 2011 posting, I noted the latest salvo from Hermann Stamm, of the European Commission Joint Research Centre, Institute for Health and Consumer Protection where he reiterated that a hard and fast definition based on size is the best choice. In his Sept. 6, 2011 posting, Andrew where he expands on a concern (i. e. policymakers will formulate a definition not based on scientific data but based on political pressures and/or public relations worries) that I’ve given short shrift. From his Sept. 6, 2011 posting,

And despite policy makers repeatedly stating that any form of nanomaterial regulation should be science-based, I have the sense that they are scrambling to use science to justify a predetermined conclusion – that engineered nanomaterials should be regulated on the basis of a hard and fast definition – rather than using science to guide their actions.Instead, I would suggest that we need to put aside preconceptions of what is important and what is not here, and start by asking how new generations of sophisticated (or advanced) materials interact with biological systems; where these interactions have the potential to cause harm in ways not captured within current regulatory frameworks; and how these frameworks can be adapted or altered to ensure that an increasing number of unusual substances are developed and used as safely as possible – no matter what label or “brand” is applied to them.

He was a little more explicit about what he thinks are the reasons behind this preference for a “hard and fast definition” in his April 15, 2011 posting,

Sadly, it now looks like we are heading toward a situation where the definitions of nanomaterials underpinning regulations will themselves be based on policy, not science.

This scares the life out of me, because it ends up taking evidence off the table when it comes to oversight, and replacing it with assumptions and speculation on what people think is relevant, rather than what actually is – not good for safety, and certainly not good for business.

 

All this got me to thinking about the Interim Policy Statement on Health Canada’s Working Definition for Nanomaterials and the public consultation which ended August 31, 2010.  According to the website, we will be learning the results of the consultation,

Reporting to Canadians

Health Canada will make the results of this consultation available on this Web site.  Health Canada will take further steps to illustrate how the policy statement will be applied in specific contexts.  These steps could include guidance documents for specific products or substances, targeted workshops and postings of answers to frequently asked questions.  The Interim Policy Statement on Health Canada’s Working Definition for Nanomaterials will be updated as comments are received, as the body of scientific evidence increases, and as international norms progress.

If you have any questions, contact nanotechnologies@hc-sc.gc.ca.

Strangely, there’s no mention of the 29 submissions that were made (my May 27, 2011 posting)  or a listing of who made the submissions as was done for Canada’s ‘innovation consultation’ or, more formally, the Review of Federal Support to Research and Development (which started in Oct. 2010 and ended in Feb. 2011 and received some 250 submissions).